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1 The model

1.1 Introduction

Let Φ a point process modelling the location of the nodes of a network. For any t ∈ Z+ let ΦT (t) ⊂ Φ
be the set of nodes that are transmitting at time t and ΦR(t) = Φ \ΦT (t) the ones that are receiving.
We define the SINR from a node x ∈ ΦT (t) to a node y ∈ ΦR(t) as

SINRxy(t) :=
Px(t)ht(x, y)`(x, y)

γI(t) +N
.

• Px(t) the transmitted power from x.

• ht(x, y) the space-time fading coefficients from x to y.

• `(x, y) the path-loss function.

• I(t) =
∑

z∈ΦT (t)\{x,y} Pz(t)ht(z, y)`(z, y) the interference coming from the other nodes.

• γ the interference suppression constant, N the noise.

We say that the transmission from x ∈ ΦT (t) to y ∈ ΦR(t) has been successful if SINRxy > β a
positive constant. The goal is to propose a model where:

• The expected value of the delay time of successfully transmitting one package from one node
to another is finite.

• The average velocity in which the package travels around the net is not zero.

1.2 The model

We will assume that:

• Φ is a homogeneous PPP with intensity λ in R2.

• ht(x, y), x, y ∈ Φ, t = 0, 1, ... are independent ∼ exp(µ).

• `(x, y) = `(|x− y|) = |x− y|−α ∧ 1, α > 2.
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Figure 1: Definition of cones with angle 2φ and transmission of each node to its nearest neighbour
in the destination cone.

• every node is a transmitter or a receiver following a Bernoulli random variable 1x(t), with
transmission probability P (1x(t) = 1) = px(t),

• 0 < γ < 1.

We will track a tagged package that traverse the network following a conic forwarding strategy
for that let C1, ..., Cm be cones centred in the origin with angle 2Φ < π

2
s.t. ∪mi=1Ci = R2 and are

disjoint, also lets assume that C1 is symmetric with respect to the x axis. At time t the node x will
transmit through the cone x+ Cd(x, t) that contains the final destination of the package to nt(x)
the nearest node in that cone.
We will assume that

• If the node x is on at time t then it transmits with power Px(t) = c`(x, nt(x))−1 where
c = M(1− ε)−1, 0 < ε < 1.

• M = Px(t)px(t).

Which implies that px(t) = (1− ε)`(x, nt(x)). This is what is called power control strategy. Then
we have that the SINR from node x to node y at time t is given by

SINRxy(t) :=
Px(t)ht(x, y)`(x, y)1x(t)(1− 1y(t))

γI(t) +N
.

The next indicator function tell us if the transmission has been successful

exy(t) :=

{
1 1 if SINRxy > β
0 otherwise.

2 Main results

2.1 Finited expected exit time

Definition 1. Let the minimum exit time taken by any packet to be successfully transmitted from
node x to its nearest neighbour n(x) in the destination cone of the packet be:
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T (x) = min{t > 0 : ex,nt(x)(t) = 1}.

Theorem 2. Suppose βγ < 1 then the SINR graph with power control policy satisfies that E(T (x)) <
∞ for any x ∈ Φ.

Proof. (Sketch) Without loss of generality, we will suppose that the package is being transmitted by
the origin o ∈ Φ, let Cd the destination cone of this package and n(o) the nearest neighbour of o in
Cd. We have that

P (T (o) > k | Φ) = E{
k∏
t=1

P (A(t) ∪B(t) | Gk)1F |Φ}.

• F := ∩kj=2{po(j) = po(1)}.

• Gk is the σ-algebra generated by Φ and the choice of the cones made at all nodes of Φ up to
time k.

• A(t) := {o ∈ ΦR(t)}.

• B(t) := {o ∈ ΦT (t), n(o) ∈ ΦR(t), SINRo,n(o)(t) ≤ β}.

From the fact that ht(o, n(o)) ∼ exp(µ) and the properties of the power control strategy on the
event F for a = µβγ

c

P (A(t) ∪B(t)|Gk) ≤ 1− po(1)εe−
µβN
c E{e−aI∗(1)|Φ}.

Where I∗(1) =
∑

z∈Φ\{o,n(o)} 1
∗
zP
∗
z h1(z, n(o))`(z, n(o)) and p∗z, P ∗z are fixed values for each z.

Then for J := po(1)εe−
µβN
c E{e−aI∗(1)|Φ} we get that

P (T (o) > k|Φ) ≤ (1− J)k

and since 0 < 1− J < 1

E(T (o)) =
∑
k≥0

P (T (o) > k) = E(
∑
k≥0

P (T (o) > k|Φ)) ≤ E(J−1).

By Cauchy-Schwartz on J−1

E(T (o)) ≤ e
µβN
c

ε
(E{po(1)−2}E{ 1

(E{e−aI∗(1)|Φ})2
})

1
2 .

On the one hand from the definition of the transmission probability po(t),

E{po(1)−2} ≤ E{( c
M

)2(|n(o)|2α ∨ 1)} <∞.
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On the other hand if we let Φ0 be a PPP independent of the other nodes and intensity λ1{(o+Cd)∩B(o,|n(o)|}
again as a consequence of the power control strategy and the Campbell‘s theorem

E{ 1

(E{e−aI∗(1)|Φ})2
} ≤ E{

∏
z∈Φ\{o,n(o)}∪Φ0

e−2 log(1−c1`(|z|))}

≤ exp(λ

∫
R2

(e−2log(1−c1`(|z|)) − 1))dz)

≤ exp(
2λc1

(1− c1)2

∫
R2

`(|z|)dz) <∞.

