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Large Deviations of the Interference in
a Wireless Communication Model

Ayalvadi J. Ganesh and Giovanni Luca Torrisi

Abstract—Interference from other users limits the capacity, and
possibly the connectivity, of wireless networks. A simple model of a
wireless ad hoc network, in which node locations are described by a
homogeneous Poisson point process, and node transmission powers
are random, is considered in this paper. A large deviation principle
for the interference is presented under different assumptions on the
distribution of transmission powers.

Index Terms—Large deviations, Poisson shot noise, subexponen-
tial distributions, fading channels, code division multiple access
(CDMA).

I. INTRODUCTION

W IRELESS ad hoc and sensor networks have been the
topic of much recent research. Questions of interest in-

clude the connectivity of the network, namely, the ability of any
two nodes to communicate, possibly via intermediate nodes, and
the information transport capacity of the network [14], [6], [7].
The factor limiting the communication between any two nodes
is the ratio of signal power to the sum of noise and interference.
As such, the signal to interference plus noise ratio (SINR) is an
object of interest in its own right. In this paper, we study the
large deviations asymptotic of this quantity in the context of a
simple model of a wireless network [2], which is described in
the next section.

The SINR determines whether a given pair of nodes can talk
to each other at a given time. The interference is determined by
which other nodes are transmitting simultaneously, as well as
the degree of orthogonality between the codes they are using.
If the codes are perfectly orthogonal, then there will be no in-
terference. Most cellular systems employ channel assignment
schemes to ensure that codes used in nearby cells are indeed or-
thogonal. Wireless local area networks (LANs) use scheduling
to ensure that nearby nodes do not transmit simultaneously. Mo-
tivated by ad hoc networks, we are interested in a scenario where
there is no centralized infrastructure and where nodes may be-
long to multiple administrative domains. In such a scenario, nei-
ther channel assignment nor sophisticated forms of scheduling
may be feasible. Our aim is to determine how the outage prob-
ability depends on factors such as node density and spreading
(or processing) gain.
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II. MODEL DESCRIPTION

Let be a marked point process on the plane,
where denotes the locations of antennas, and the
marks denote their transmission powers. Without
loss of generality, we will consider a receiver located at the
origin. Let and be positive constants which denote, respec-
tively, the noise power at the receiver, and the threshold SINR
needed for successful reception of a signal. The physical signal
propagation is described by a measurable positive function

, which gives the attenuation or path loss of
the signal. In addition, the signal undergoes random fading (due
to occluding objects, reflections, multipath interference, etc.).
We denote by the random fading between node and the
origin, and define . Thus, is the received
power at the origin due to the transmitter at node .

Within this framework, we say that the receiver at the origin
can decode the signal emitted by station if

(1)

The sum in the denominator is restricted to those stations,
which are active during the period of interest. The marked point
process can be taken as referring to this subset.

The attenuation function is often taken to be isotropic (i.e., ro-
tation invariant) and of the form or
or , where the symbol denotes the Eu-
clidean norm, and are positive constants. The first
function exhibits infinite interference in the immediate vicinity
of an antenna, which is not physical. The last choice of attenua-
tion function corresponds to the case of isotropic antennas with
ideal Hertzian propagation, and is the one we will work with.
(We make the assumption of isotropy only for notational con-
venience. It should be clear from our derivations that we sum
up the contributions to interference at a point from successive
annuli around it, and the contribution from an annulus can be
readily calculated for a given anisotropic attenuation function.
In particular, our framework can deal with directional antennas.)
We will assume that , which is an integrability condition
needed to ensure that the total interference is finite almost surely,
and which is observed to hold in practice.

The basic model described above is quite general and encom-
passes the case where the signal emitted by station interferes
with the cumulative signals emitted from stations in such
a way that only some proportion of these cumulative signals
should be considered as noise. Indeed, this situation is recovered
replacing by , where is again a
positive and measurable function. The coefficient weights the
effect of interferences, depending on the orthogonality between
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codes used during simultaneous transmissions. It is equal to
in a narrowband system, and is smaller than in a broadband
system that uses code division multiple access (CDMA); see,
for instance, [8] and [16]. The physical model of [14] assumes

; the models of [13], [6], and [7] allow to be smaller
than .

