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1 The model

1.1 Introduction

Let ® a point process modelling the location of the nodes of a network. For any ¢ € Z, let & (t) C @
be the set of nodes that are transmitting at time ¢ and ®x(t) = ® \ O (¢) the ones that are receiving.
We define the SINR from a node x € ®1(t) to a node y € Pg(t) as

P (t)hi(z, y)l(z,y)
vI(t) + N

SINR,(t) :=

P,(t) the transmitted power from z.

hi(z,y) the space-time fading coefficients from x to y.

{(x,y) the path-loss function.

I(t) = 3 copn oy P=(Dhe(z,9)l(2,y) the interference coming from the other nodes.
e ~ the interference suppression constant, N the noise.

We say that the transmission from = € ®p(t) to y € Pr(f) has been successful if SINR,, > § a
positive constant. The goal is to propose a model where:

e The expected value of the delay time of successfully transmitting one package from one node
to another is finite.

e The average velocity in which the package travels around the net is not zero.

1.2 The model
We will assume that:
e @ is a homogeneous PPP with intensity A in R2.
o hy(z,y),z,y € &,t=0,1,... are independent ~ exp(u).

o lz,y)=Uz—y])=lz—y[ AL a>2



Figure 1: Definition of cones with angle 2¢ and transmission of each node to its nearest neighbour
in the destination cone.

e every node is a transmitter or a receiver following a Bernoulli random variable 1,(¢), with
transmission probability P(1,(t) = 1) = p.(t),

e 0 <y< 1

We will track a tagged package that traverse the network following a conic forwarding strategy
for that let C1, ..., C,, be cones centred in the origin with angle 2¢ < 5 st UL Gy = R? and are
disjoint, also lets assume that C is symmetric with respect to the x axis. At time ¢ the node x will
transmit through the cone = + Cy(x,t) that contains the final destination of the package to n(x)
the nearest node in that cone.

We will assume that

e If the node x is on at time ¢ then it transmits with power P.(t) = cl(z,ns(x))~' where
c=M(l—-¢e)0<e<l.

o M= Py(t)p.(t).

Which implies that p,(t) = (1 — e)¢(z,n4(x)). This is what is called power control strategy. Then
we have that the SINR from node x to node y at time t is given by

Po(t)hi(z, )0z, y) 1. ()(1 — 1,())

SINR,,(t) = OB

The next indicator function tell us if the transmission has been successful

). {1 LIESINR, > 5
Cay ] 0 otherwise.

2 Main results

2.1 Finited expected exit time

Definition 1. Let the minimum exit time taken by any packet to be successfully transmitted from
node x to its nearest neighbour n(x) in the destination cone of the packet be:
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T(z) =min{t > 0: ey, (t) = 1}.

Theorem 2. Suppose By < 1 then the SINR graph with power control policy satisfies that E(T(z)) <
oo for any x € P.

Proof. (Sketch) Without loss of generality, we will suppose that the package is being transmitted by
the origin o € ®, let Cy the destination cone of this package and n(o) the nearest neighbour of o in
Cy. We have that

P(T(0) > k | @) = E{]] P(A(t) U B(t) | Gi)14|®}.

F =0 _5{po(j) = po(1)}-

Gy, is the o-algebra generated by ® and the choice of the cones made at all nodes of ® up to
time k.

o A(t):={oe Dg(t)}.
o B(t) :={o€ ®p(t),n(0) € Pr(t), SINR, o (t) < B}.

From the fact that h(o,n(0)) ~ exp(n) and the properties of the power control strategy on the
event F' for a = “—f”

uB

P(A(H) U B(8)|Gi) < 1— po(1)ee "% B{e~" |0},

Where I"(1) = 3°_co\ (on(o)y 1P hi(2,n(0))l(z,n(0)) and pZ, P; are fixed values for each 2.
Then for J := po(l)ee’@E{e_“I*(l)@} we get that

P(T(0) > k|®) < (1 — J)"

and since 0 <1 —J <1
E(T(0)) = > P(T(0) > k) = E(>_ P(T(0) > k|®)) < E(J ).
k>0 k>0
By Cauchy-Schwartz on J~*

BN
€ c

1

B(T(0)) < ——(E{po() } Bl g —armmgyye

On the one hand from the definition of the transmission probability p,(t),

E{po(1)7?} < B{(5:)*(In(0) " V 1)} < o.



