

Partial Differential Equations Summer Term 2019 Alexander Mielke Philipp Bringmann 1. Juli 2019



## Partial Differential Equations Exercise Sheet 11

## Exercise 38. Gronwall's lemma [1919]

(after THOMAS HAKON GRÖNWALL (1877-1932)).

(a) Differential form: Let  $y \in W^{1,1}([0,T])$  with  $y(t) \ge 0$  and  $\alpha \in L^1([0,T])$  be such that  $\dot{y}(t) \le \alpha(t)y(t)$ . Show the Gronwall estimate  $y(t) \le y(0)e^{\int_0^t \alpha(s)ds}$ .

(b) Generalize (a) to the case  $\dot{y}(t) \leq \alpha(t)y(t) + \beta(t)$  for  $\beta \in L^1([0,T])$  with  $\beta \geq 0$ .

(c) Integrated form:

Assume that  $z \in C^0([0,T])$  with  $z(t) \ge 0$  satisfies  $z(t) \le z_0 + \int_0^t (\alpha_0 z(s) + \beta(s)) ds$  with  $\alpha_0 \ge 0$  and  $\beta$  as in (b). Conclude  $z(t) \le z_0 e^{\alpha_0 t} + \int_0^t e^{\alpha_0 (t-s)} \beta(s) ds$ .

Hint: Define  $w(t) = z_0 + \int_0^t (\alpha_0 z(s) + \beta(s)) ds$  and compare it with  $\dot{w}$ .

(d) Assume that  $y \in W^{1,1}([0,\infty[) \text{ and } \phi \in L^1([0,\infty[) \text{ satisfy } \phi(t) \ge 0 \text{ and } \frac{\mathrm{d}}{\mathrm{d}t}y^2 \le 2 \phi y$  for all  $t \ge 0$ . Show that y remains bounded by  $|y(0)| + \int_0^\infty \phi(t) \, \mathrm{d}t$ .

## Exercise 39. A priori estimates for parabolic equations.

For a bounded Lipschitz domain  $\Omega \subset \mathbb{R}^d$  we consider the general parabolic equation

$$\rho(x)u_t = \operatorname{div}\left(A(x)\nabla u(x)\right) + b(x)\cdot\nabla u(x) + c(x)u(x) + f(t,x), \quad (t,x) \in \left]0, \infty\right[\times\Omega, \\ u(0,x) = u_0(x) \text{ in } \Omega, \qquad (A(x)\nabla u(t,x))\cdot\nu(x) + \beta(x)u(x) = 0 \text{ for } t > 0, \ x \in \partial\Omega,$$

where the divergence is understood in the weak sense. For the coefficients assume  $A \in L^{\infty}(\Omega, \mathbb{R}^{d \times d}_{sym})$ ,  $b \in L^{\infty}(\Omega, \mathbb{R}^{d})$ ,  $\rho, c \in L^{\infty}(\Omega)$ ,  $\beta \in L^{\infty}(\partial\Omega)$  with  $\beta \geq 0$ . Moreover, assume  $\xi \cdot A(x)\xi \geq \alpha_{\min}|\xi|^2$  and  $\rho(x) \geq \rho_{\min}$  with  $\alpha_{\min}$ ,  $\rho_{\min} > 0$  and  $f \in BC([0, \infty[, L^2(\Omega)))$ .

(a) Let  $E_1(t) = \int_{\Omega} \rho(x) u(t,x)^2 dx$  and assume that u is a sufficiently smooth solution. Derive the estimate

$$\dot{E}_1(t) + c_1 \|\nabla u\|_{\mathrm{L}^2(\Omega)}^2 \le C_2 E_1(t) + C_3 \|f(t)\|_{\mathrm{L}^2(\Omega)}^2,$$

where the constants  $c_1, C_2, C_3$  may only depend on the coefficients.

(b) Use the Gronwall lemma to show the a priori estimates

$$\|u(t)\|_{\mathrm{L}^{2}(\Omega)}^{2} + \int_{0}^{t} \|\nabla u(s)\|_{\mathrm{L}^{2}(\Omega)}^{2} \,\mathrm{d}s \leq C_{4} \big(\|u(0)\|_{\mathrm{L}^{2}(\Omega)}^{2} + F^{2}\big) \mathrm{e}^{C_{5}t},$$

where  $F = \sup\{ \|f(t)\|_{L^2(\Omega)} | t \ge 0 \}$  for suitable constants  $C_4$  and  $C_5$ .

## Exercise 40. An explicit solution for the three-dimensional wave equation. On $\Omega = \mathbb{R}^3$ consider the wave equation

$$u_{tt} = \Delta u, \qquad u(0, x) = 0, \quad u_t(0, x) = g(x),$$

which has the explicit solution

$$u(t,x) = t M_g(t,x) = \frac{1}{4\pi t} \int_{|y-x|=t} g(y) da(y) \qquad \text{(spherical mean)}$$

We consider the case with g(x) = 1 for  $|x| \le R$  and g(x) = 0 for |x| > R.

(a) Interpret the solution formula geometrically by intersecting a ball and a sphere. Determine the support of  $u(t, \cdot)$  explicitly.

(b) Show that  $||u(t)||_{L^{\infty}(\mathbb{R}^3)} \to 0$ .

(c) Calculate the solution explicitly and show that u has a point of discontinuity. Hints: (i) The initial condition is radially symmetric.

(ii) The area of a spherical cap of the unit sphere is  $2\pi(1-\cos\varphi)$ , where  $\varphi \in ]0,\pi[$  is the opening angle. (d) Calculate explicitly the kinetic energy  $E_{kin}(t) = \int_{\mathbb{R}^3} \frac{1}{2}u_t^2 dx$  and show that  $E_{kin}(t) \rightarrow \frac{1}{2}E_{total}$ , i.e. the energy distributes equally into kinetic and potential energy for  $t \rightarrow \infty$ . ("Equipartition of energy" is an important principle in physics.)

July 22 – 24, 2019 and September 30 – October 2, 2019.