From the modeling perspective, the effect of in (1) can be
absorbed into the threshold (with the noise power suitably
modified), so we will assume without loss of generality that

. From the application perspective, we are interested in
, as is the case, for example, in a CDMA system with

large spreading gain. In this case, we can hope that the SINR
might exceed the threshold even if all stations transmit simul-
taneously, in which case no complicated scheduling scheme is
needed. With that interpretation, the results of this paper can
be seen as providing a guide to the tradeoff achievable between
node density and spreading gain of the code. Rewriting (1) al-
lowing , we see that the SINR is too small for decoding if
and only if

Thus, the probability of decoding failure is given by

where

The scaling regime we will consider is the logarithmic asymp-
totics of this probability as tends to zero, i.e., a large devia-
tions scaling regime. In other words, we are interested in sys-
tems with large bandwidth, and concomitant coding gain, in a
regime in which the probability of the SINR falling below the
required threshold is small.

As remarked above, we restrict ourselves to the case
of ideal Hertzian propagation, so that

. Finally, we assume that the point process
is a homogeneous Poisson process of intensity

and that both the marks and the shadow fading to the origin
are independent identically distributed (i.i.d.) and indepen-
dent of the locations. In particular, is an i.i.d.
sequence independent of the point process . From the
modeling perspective, it suffices to consider rather than

and separately. With some abuse of terminology, we
will henceforth refer to as the transmission power and
use as our basic marked point process. With
these assumptions, the denominator of the left-hand side of (1)
reduces to .

Look at the SINR between the receiver at the origin and a
point located at of the Poisson process, denote by the
transmission power of the antenna located at , and assume to
be independent of the marked Poisson process .
Let denote the Palm probability of the Poisson process at

(i.e., the conditional law of the Poisson process, given
that it has a point at ), and define the random variable

where (2)

Due to Slivnyak’s theorem (see, e.g., [4]) and the independence
between and , we have

The main aim of this paper is to provide large deviation prin-
ciples for the total interference at the origin. Since the noise
power is a positive constant, this will yield the large devia-
tions for the SINR ratio.

If , it can be readily verified from (2) that if
, and so is finite almost surely (a.s.) if has finite

mean. We will consider several different models for the law of
, namely, distributions with bounded support, those with a tail

which is asymptotically exponentially equivalent to the tail of a
Weibull or exponential distribution (see Section III for the def-
inition of asymptotic exponential equivalence), and those with
regularly varying tails. The Weibull assumption on the distri-
bution of the transmission powers is particularly appealing in
the context of wireless networks as a recent work by Sagias and
Karagiannis [15] states that the fading in wireless channels can
be modeled by a Weibull distribution (typically with Gaussian
tail).

In order to describe the structure of this paper, we introduce
some more notations. Define for ,
and let

be the total interference at the origin due to sources at distance
between and ; here denotes the indicator of the
event . In particular, note that . This paper
is organized as follows. In Section III, we give some prelim-
inaries on large deviations, heavy-tailed distributions, and ex-
treme value theory. In Section IV, we establish large deviation
principles for the random variables under different
assumptions on the transmission powers. Specifically, we con-
sider the cases where the distribution of the transmission power
has the following: 1) bounded support, 2) superexponential tails,
3) exponential tails, 4) subexponential tails and it belongs to the
domain of attraction of the Gumbel distribution, and 5) regu-
larly varying tails. In Section V, we extend these results to large
deviation principles for the total interference . The dif-
ferent cases give rise to different speeds for the large deviation
principles, with the speed decreasing as the tail grows heavier.

III. PRELIMINARIES AND NOTATION

We recall here some basic definitions in large deviations
theory. A family of probability measures on
obeys a large deviation principle (LDP) with rate function
and speed if is a lower semicontinuous
function, is a measurable function which



GANESH AND TORRISI: LARGE DEVIATIONS OF THE INTERFERENCE IN A WIRELESS COMMUNICATION MODEL 3507

diverges to infinity at the origin, and the following inequalities
hold for every Borel set :

where denotes the interior of and denotes the closure of
. Similarly, we say that a family of -valued random variables

obeys an LDP if obeys an LDP and
. We point out that the lower semicontinuity of

means that its level sets

are closed; when the level sets are compact, the rate function
is said to be good.