On the other hand if we let ® be a PPP independent of the other nodes and intensity A1{(,+c,)nB(o,n(0)[}
again as a consequence of the power control strategy and the Campbell‘s theorem

1
B < E —2log(1—c1(|z]))
(Eerompe <H 1 }
z€®\{o,n(0) }udg

< eXp()\/ <€f2log(1fc1€(IZI)) —1))dz)
R2

(12_A—2)2/R (2] dz) < o.

< exp(

2.2 Information velocity strictly positive
Now we want to measure how fast the package moves in time from the origin to its destination.

Definition 3. Let T}y be the time taken by this tagged package starting at Xo = o € ® to successfully
reach its nearest neighbour X1 = n(o) in the destination cone Cy. More generally let T;_1 be the time

taken for the packet to successfully reach the nearest neighbour X; of X;_1 in the destination cone
Xio1+Cy.

Definition 4. The information velocity of SINR network is defined as

v = lim inf @
t—o0

where d(t) is the distance of the tagged packet from the origin at time t.
Theorem 5. Under the conditions of Theorem 2. the information velocity v > 0 a.s.

Proof. (Sketch) For all ¢ > 0, let R; := | X; 11 — X;|,0; == arcsin(%) where X; = (X1, Xi2).
Since ® is an homogeneous PPP with intensity A, we have that {(R;, él),z > 0} is an i.i.d. sequence
of random vectors where R; has density and 6; is uniformly distributed on (—¢, ¢). Our goal is to
construct an stationary sequence of stopping times such that for all ¢ > 0, Ti/ >T;.

Let {(R_;,0_;,i > 1)} an ii.d sequence of random vectors with distribution (Rg,6y). Define

® = {X_;,i > 1} starting from X _; to satisfy: R_; = |X_;, — X _;11|,0_; = arcsin(%).

For ¢ > 0 let ®; be an PPP of intensity A1y(x,+c,)nB(x,,R,)} independent of everything else, TZ/ be
the delay experienced by the packet in going from X; to X;y; when the interference is coming from
the nodes in (¢ \ {X;, X;1}) UD U_; @;. (T/,i > 0) is a stationary sequence with 7, > T;. We
want to proof that E(T}) < oo and then use the Birkoff ‘s ergodic theorem.

Let I(t) = >, 5 1. P:(t)h(z,n(0)){(2,n(0)). Analogously to the first theorem we have that

HBN
/ e c

E(T,) <

1
(E{e—a"M+I(1) | U ci})

=

(E{po(1)~*}E{

)3,

Since I*(1) and I*(1) are independent by Cauchy-Schwartz

1 1 1
(E{e—a"W+T(1) [ U 5})2} < B (E{e—el"W)]Q})4 Y (E{e=aI"M|® U {n(o)}})*

E{ }

4



Figure 2: Addition on infinite sequence of points to make TZ»/ stationary.

Again by Campbell’s theorem

Bt (E{eaf*l(1>)]q)})4} < eXp(ﬁ /1@2(1 — (1= crl(]2]))dz) < .

Since for all i € N, Zj‘:a R_jcos(6_;) < |X_; —n(o0)| and ¢ is decreasing

1
(E{e=T"M]® U {n(0)}})*

} < E{H 6—4103(1—615()(—1‘7”(0)))}

=1

S E{H 6_4 log(l—cle(Z;-:O R_; cos(@_]-))}
=1

— E{esz;l 9(Sn+1)}

E{

where S, = Z;:OI R_jcos(f_;) and g(x) = —4log(1l — c14(x)).

Since ¢ is non-increasing, we get
EB{eZiti 080} = pleXam 0)TEn 0050} < BfeXam 9O+ N 1900 < o305 9(nd) BN,
Let 0 < § < E{Rcos()}, by the Chernoff bound
P(= < §) < e Om
n

with ¢(8) = sup,<{rd — log(E(e"#<®?))}. Then by the Borel Cantelli lemma exists N(w), and
cy > 0 s.t.

P(N >m) = P(S,, < nd for some n > m) < Z eSO < e,
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On the one hand by the comparison test >~ ¢g(nd) < co. On the other hand since R cos(f) > 0
then ((§) T 0o as 6 | 0, and we can choose § s.t. ((§) > g(0) so it follows that E{e9ON} < oo.
Then by Birkoffs ergodic theorem exist a r.v. 7" > 1 s.t.

n—1
. 1 ’ ’
lim o 3 T=T"
Finally from the fact that 1yn-1<;epnd(t) > 32071 Ry cos(6},), we conclude that

lim inf@ > lim Z;i Ry cos(6y,) - E(Rcos(6))

—1 ’ ’
t— — A | [
[eS) t n—00 et 13

> 0,

as we wanted. O
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