

Partial Differential Equations Summer Term 2019 Alexander Mielke Philipp Bringmann 18. April 2019

Partial Differential Equations Exercise Sheet 2

Exercise 5: Scalar equation of first order.

(a) Find the solution of the semilinear PDE $u_t + u_y = -u^2$, which satisfies the initial condition $u(0, y) = 1/(1+y^2)$. For which (t, y) is the solution defined?. What is the range of t, such that the solution exists for all $y \in \mathbb{R}$?

(b) For arbitrary, differentiable $f : \mathbb{R} \to \mathbb{R}$ give the solution of the Cauchy problem

$$u_t + yu_y = y^2$$
, $u(0, y) = f(y)$.

Exercise 6: Global versus local solutions. For R > 0 consider the strip $\Omega_R = \{ (x_1, x_2) \in \mathbb{R}^2 \mid |x_2| < R \} = \mathbb{R} \times] - R, R [$ and the linear PDE

$$x_2 \partial_{x_1} u(x_1, x_2) - x_1 \partial_{x_2} u(x_1, x_2) = 0$$
 for $x \in \Omega_R$.

(a) Calculate all characteristic curves.

(b) For $\mathcal{C} = \mathbb{R} \times \{0\}$ and $\varphi \in C^1(\mathbb{R})$ we want to prescribe $u(\xi, 0) = \varphi(\xi)$. Show that for all $\xi \neq 0$ there exists a local solution.

(c) Which additional conditions does φ in (b) have to satisfy to obtain a global C¹ solution $u: \Omega_R \to \mathbb{R}$?

Exercise 7: Linear transport problem on the half axis.

Let Ω be the half axis $]0,\infty[\subset \mathbb{R}$. For constants $a,b\in\mathbb{R}$ we consider the scalar, linear equation

$$u_t + au_x = bu$$
 for $t > 0$ and $x \in \Omega$

together with the Cauchy data u(0, x) = f(x) on Ω , where $f \in C^1(\mathbb{R})$.

(a) Show that for $a \leq 0$ there is a unique solution for this Cauchy problem (recall t > 0).

(b) Provide all solutions of the above Cauchy problem for the case a > 0. Confirm *local uniqueness* near $(t, x) = (0, x_*)$ and show global non-uniqueness.

(c) Under what conditions does the above Cauchy problem (with t > 0) has a solution that satisfies the additional *boundary condition* u(t, 0) = h(t), where $h \in C^1(\mathbb{R})$?

(please turn over)

Exercise 8: The continuity equation. Given a globally Lipschitz-continuous vector field $V \in C^1(\mathbb{R}^d; \mathbb{R}^d)$ the *continuity equation* for a mass density $\rho(t, x) \ge 0$ is given by

$$\partial_t \rho(t, x) + \operatorname{div}_x(\rho(t, x)V(t, x)) = 0.$$

Throughout we assume that $\rho \in C^1(\mathbb{R} \times \mathbb{R}^d)$ and decays sufficiently fast in x, i.e. $0 \leq \rho(t, x) \leq C(1+|x|^2)^{-d}$.

(a) Show that the total mass $M(t) = \int_{\mathbb{R}^d} \rho(t, x) dx$ is constant in time.

(b) Calculate the characteristic curves for the Cauchy problem with

$$\mathcal{C} = \{ (0,\xi) \in \mathbb{R} \times \mathbb{R}^d \mid \xi \in \mathbb{R}^d \} \text{ and } \rho(0,\xi) = \varphi(\xi)$$

in terms of the flow mapping $x(t;r,\xi) = \Phi_{t,r}(\xi)$ given by solving

$$\dot{x}(t) = V(t, x(t))$$
 and $x(r) = \xi$.

(Hint: Use that all $\Phi_{r,t}(\cdot) : \mathbb{R}^d \to \mathbb{R}^d$ are diffeomorphisms and satisfy $\Phi_{r,s} \circ \Phi_{s,t} = \Phi_{r,t}$.) (c) Show that ρ takes the form

$$\rho(t, x) = \varphi(\Phi_{t,0}(x)) \det \left(\mathcal{D}_x \Phi_{t,0}(x) \right).$$

(Hint: Use that for matrices $A(t), X(t) \in \mathbb{R}^{d \times d}$ with $\dot{X}(t) = A(t)X(t)$ the determinant $\mu(t) = \det X(t)$ satisfies $\dot{\mu}(t) = \operatorname{trace}(A(t))\mu(t)$.)

(d) Relate the formula in (c) to the transformation rule applied to $\Phi_{t,0}$: $\mathbb{R}^d \to \mathbb{R}^d$ restricted to a domain Ω in order to compare the mass $\int_{\Omega} \rho(0,\xi) d\xi$ and $\int_{\Phi_{t,0}(\Omega)} \rho(t,y) dy$.