Throughout this paper, we write if and
are asymptotically equivalent, i.e.,

; moreover, we say that and are asymptotically ex-
ponentially equivalent if .

We conclude this section with some preliminaries on
heavy-tailed distributions. Recall that a random variable is
said to be subexponential if its distribution function has
support and (see, e.g., [1, p. 251]
and [9, pp. 39–40]). Here denotes the tail of the
distribution function and denotes the twofold
convolution of .

The family of subexponential distribution functions will be
denoted by . It can be classified using extreme value theory,
as follows. A positive function on is said to be reg-
ularly varying at infinity of index , written , if

as , where is a slowly varying
function, i.e., for each . Goldie
and Resnick [12] showed that if and satisfies some
smoothness conditions, then belongs to the maximum do-
main of attraction of either the Frechét distribution

, or the Gumbel distribution . In the
former case, it has regularly varying tail of index . We write

MDA if belongs to the maximum domain of at-
traction of the Gumbel distribution.

IV. LARGE DEVIATIONS OF THE TRUNCATED INTERFERENCE

In this section, we show the following large deviation prin-
ciples, which correspond, respectively, to the cases where the
transmission powers are bounded, have Weibullian tails
which are superexponential, exponential or subexponential, or
have regularly varying tails.

Theorem 1: Suppose that has bounded support with
supremum which is strictly positive. Then, the family of
random variables obeys an LDP on with speed

and good rate function

Theorem 2: Suppose that there exist constants and
such that . Define .

Then, the family of random variables obeys an LDP on
with speed and good rate function

Theorem 3: Suppose that there exists a constant such
that . Then, the family of random vari-
ables obeys an LDP on with speed and good rate
function

Theorem 4: Suppose that is subexponential and that there
exist constants and such that

. Then, the family of random variables obeys an
LDP on with speed and good rate function

Theorem 5: Suppose that , for some
constant and slowly varying function . Then, the
family of random variables obeys an LDP on with
speed and rate function

if
if

Observe that as tends to infinity the speed and the rate function
of the LDP in Theorem 2 tend to those for the case of bounded
transmission powers (with ). Similarly, as tends to , the
speed and the rate function of Theorems 2 and 4 tend to those
for the case of transmission powers with tails asymptotically ex-
ponentially equivalent to the tail of an exponential distribution.

Before going into the details of the proofs, we remark briefly
on the intuition behind these results. The theorems above pro-
vide LDPs for Poisson shot noise under different conditions on
the shot shape (the distribution of ). Theorem 1 basically gives
the large deviations for a Poisson random variable, since the shot
in this case is effectively a constant. The speed comes
from the fact that the tail of a Poisson distribution behaves like

. When has superexponential Weibull tails, there is an
interaction between the tail asymptotics of the Poisson distribu-
tion and that of the shot, both of which combine to contribute to
the tail of the Poisson shot noise. Finally, when the shot has ex-
ponential or subexponential tails, it dominates and the Poisson
distribution plays no role.

This intuition also explains why the intensity of the Poisson
point process of transmitters plays no role in the large devia-
tion rate function, in any of the theorems above. In the expo-
nential and subexponential cases, a large value of the interfer-
ence is caused by a single interfering transmitter, and hence, it is
the asymptotic of the distribution of transmission powers which
governs the rate function. In the superexponential case, a large
value of the interference is caused by a combination of 1) there
being a large number of interferers in the vicinity of the origin,
and 2) each of these having a large transmit power. Of these,
only 1) involves the underlying Poisson point process. Now, the
number of transmitters within a region of area is a Poisson
random variable with mean , whose tail behavior is predom-
inantly described by a term, which does not depend on .
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While the absence of the point process intensity in the rate
function may appear counterintuitive, it really tells us that the
LDPs only capture the shape and scaling behavior of the tail
distribution of the interference, and that more refined estimates
of the actual probabilities are needed.

We will prove the theorems by providing matching large devi-
ation upper and lower bounds for half intervals, i.e., for

and , and showing that these imply a large de-
viation principle. The proof proceeds through a sequence of
lemmas, whose proofs are relegated to the Appendix so as not
to interrupt the flow of the arguments.

