Analysis 3 WiSe 2017/18

Übungsblatt 8

Schriftliche Abgabe: Dienstag 12. Dezember 2017 (13:15 Uhr)

Hinweis: Die mit (V) gekennzeichneten Aufgaben können Sie in den Übungen vom 12.-19. Dez. 2017 vorrechnen. Bitte bereiten Sie entsprechende Unterlagen vor.

Aufgabe 8.1 (5 Punkte) Berechne die folgenden Lebesgue-Integrale, indem die Integranden als einfache Funktionen dargestellt werden:

- (a) $\int_{[-3,3]} \operatorname{sign} \left(\cos(\pi x) \right) dx$ (wobei $\operatorname{sign} 0 = 0$ und $\operatorname{sign} x = \pm 1$ für $\pm x > 0$);
- (b) $\int_{(0,1]} \operatorname{sign}\left(\sin\frac{\pi}{x}\right) dx;$
- (c) $\int_{[0,2]\times[0,1]} \lfloor y_1+2y_2 \rfloor dy$ (wobei $y=(y_1,y_2)\in\mathbb{R}^2$ und $\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{Z}$ mit $z-1 < \lfloor z \rfloor \leq z$).

Aufgabe 8.2 (5 Punkte, V) Bestimmen Sie alle reellen α , für welche die Funktion $f:(0,1]\to\mathbb{R}$ mit

$$f(x) = \frac{(-1)^k}{k^{\alpha}}$$
 falls $\frac{1}{k+1} < x \le \frac{1}{k}$

Lebesgue-integrierbar ist. Berechnen Sie $\int_{(0,1]} f(x) \, \mathrm{d}x$ in diesem Fall.

Aufgabe 8.3 (5 Punkte, V) Sei

$$f(x) = \begin{cases} x^3 & \text{für } x \in \mathbb{Q}, \\ x^2 & \text{für } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- (a) Ist die Funktion f auf [0,1] Riemann-integrierbar?
- (b) Ist die Lebesgue-integrierbar? Wenn ja, berechne $\int_{[0,1]} f \, dx$.

Aufgabe 8.Z (5 Punkte) (V) Es sei (M, \mathfrak{A}, μ) ein Maß-Raum und $\Omega \in \mathfrak{A}$ mit $\mu(\Omega) < \infty$. Zeigen Sie, dass eine \mathfrak{A} -messbare Funktion $f : \Omega \to [0, \infty]$ genau dann μ -integrierbar ist, wenn die Reihe

$$\sum_{n=0}^{\infty} 2^n \mu(\{x \in \Omega : f(x) \ge 2^n\})$$

(eigentlich) konvergiert.

Hinweis: Betrachte $A_n := \{x \in \Omega : 2^n \le f(x) < 2^{n+1}\}$ und $a_n = \mu(A_n)$.

(bitte wenden)

Die folgenden Aufgaben werden teilweise in den Übungen am 5.–7. Dezember 2017 besprochen

In beiden Aufgaben sei (M, \mathfrak{A}, μ) ein Maß-Raum und $\Omega \in \mathfrak{A}$.

Aufgabe 8.A (Das abstrakte Lebesgue-Integral ist linear)

Seien $f:\Omega\to\mathbb{R}$ und $g:\Omega\to\mathbb{R}$ μ -integrierbare Funktionen. Beweisen Sie das folgende:

- (a) αf ist μ -integrierbar für jedes $\alpha \in \mathbb{R}$ und $\int_{\Omega} \alpha f \, d\mu = \alpha \int_{\Omega} f \, d\mu$.
- (b) f+g ist μ -integrierbar und $\int_{\Omega} (f+g) d\mu = \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$.

Hinweis zu (b): Setze h = f + g und zeige die Gleichheit $h_+ + f_- + g_- = h_- + f_+ + g_+$.

Aufgabe 8.B

- (a) Sei $f: \Omega \to [0, \infty]$ eine μ -integrierbare Funktion. Beweisen Sie, dass $\int_{\Omega} f \, d\mu = 0$ nur dann, wenn f = 0 μ -fast überall auf Ω .
- (b) Seien $f: \Omega \to \mathbb{R}$ und $g: \Omega \to \mathbb{R}$ Lebesgue-integrierbare Funktionen mit f = g fast überall auf Ω . Folgern Sie, dass $\int_{\Omega} f \, \mathrm{d}\mu = \int_{\Omega} g \, \mathrm{d}\mu$ gilt.

Hinweis zu (a): Betrachte $A = \{x \in \Omega : f(x) > 0\}$ und $A_n = \{x \in \Omega : f(x) > 1/n\}$.