

Partial Differential Equations Summer Term 2019 Alexander Mielke Philipp Bringmann 27. Mai 2019

Partial Differential Equations Exercise Sheet 7

Exercise 24. An alternative proof of the Lax-Milgram lemma. Let $B : H \times H \rightarrow \mathbb{R}$ be a bounded and coercive bilinear mapping satisfying

 $\exists C_1, c_0 > 0 \ \forall u, v \in H: \quad |B(u, v)| \le C_1 ||u|| \, ||v|| \text{ and } B(u, u) \ge c_0 ||u||^2.$

Denote by $R: H^* \to H$ the Riesz isometry such that $\langle RF, v \rangle = F(v)$ for all $v \in H$. (a) Show that $w = RB(u, \cdot)$ satisfies the relation $\langle w, v \rangle = B(u, v)$.

(b) For $\lambda \in \mathbb{R}$ and $F \in H^*$ we define the mapping $\Phi_{\lambda} : H \to H; u \mapsto u - \lambda R(B(u, \cdot) - F)$. Show that Φ_{λ} is affine and continuous and that $\Phi_{\lambda}(u) = u$ is equivalent to $B(u, \cdot) = F$. (c) Construct $\lambda \in \mathbb{R}$ such that Φ_{λ} is a contraction (i.e. $\|\Phi_{\lambda}(u) - \Phi_{\lambda}(v)\| \leq \rho \|u - v\|$ for some $\rho \in]0, 1[$). Conclude that for each $F \in H^*$ there exists a unique u with $B(u, \cdot) = F$. Hint: For $\lambda > 0$ establish the estimate $\|\Phi_{\lambda}(u) - \Phi_{\lambda}(v)\|^2 \leq (1 - a\lambda + b\lambda^2) \|u - v\|^2$ for suitable a, b > 0.

Exercise 25. Weak derivatives. We consider the domain $\Omega = B_1(0) \subset \mathbb{R}^d$ for $d \in \mathbb{N}$. (a) For $\alpha \in R$ define the functions $u : x \mapsto |x|^{\gamma}$. Give necessary and sufficient conditions on (γ, d) such that $u \in L^p(\Omega)$.

(b) For the functions u in (a) give necessary and sufficient conditions for $u \in W^{1,p}(\Omega)$.

(c) Let v_k be a sequence with $v_k \rightharpoonup v_*$ in $L^p(\Omega)$. Moreover, assume that for some $\alpha \in \mathbb{N}_0^d$ we have $D^{\alpha}v_k = w_k \in L^p(\Omega)$ with $w_k \rightharpoonup w_*$. Show that $D^{\alpha}v_* = w_*$ in the sense of weak derivatives. (I.e. we can interchange weak convergence and differentiation.)

(please turn over)

Exercise 26. Approximation error in the Lax-Milgram lemma. We consider a bounded and coercive bilinear form $B: H \to H \to \mathbb{R}$ satisfying

$$\exists C_1, c_0 > 0 \ \forall u, v \in H: \quad |B(u, v)| \le C_1 ||u|| \, ||v|| \text{ and } B(u, u) \ge c_0 ||u||^2$$

Fix $F \in H^*$ let u be the solution of B(u, v) = F(v) for all $v \in H$. Moreover, let $\{\phi_j \in H \mid j \in \mathbb{N}\}$ be a countable complete orthonormal system (cONS).

(a) Denote by $u^N \in X_N := \operatorname{span} \{ \phi_i \in H \mid i = 1, \ldots, N \}$ the solution of $B(u^N, v^N) = F(v^N)$ for all $v^N \in X_N$ and by $e^N := u - u^N \in H$ the approximation error. Show that $B(e^N, w^N) = 0$ for all $w^N \in X_N$.

(b) For a given $u \in H$ we set $f_N(u) := \min \{ \|u - w^N\|_H \mid w^N \in X_N \}$ which measures how good u can be approximated by elements in X_N . Show that the solution u satisfies

$$||e^{N}|| = ||u-u^{N}|| \le \frac{C_{1}}{c_{0}}f_{N}(u).$$

Hint: Insert $u - w^N$ in a suitable way.

(c) Now assume that B is also symmetric, i.e. B(u, v) = B(v, u) for all $u, v \in H$. Show the improved estimate

$$||e^{N}|| = ||u - u^{N}|| \le \left(\frac{C_{1}}{c_{0}}\right)^{1/2} f_{N}(u).$$

 $\text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-u^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-u^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-u^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-u^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-u^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-u^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-u^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-w^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-w^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-w^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-w^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-w^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-u^N,u-w^N) + B(u^N-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-w^N,u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u-w^N) = B(u-w^N,u^N-w^N) + B(u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u^N-w^N) = B(u-w^N,u^N-w^N) + B(u^N-w^N). \\ \text{Hint: Show the Pythagoras-type identity } B(u-w^N,u^N-w^N) = B(u-w^N,u^N-w^N) + B(u-w^N,u^N-w^N) + B(u-w^N) + B(u-w^N) + B(u-w^N,u^N-w^N) + B(u-w^N,u^N-w^N) + B(u-w^N) + B(u$

Prize exercise (not solved in tutorial) Prize = 50 Euro book coupon.

For some $d \in \mathbb{N}$ find a function $f \in C_c^0(\mathbb{R}^d)$, such that the convolution $u = K_d * f$ does not lie in $C^2(\mathbb{R}^d)$.

Deadline of submission of solutions: July 7, 2019 at 23:59 h as PDF-file per email to alexander.mielke@wias-berlin.de

Dates for the oral exams:

July 22–25, 2019 and September 30 – October 2, 2019.