The following two lemmas provide large deviation upper
bounds in the superexponential and exponential cases, respec-
tively.

Lemma 6: Suppose that there exist positive constants and
such that as . Then

Lemma 7: Suppose that there is a positive constant such
that . Then

The proof of both lemmas uses Chernoff’s bound. We present
a brief outline here, leaving the details to the Appendix. Clearly

(3)

where is the number of points of the Poisson process falling
within the ball of radius centered at the origin. Using the
Chernoff bound, we have

(4)

where . However, is a
Poisson distributed random variable with mean
and the are i.i.d. and independent of . Hence, defining

, we have

(5)

The proof now proceeds by substituting (5) in (4) and optimizing
over .

The upper bound in Lemma 6 is in terms of the logarithmic
moment generating function of whereas the assumptions in
Theorem 2 are in terms of the tail of its distribution. The next
lemma relates a tail condition on the law of to the tail be-
havior of its logarithmic moment generating function. Its proof
requires an extension of Laplace’s method and is set out in the
Appendix.

Lemma 8: Suppose that there exist constants and
such that . Define . Then

Next, we consider the subexponential Weibull case. A large
deviation upper bound is given by the following.

Lemma 9: Suppose that is subexponential and that there
exist constants and such that

, then

The proof uses a key fact about subexponential distributions,
namely, that the tail distribution of a sum of i.i.d. subexponential
random variables is asymptotically equivalent to that of their
maximum, and this is still true if the number of terms in the
sum is a random variable provided that this random variable has
exponentially decaying tail. Details are in the Appendix.

The next lemma gives the large deviation lower bound needed
to prove Theorem 1. It is a straightforward consequence of the
tail behavior of the Poisson distribution for .

Lemma 10: If has compact support whose supremum, de-
noted , is strictly positive (i.e., is not identically zero), then

The large deviation lower bound in the superexponential
Weibull case is given by the following lemma.

Lemma 11: Suppose that there exist constants and
such that . Define .

Then, for all , we have

The proof involves identifying the most likely way that a large
value of arises. Specifically, in (3), it involves identifying the
typical value of , the number of interferers within distance
of the receiver, as well as the typical value of their transmission
powers, conditional on . See the Appendix for details.

Proof of Theorem 1: The function is con-
tinuous on and has compact level sets. Hence, it is a good
rate function.

If has compact support with supremum , then it is easy
to see that , where is the moment generating
function of . Hence, we have by Lemma 6 that

(6)

This upper bound matches the corresponding lower bound in
Lemma 10.

The upper and lower bounds can be extended from half in-
tervals and to arbitrary closed and open sets in
a standard way, which is repeated in the proofs of Theorems
2–5 [actually the rate function of Theorem 5 is not continuous
in ; however, it is readily checked that the argument we con-
sider below holds for rate functions that are equal to at the
origin and continuous on ]. We, therefore, sketch it for
completeness.
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Let be a closed subset of and let denote the in-
fimum of . Since is increasing, .
Now is contained in , and so we obtain using (6) that

This establishes the large deviation upper bound for arbitrary
closed sets.

Next, let be an open subset of . Suppose first that
and set . Then, is finite and, for arbitrary

, we can find such that . Since is
open, we can also find such that . Now

(7)

Moreover

by Lemma 10, whereas

by (6). Since , we obtain using (7) and
Lemma 19 in the Appendix that

Since is continuous, by letting decrease to zero, we get

where the last inequality follows from the choice of . The large
deviation lower bound now follows upon letting decrease to
zero.

If , then, since is open, there is an such that
. Hence

By similar arguments to the above, we can show that

Since as is increasing, this
establishes the large deviation lower bound if , and com-
pletes the proof of the theorem.

Proof of Theorem 2: We obtain from Lemmas 6 and 8 the
upper bound

This matches the lower bound from Lemma 11. The extension
from the half intervals and to arbitrary open and
closed sets follows along the lines of the proof of Theorem 1.

