

Exercise Sheet 7

Definition: The *epigraph* of a function $I: X \to \mathbb{R}_{\infty}$ is defined as

$$epi(I) := \{ (u, \alpha) \in X \times \mathbb{R} \mid I(u) \le \alpha \} \subset X \times \mathbb{R}.$$

Exercise 21. Estimates via affine functions for convex functions. Consider a proper, convex, and lower semicontinuous functional $I: X \to \mathbb{R}_{\infty}$.

(a) Show that for all u with $I(u) < \infty$ and all $\varepsilon > 0$ there exists $\xi \in X^*$ such that $I(u+v) \ge I(u) - \varepsilon + \langle \xi, v \rangle$ for all $v \in X$. (*Hint: Use epi(I) and separate it in* $X \times \mathbb{R}$ from a suitable set.)

(b)* Show that for all u with $I(u) = \infty$ and all $M \in \mathbb{R}$ there exists $\xi_M \in X^*$ such that $I(u+v) \geq M + \langle \xi_M, v \rangle$ for all $v \in X$. (*Hint: Work in* $X \times \mathbb{R}$ and construct a line segment connecting (u, M) and $(u_1, I(u_1)-1)$ that does not intersect epi(I).)

(c) Conclude from (a) and (b) (without using sublevels) that ${\cal I}$ is weakly lower semicontinuous.

Exercise 22. Bounded convex functions are Lipschitz continuous. Let $I : X \to \mathbb{R}_{\infty}$ be proper, convex, and lsc. Assume further that

$$\exists M, K \in \mathbb{R} \ \forall u \in B_R(u_*): \quad K \le I(u) \le M.$$

Show that I restricted to $B_r(u_*)$ with $r \in [0, R[$ is Lipschitz continuous with a Lipschitz constant that only depends on M-K and r/R.

Exercise 23. Continuity points of convex functionals. For a proper, lower semicontinuous convex functional $I: X \to \mathbb{R}_{\infty}$ on a Banach space X the domain is defined via

$$\operatorname{dom}(I) := \{ u \in X \mid I(u) < \infty \} \neq \emptyset.$$

- (a) Show that for $u_1 \in \text{dom}(I)$ the following conditions are equivalent:
 - (i) $\exists \delta > 0$: sup{ $I(u) \mid u \in B_{\delta}(u_1)$ } < ∞ ;
 - (ii) I is continuous in u_1 .

(b) Show that I is continuous on A := int(dom(I)), if I is continuous at one $u_1 \in A$.

(c) Assume that I is continuous at one $u_1 \in A$. Find a supporting hyperplane for all $u \in A$, i.e. there exists $\beta \in X^*$ such that $I(u+v) \ge I(u) + \langle \beta, v \rangle$ for all $v \in X$. (*Hint: Use the "open epigraph"* { $(u, \alpha) \in X \times \mathbb{R} \mid u \in A, I(u) \leqq \alpha$ }.)

Exercise 24. Sobolev embeddings. Let $\Omega = B_1(0) \subset \mathbb{R}^d$.

(a) Consider the function $u: \Omega \to \mathbb{R}$ with $u(x) = |x|^{\alpha}$ for $x \neq 0$ and u(0) = 0. For which p do we have $u \in L^{p}(\Omega)$ and for which $u \in W^{1,p}(\Omega)$?

(b) Consider the function $u(x) = (1 - \log |x|)^{\beta}$ with $\beta \in \mathbb{R}$. For which β and $p \in [1, \infty]$ do we have $u \in L^p(\Omega)$ and for which $u \in W^{1,p}(\Omega)$?

(c) For the case $d \ge 2$ give a function $u \in W^{1,d}(\Omega) \setminus L^{\infty}(\Omega)$.