

Exercise Sheet 4

Exercise 14. Mollification = Smoothing.

Consider a Lipschitz function $\widetilde{u}: \mathbb{R}^d \to \mathbb{R}^m$, i.e. for $L = \operatorname{Lip}(\widetilde{u})$ we have

$$\forall x, y \in \mathbb{R}^d: \quad |\widetilde{u}(x) - \widetilde{u}(y)| \le L|x - y|.$$

(a) Take the Dirac sequence ψ_{δ} from the lectures and define

$$u_{\delta} = \widetilde{u} * \psi_{\delta} : x \mapsto \int_{\mathbb{R}^d} \widetilde{u}(y) \psi_{\delta}(x-y) \, \mathrm{d}y$$

Show that $\operatorname{Lip}(u_{\delta}) \leq L$ and $\|\widetilde{u} - u_{\delta}\|_{C^0} \leq L\delta$.

(b) For any $w \in C^1(\mathbb{R}^d; \mathbb{R}^m)$ establish the identity

$$\operatorname{Lip}_{B_R(x_0)}(w) = \sup\{ \|\nabla w(y)\|_{\mathbb{R}^{m \times d}} \mid y \in B_R(x_0) \},\$$

where the expression in left-hand side indicates the smallest Lipschitz constant of $w|_{B_R(x_0)}$. (*Hint: For estimating* w(x)-w(y) consider w on the connecting line.) (c) Conclude $\|\nabla u_{\delta}\|_{C^0} \leq L = \operatorname{Lip}(\widetilde{u}).$

Exercise 15. Second variation Consider the functional $I : C^1(\overline{\Omega}; \mathbb{R}^m) \to \mathbb{R}$ with $I(u) = \int_{\Omega} f(x, u(x), \nabla u(x)) dx$, where $f \in C^2(\overline{\Omega} \times \mathbb{R}^m \times \mathbb{R}^{m \times d})$. For $\gamma_1, \gamma_2 > 0$ assume the estimates

$$\int_{\Omega} \partial_A^2 f(x, u_0(x), \nabla u_0(x)) [\nabla w, \nabla w] \, \mathrm{d}x \ge \gamma_1 \int_{\Omega} |\nabla w|^2 \, \mathrm{d}x, \qquad (\text{Eq.1})$$
$$\mathrm{D}^2 I(u_0)[w, w] \ge \gamma_2 \int_{\Omega} |w|^2 \, \mathrm{d}x. \qquad (\text{Eq.2})$$

(a) Use (Eq.1) and suitable estimates for $\partial_A \partial_u f$ and $\partial_u^2 f$ to find C^* such that

$$D^{2}I(u_{0})[w,w] \geq \gamma_{1}/2 \int_{\Omega} |\nabla w|^{2} dx - C^{*}|w|^{2} dx \text{ for all } w.$$

(b) Combine (Eq.2) and (Eq.1) to find $\gamma_3 > 0$, such that

$$\mathsf{D}^{2}I(u_{0})[w,w] \geq \gamma_{3} \int_{\Omega} |\nabla w|^{2} + |w|^{2} \,\mathrm{d}x \quad \text{for all } w \in C^{1}(\overline{\Omega};\mathbb{R}^{m}).$$

Exercise 16. Anisotropic elasticity theory. The functional $I : C^1(\overline{\Omega}; \mathbb{R}^d) \to \mathbb{R}; u \mapsto \int_{\Omega} f(\nabla u) dx$ is defined via

$$f(A) = \frac{\lambda}{2}(\text{spur}A)^2 + \frac{\mu}{4} \left| A + A^T \right|^2 + \frac{\delta}{2} A_{11}^2.$$

(a) Establish the formula $\partial_A^2 f(A)[B,B] = 2f(B)$ for all $A, B \in \mathbb{R}^{d \times d}$.

(b) For which $\lambda, \mu, \delta \in \mathbb{R}$ do we have $f(A) \ge 0$ for all $A \in \mathbb{R}^{d \times d}$ (which is equivalent to convexity)? Try first to solve the case d = 2.

(*Hint: For testing the positivity, it essentially suffices to consider diagonal matrices.*)

(c) For which $\lambda, \mu, \delta \in \mathbb{R}$ does f satisfy the LEGENDRE–HADAMARD condition? Try first to solve the case d = 2.

(*Hint: Write* $\partial_A^2 f(x, u, A)[\mathbf{b} \otimes \boldsymbol{\eta}, \mathbf{b} \otimes \boldsymbol{\eta}] \ge 0$ in the form $\mathbb{A}(\boldsymbol{\eta})\mathbf{b} \cdot \mathbf{b} \ge 0$ with $\mathbb{A}(\boldsymbol{\eta}) \in \mathbb{R}^{d \times d}_{sym}$.)