Proof of Theorems 3 and 4: The large deviation upper
bound for half intervals is provided by Lemma 7 in the
exponential case and by Lemma 9 in the subexponential Weibull
case. For the lower bound, observe that for all

and so, by the assumption that for
some , we obtain

Finally, the upper and lower bounds can be extended to arbitrary
closed and open sets using standard techniques, as in the proof
of Theorem 1.

Proof of Theorem 5: The claim follows if we give
upper and lower bounds on half intervals and

. Since ,the upper and lower bounds
for half intervals and are obvious. Thus,we
consider .

Recall that regularly varying distributions are subexponen-
tial (see, e.g., [9, Corollary 1.3.2]). Therefore, we have by [1,
Lemma 2.2] that

Likewise, we have for all small enough, that

(9)

The large deviation lower and upper bounds for half intervals
readily follow from (8) and (9) upon taking logarithms and let-
ting , and then , tend to zero.

V. LARGE DEVIATIONS OF THE TOTAL INTERFERENCE

So far we have restricted attention to , the contribution to
interference due to transmitters within range of the location of
interest. We now extend our results to the total interference .
Here denotes the distribution function of the transmission
powers, i.e., .

Theorem 12: We have the following.
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i) If has bounded support with supremum , then the
family of random variables obeys an LDP on
with speed and good rate function given by
Theorem 1.

ii) If for some and ,
then the family of random variables obeys an LDP
on with speed , where ,
and good rate function given by Theorem 2.

iii) If for some , then the family
of random variables obeys an LDP on with
speed , and good rate function given by Theorem
3.

iv) If MDA and for some
and , then the family of random variables
obeys an LDP on with speed and good

rate function given by Theorem 4.
v) If , then the family of random variables

obeys an LDP on with speed and rate
function given by Theorem 5.

The proof of the theorem requires different techniques in the
cases where the tails of decay exponentially or faster, and
where they decay subexponentially. In the former case, we will
make use of the following lemma and Chernoff’s bound.

Lemma 13: Suppose that the family of random variables
obeys an LDP on with speed and rate

function for some . Let be a family of
nonnegative random variables independent of , satisfying

for all and , and for some . Define
. Then, obeys an LDP on with speed

and rate function .

The proof is in the Appendix. Loosely speaking, the lemma
says that making a small perturbation to the random variables

by adding a noise term does not change the rate function
in the LDP if the tails of the random variables decay suf-
ficiently rapidly. Observe that it is not the case that and

are exponentially equivalent (see [5] for a definition). Nev-
ertheless, they do have the same large deviations rate function.

Next, define

and

where . The limit above exists since the random vari-
ables are positive, and so the sequence is increasing.
The reason for the choice is that this makes the areas
of the successive annuli equal.

Observe that is an upper bound for the interference
due to nodes in the annulus . More-
over, the random variables are i.i.d. because they are the sum
of the marks of a homogeneous marked Poisson process over
disjoint intervals of equal area. In addition, is a.s. finite. In-
deed

and this quantity is finite since and the assumptions of
Theorem 12 guarantee .

Define and note that . The fol-
lowing lemma holds.

Lemma 14: Suppose that the assumptions of either part i),
ii), or iii) of Theorem 12 are satisfied. Then, the family
obeys an LDP on with the same speed and rate function
as stated for in the corresponding part of Theorem 12.

The proof is in the Appendix. The idea is to show that the total
contribution to the interference from nodes in all annuli suffi-
ciently far from the origin is negligible and hence, by Lemma
13, that they do not change the rate function in the LDP. In addi-
tion, the contraction principle [5, Th. 4.2.1] is used to show that
the contribution from any finite number of nearby annuli also
does not change the rate function.

We will use the above lemma to prove parts i)–iii) of Theorem
12. For the proof of parts iv) and v), we need the two lemmas
stated below following some definitions; we refer the reader to
[9, Lemma A3.27] and [9, Lemma A3.26] for their proofs.

Consider the random variable

where the ’s are i.i.d. positive random variables with distribu-
tion function and the ’s are positive constants. We as-
sume without loss of generality that .

Lemma 15: Suppose MDA and ,
for some . Then,

where is the cardinality of .

