

Partial Differential Equations Sommersemester 2019 Alexander Mielke Philipp Bringmann

Partial Differential Equations Table of contents

1. Introduction

Definitions and first examples, e.g. separation of variables

2. Partial differential equations of first order

2.1 Scalar quasilinear equation of first order

Characteristic curves and integral manifolds

2.2 The initial-value problem

Cauchy problems, local existence result

2.3 A one-dimensional traffic model, weak solutions

Continuity equation, shocks = jumps, Rankine-Hugoniot conditions, (entropy condition)

3. Scalar partial differntial equations of second order

3.1 General classification

Quasilinear form versus divergence form, non-characteristic Cauchy data, elliptic, parabolic, hyperbolic

3.2 Cauchy problems

D'Alembert formula for $u_{tt} = u_{xx}$, elliptic equation via power series, parabolic equation

3.3 Theorem of Cauchy–Kovalevskaya

4. Elliptic equations (Laplace and Poisson equation)

4.1 Boundary-value problems and Green's formulas

4.2 Poisson kernels

Hölder regularity $u \in C^{2+\alpha}(\mathbb{R}^d)$ for $\Delta u = f \in C^{\alpha}_{c}(\mathbb{R}^d)$

4.3 Lax–Milgram theory

Hilbert space theory, weak convergence, cONS, Sobolev spaces, existence and uniqueness for general bilinear forms, weak solutions for Dirichlet and Neumann problems, Poincaré and Friedrich's inequality

4.4 Spectral theory

Rellich's embedding theorem, spectrum of compact symmetric operators, cONS obtained from eigenpairs for symmetric bilinear forms $B(\phi_k, v) = \lambda_k \langle \phi_k, v \rangle$ solutions of general symmetric elliptic equations by eigenvalue expansion

5. Parabolic equations

5.1 The heat kernel

Fourier transform in \mathbb{R}^d , convolution with heat kernel, constant-of-variations formula for inhomogeneous equation

5.2 Smoothing properties

... via heat kernel $\|D_x^{\alpha}u(t)\|_{L^p} \leq C_{|\alpha|}t^{-|\alpha|/2}\|u(0)\|_{L^p}$ and via eigenfunction expansion

5.3 A general existence and uniqueness result

Weak solutions for general non-symmetric parabolic problems

Existence and uniqueness of solutions via finite-dimensional approximation:

1. Approximation, 2. A priori estimate, 3. Extraction of converging subsequeunce,

4. Identification of limit point as (weak) solution, 5. uniqueness.

6. Hyperbolic equation

6.1 Classical solution formulas in \mathbb{R}^d

D'Alembert's formula, spherical means, soluton formulas for d = 3 and d = 2, Huygens principle

6.2 Solution via Fourier transform

6.3 Approximation by eigenfunction expansion

Energy conservation, weak solutions, and approximation