2.2 Information velocity strictly positive

Now we want to measure how fast the package moves in time from the origin to its destination.

Definition 3. Let T0 be the time taken by this tagged package starting at X0 = o ∈ Φ to successfully
reach its nearest neighbour X1 = n(o) in the destination cone C1. More generally let Ti−1 be the time
taken for the packet to successfully reach the nearest neighbour Xi of Xi−1 in the destination cone
Xi−1 + C1.

Definition 4. The information velocity of SINR network is defined as

v = lim inf
t→∞

d(t)

t

where d(t) is the distance of the tagged packet from the origin at time t.

Theorem 5. Under the conditions of Theorem 2. the information velocity v > 0 a.s.

Proof. (Sketch) For all i ≥ 0, let Ri := |Xi+1 −Xi|,θi := arcsin(
Xi+1,2−Xi,2

Ri
) where Xi = (Xi,1, Xi,2).

Since Φ is an homogeneous PPP with intensity λ, we have that {(Ri, θi), i ≥ 0} is an i.i.d. sequence
of random vectors where Ri has density and θi is uniformly distributed on (−φ, φ). Our goal is to
construct an stationary sequence of stopping times such that for all i ≥ 0, T ′i ≥ Ti.
Let {(R−i, θ−i, i ≥ 1)} an i.i.d sequence of random vectors with distribution (R0, θ0). Define
Φ̃ = {X−i, i ≥ 1} starting from X−1 to satisfy: R−i = |X−i −X−i+1|,θ−i = arcsin(

X−i+1,2−X−i,2
R−i

).

For i ≥ 0 let Φi be an PPP of intensity λ1{(Xi+C1)∩B(Xi,Ri)} independent of everything else, T ′i be
the delay experienced by the packet in going from Xi to Xi+1 when the interference is coming from
the nodes in (Φ \ {Xi, Xi+1}) ∪ Φ̃ ∪i−1

j=0 Φj. (T
′
i , i ≥ 0) is a stationary sequence with T ′i ≥ Ti. We

want to proof that E(T
′
0) <∞ and then use the Birkoff´s ergodic theorem.

Let Ĩ(t) =
∑

z∈Φ̃ 1zPz(t)ht(z, n(o))`(z, n(o)). Analogously to the first theorem we have that

E(T
′

0) ≤ e
µβN
c

ε
(E{po(1)−2}E{ 1

(E{e−a(I∗(1)+Ĩ∗(1))|Φ ∪ Φ̃})2
})

1
2 .

Since I∗(1) and Ĩ∗(1) are independent by Cauchy-Schwartz

E{ 1

(E{e−a(I∗(1)+Ĩ∗(1))|Φ ∪ Φ̃})2
} ≤ E{ 1

(E{e−aI∗(1))|Φ})4
}E{ 1

(E{e−aĨ∗(1)|Φ̃ ∪ {n(o)}})4
}
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Figure 2: Addition on infinite sequence of points to make T ′i stationary.

Again by Campbell’s theorem

E{ 1

(E{e−aI∗(1))|Φ})4
} ≤ exp(

λ

(1− c1)4

∫
R2

(1− (1− c1`(|z|))4)dz) <∞.

Since for all i ∈ N,
∑i

j=0R−j cos(θ−j) ≤ |X−i − n(o)| and ` is decreasing

E{ 1

(E{e−aĨ∗(1)|Φ̃ ∪ {n(o)}})4
} ≤ E{

∞∏
i=1

e−4 log(1−c1`(X−i,n(o)))}

≤ E{
∞∏
i=1

e−4 log(1−c1`(
∑i
j=0R−j cos(θ−j))}

= E{e
∑∞
n=1 g(Sn+1)}

where Sn =
∑n−1

j=0 R−j cos(θ−j) and g(x) = −4 log(1− c1`(x)).
Since g is non-increasing, we get

E{e
∑∞
n=1 g(Sn)} = E{e

∑N
n=1 g(Sn)+

∑∞
n=N+1 g(Sn)} ≤ E{e

∑N
n=1 g(0)+

∑∞
n=N+1 g(nδ)} ≤ e

∑∞
n=1 g(nδ)E{eg(0)N}.

Let 0 < δ < E{R cos(θ)}, by the Chernoff bound

P (
Sn
n
< δ) ≤ e−ζ(δ)n,

with ζ(δ) = supv≤0{νδ − log(E(eνR cos(θ)))}. Then by the Borel Cantelli lemma exists N(ω), and
c2 > 0 s.t.

P (N ≥ m) = P (Sn < nδ for some n ≥ m) ≤
∞∑
n=m

e−ζ(δ)n ≤ c2e
−ζ(δ)m.
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On the one hand by the comparison test
∑∞

n=1 g(nδ) <∞. On the other hand since R cos(θ) > 0
then ζ(δ) ↑ ∞ as δ ↓ 0, and we can choose δ s.t. ζ(δ) > g(0) so it follows that E{eg(0)N} <∞.
Then by Birkoffs ergodic theorem exist a r.v. T ′ ≥ 1 s.t.

lim
n→∞

1

n

n−1∑
k=0

T
′

k = T
′
.

Finally from the fact that 1Tn−1≤t<Tnd(t) ≥
∑n−1

k=1 Rk cos(θk), we conclude that

lim inf
t→∞

d(t)

t
≥ lim

n→∞

∑n−1
k=1 Rk cos(θk)∑n−1

k=1 T
′
k

=
E(R cos(θ))

T ′
> 0,

as we wanted.
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