Lemma 16: Assume , for some positive constant
, say . If moreover , for some

, then

where

Proof of Theorem 12: We first give the proofs of parts
i)–iii). Under these assumptions, we established the LDP for

in Theorems 1–3, and the LDP for with the same
speed and rate function in Lemma 14. Since for
all , the large deviation upper and lower bounds on half
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intervals also hold for . These bounds can be extended to a
full LDP as in the proof of Theorem 1.

We now prove part iv). As usual, it suffices to prove large
deviation upper and lower bounds for half intervals and

, respectively. Set and recall that

where

and

(10)

Since , it is clear that there is a such that
, and so . We also note that, by [1,

Lemma 2.2]

Therefore, by the closure property of MDA and under
tail equivalence (see, e.g., [9, Proposition 3.3.28 and Lemma
A3.15]), the law of also belongs to MDA , so, by
Lemma 15, we get

where the last equality follows from the equality .
Since , we have for all that

We have used Lemma 9 to obtain the last inequality. A matching
lower bound for open half intervals follows from the
LDP for stated in Theorem 4.

The proof of is very similar. Since for all
, the large deviation upper and lower bounds for

and are obvious, so we consider . To obtain the
upper bound, we first note that , where is defined by
(10). We also have, by [1, Lemma 2.2], that

for some slowly varying function . This implies that the
law of is in . Hence, by Lemma 16

for a suitable slowly varying function . It readily follows,
using the definition of a slowly varying function, that

as

Since , we have the desired large deviation upper
bound for on half intervals . A matching lower bound
for open half intervals follows from the LDP for
stated in Theorem 5. This concludes the proof of the theorem.

VI. DISCUSSION

In this section, we discuss some variants of the model we
have studied as well as some implications for communication
networks.

We assumed an attenuation function of the form
for convenience. In fact, our analysis easily

carries over to quite general attenuation functions, as we now
argue. Suppose that for some continuous, non-
increasing function . Suppose also that the
following tail condition holds for all sufficiently large:

(11)

The attenuation function , for
instance, satisfies this condition if .

We now claim that all the conclusions of Theorem 12 con-
tinue to hold if we replace by in the corresponding
rate functions.

Here is a brief outline of the proof. Fix arbitrarily small.
Observe that from (2) the total interference at the origin is
bounded from below by

where denotes the number of nodes within the disc of radius
centered at the origin, and has a Poisson distribution with mean

. Next, define

where and . Clearly, the total inter-
ference is bounded from above by .

We can now derive LDPs for the families and
exactly as in the previous sections. The one technical condition
that needs to be checked is that for some

, where and . This
condition is satisfied because of the assumption in (11) about
the tail of the attenuation function.

Next, we note that the rate functions of the LDPs obtained in
the previous sections did not depend on the intensity of the
Poisson process, and that the parameter only entered via the
attenuation function for nodes in the disc closest to the origin.
Thus, by analogy, the rate functions for and will
simply have replaced by and , respectively. So,
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letting denote the speed corresponding to the rate function
in Theorem 12 and by , the

rate function obtained by replacing by , we have,
for all and

Letting tend to zero and using the continuity of and ,
we obtain the desired LDPs for the total interference (more
precisely, we obtain upper and lower bounds on closed and open
half intervals, which can be extended to any closed and open set
by standard techniques; see the proof of Theorem 1).

Let be a positive constant. Using similar arguments,
one can show that all the conclusions of Theorem 12 continue
to hold with replaced by if we assume that the at-
tenuation function is of the form

if
if

where is a continuous and nonincreasing
function which satisfies (11). (In Section II, we followed con-
vention and defined the attenuation function to be strictly posi-
tive, but there is no harm in allowing it to take the value zero.)
To be more specific, we provide here a possible choice for the
bounds on ; the LDPs are then obtained arguing as above (i.e.,
the case ). For a fixed , consider the lower bound
for defined by

where denotes the number of nodes within the annulus
, and has a Poisson distribution with

mean . Next, define

where . Clearly, the total interference at the
origin is bounded from above by .

