

Partial Differential Equations Summer Term 2019 Alexander Mielke Philipp Bringmann 17. Juni 2019

Partial Differential Equations Exercise Sheet 9

Exercise 31. Rellich's embedding theorem for a square. Consider the domain $\Omega = [0, 1[^2 \subset \mathbb{R}^2]$. We want to show that $H^1(\Omega)$ (no boundary conditions) embeds compactly into $L^2(\Omega)$.

(a) Set $\widetilde{\Omega} = \left]-1, 2\right[^2$ and define the mapping $R: L^2(\Omega) \to L^2(\widetilde{\Omega})$ via

$$(Ru)(x_1, x_2) = u(\varrho(x_1), \varrho(x_2)), \quad \text{where } \varrho(y) = \begin{cases} -y & \text{for } y \in [-1, 0], \\ y & \text{for } y \in [0, 1], \\ 2-y & \text{for } y \in [1, 2]. \end{cases}$$

Show that R restricted to $\mathrm{H}^{1}(\Omega)$ defines a bounded linear operator from $\mathrm{H}^{1}(\Omega)$ to $\mathrm{H}^{1}(\widetilde{\Omega})$ and satisfies $||Ru||_{\mathrm{H}^{1}(\widetilde{\Omega})} = 3||u||_{\mathrm{H}^{1}(\Omega)}$.

(b) Construct a cut-off function $\chi : \mathbb{R}^2 \to \mathbb{R}$ such that the mapping $S : v \mapsto \in \chi v$ is a bounded linear operator from $\mathrm{H}^1(\widetilde{\Omega})$ to $\mathrm{H}^1_0(\widetilde{\Omega})$ and that $Sv|_{\Omega} = v|_{\Omega}$.

(c) Combine (a) and (b) with Rellich's embedding theorem for $H_0^1(\tilde{\Omega})$ to show that the embedding of $H^1(\Omega)$ into $L^2(\Omega)$ is compact.

Exercise 32. Eigenvalue problem on a rectangle with Dirichlet and Neumann boundary conditions. Consider the domain Ω and Dirichlet boundary Γ_{Dir} with

$$Ω =]0, a[×]0, b[and ΓDir = (]0, a[× {0}) ∪ (]0, a[× {b}).$$

Let $\mathrm{H}^{1}_{\Gamma_{\mathrm{Dir}}}(\Omega) := \left\{ u \in \mathrm{H}^{1}(\Omega) \mid u |_{\Gamma_{\mathrm{Dir}}} = 0 \right\}$ and consider the following eigenvalue problem for $(\lambda, \varphi) \in \mathbb{R} \times \mathrm{H}^{1}_{\Gamma_{\mathrm{Dir}}}(\Omega)$:

$$\int_{\Omega} \nabla \varphi \cdot \nabla v \, \mathrm{d}x = \lambda \int_{\Omega} \varphi v \, \mathrm{d}x \quad \text{for all } v \in \mathrm{H}^{1}_{\Gamma_{\mathrm{Dir}}}(\Omega).$$
(1)

(a) Show that sufficiently smooth eigenpairs satisfy the PDE

$$-\Delta \varphi = \lambda \varphi$$
 in Ω , $\varphi = 0$ on Γ_{Dir} , $\nabla \varphi \cdot \nu = 0$ on $\partial \Omega \setminus \Gamma_{\text{Dir}}$.

(b) Use the separation ansatz $\varphi(x_1, x_2) = V(x_1)W(x_2)$ to find eigenpairs (λ, φ) for all $\lambda \in \left\{ \left(\frac{\pi n_1}{a}\right)^2 + \left(\frac{\pi n_2}{b}\right)^2 \mid n_1 \in \mathbb{N}_0, n_2 \in \mathbb{N} \right\}.$

(c) Show that the eigenfunctions constructed in (b) form a complete ONS.

(please turn over)

Exercise 33. A one-dimensional eigenvalue problem. For the domain $\Omega =]0,1[\subset \mathbb{R}$ and $\alpha \in \mathbb{R}$ consider the following eigenvalue problem: Find $(\lambda, \varphi) \in \mathbb{R} \times \mathrm{H}^{1}(\Omega)$ such that

$$\int_{\Omega} \varphi' \, v' \, \mathrm{d}x + \alpha \varphi(1) v(1) = \lambda \int_{\Omega} \varphi \, v \, \mathrm{d}x \quad \text{for all } v \in \mathrm{H}^{1}(\Omega).$$

(a) Show that all eigenpairs solve the equations

$$-\varphi'' = \lambda \varphi$$
 in Ω , $\varphi'(0) = 0$, $\varphi'(1) + \alpha \varphi(1) = 0$.

(b) Show that $\alpha > 0$ implies that all eigenvalues are positive as well and give all eigenvalues $\lambda_k^{(0)}$ for the case $\alpha = 0$.

(c) Find the "characteristic equation" for the eigenvalue problem, i.e. a function $F : \mathbb{R} \to \mathbb{R}$ such that $F(\lambda) = 0$ holds if and only if λ is an eigenvalue.

(d) Derive from (c) in the case $\alpha < 0$ there is at most one negative eigenvalue and that the ordered eigenvalues $\lambda_k^{(\alpha)}$ satisfy

$$\lambda_1^{(\alpha)} < 0 = \lambda_1^{(0)} < \lambda_2^{(\alpha)} < \lambda_2^{(0)} < \dots \\ \lambda_{k-1}^{(0)} < \lambda_k^{(\alpha)} < \lambda_k^{(0)} < \dots$$

Exercise 34. Poincaré's inequality. Using Rellich's embedding theorem we want to derive the following Poincaré's inequality: Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with Lipschitz boundary. Then,

$$\exists C_{\text{Poin}} > 0 \ \forall u \in \mathrm{H}^{1}(\Omega) \text{ with } \int_{\Omega} u \,\mathrm{d}x = 0: \quad C_{\text{Poin}} \int_{\Omega} u^{2} \,\mathrm{d}x \leq \int_{\Omega} |\nabla u|^{2} \,\mathrm{d}x.$$
 (2)

(a) Assume that (2) is false, and conclude using Rellich's embedding theorem that there must be a function $u \in H^1(\Omega)$ such that

$$\nabla u = 0$$
 a.e. in Ω , $\int_{\Omega} u^2 dx = 1$, and $\int_{\Omega} u dx = 0$.

(b) Prove that (a) produces a contradiction by showing that $\nabla u = 0$ a.e. implies that u must be equal to a constant a.e. in Ω . For functions in $H^1(\Omega)$ this result is not immediate, because we do not even know that u is continuous.

Hint: Show that mollification $u_{\varepsilon} = u * \psi_{\varepsilon}$ satisfy $\nabla u_{\varepsilon} = 0$ away from $\partial \Omega$ and use connectedness of Ω .

Dates for the teaching evaluation: June 17–28, 2019 (token = name-year of Abel Prize winner).

Dates for the oral exams:

July 22–24, 2019 and September 30 – October 2, 2019.