We can use this generalization to analyze the effect of a sched-
uling strategy which ensures that all transmitters within some
vicinity of the receiver must remain silent. (This can be thought
of as a simplistic model of the 802.11 protocol with request-to-
send/clear-to-send (RTS/CTS), with the exclusion zone corre-
sponding to the region within which the CTS can be heard. It
is simplistic because this will actually be a random region and,
moreover, the ability of a node to hear the CTS will be correlated

with the fading of its own signal to the receiver. By assuming
that nodes within a fixed radius are silenced, we are ignoring
this correlation.) Say this exclusion zone is a circle of radius

centered on the receiver. Assuming that no other transmitters
are silenced (again, a simplifying assumption, as other transmis-
sions going on in parallel will create their own exclusion zones),
this can be modeled by simply considering the attenuation func-
tion defined above. We can also incorporate the effect of
spreading gain in a CDMA system, as described in Section II.
Suppose the spreading gain is , i.e., only a fraction of the
transmitted power interferes with the receiver. If this is com-
bined with the above scheduling strategy, then the attenuation
function is effectively , and so is the
quantity that enters into the rate function in place of in
Theorem 12.

The above expression gives us some insight into the rela-
tive benefits of spreading versus scheduling. Suppose is
roughly of the form . Then, doubling decreases by

, at the cost of silencing four times as many nodes during
each transmission period. On the other hand, increasing the
spreading gain by would require a proportionate increase in
bandwidth. Since , this suggests that scheduling is more
efficient than coding. (In fact, this holds a fortiori if our sim-
plifying assumptions are removed. Without those assumptions,
more nodes would be silenced, and it would also be nodes with
higher channel gain to the receiver that would be more likely to
be silenced.) Of course, this is only one aspect of the design; in
an ad hoc network, coding may be simpler to implement than
scheduling.

The LDPs we have obtained are crude estimates of the
probability of the interference exceeding a threshold. Indeed,
since LDPs provide the asymptotics of probabilities on the
logarithmic scale, the rate functions do not even depend on the
intensity of the Poisson process of node locations, whereas the
actual probability certainly does. A natural question, therefore,
is whether we can get more refined estimates of this exceedance
probability. We leave this as a problem for future research. Here
we limit ourselves to noting that one approach to estimating the
exceedance probability is via fast simulation. Our LDPs can
be of help in developing such a scheme as they provide some
insight into the required change of measure.

While we have presented LDPs for the interference in the
case of general signal power distributions, more precise results
are available in the special case of Rayleigh fading; see [11].
The throughput achievable by a network of sensors transmit-
ting to a cluster head is considered in [3]. The authors model
the system at packet level using a loss network, and model
interference using a Poisson point process of node locations
and Rayleigh fading. Our results here could form the basis for
studying throughput and other performance measures in sensor
networks with more general attenuation functions.

VII. CONCLUDING REMARKS

We established a large deviation principle for the total inter-
ference in a model of an ad hoc wireless network. We also iden-
tified the most likely way in which such large deviations arise.

We modeled node locations using a Poisson point process and
considered a number of different models for the signal power
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distribution. While we considered a Hertzian model for attenu-
ation, the techniques used can be extended to other models as
well, and we outlined some such extensions. Our main findings
were as follows: if signal powers have superexponentially de-
caying tails, large values of the interference are due to a combi-
nation of a large number of interfering nodes and higher signal
power at these nodes, whereas for signal powers with exponen-
tial or subexponential tails, large values of the total interference
are due to a single interferer with high power.

It remains an open problem to extend the results to node loca-
tion models other than the Poissonian one. Such models could
be motivated, for example, by algorithms for channel alloca-
tion that ensure that nearby nodes do not transmit on the same
channel. We considered one very simple example of such a
model, but it would be of interest to study more realistic ex-
amples.

APPENDIX

Proof of Lemma 6: Note that by the convexity of
and that and are unique. It is implicit in the as-

sumption of the lemma that is finite everywhere, i.e., that
has a superexponentially decaying tail. Now consider

where is a constant we will specify later. Note that for
any is strictly positive for all sufficiently small. For

and as above, we have by (4) and (5) that

(12)

Now tends to infinity as tends
to zero. Hence, by the assumption of the lemma, we have for
arbitrary that

Now take . Then, it follows from the above
that

(13)

By (12) and (13), we get

where . As can be chosen arbitrarily small,
this establishes the claim of the lemma.

Proof of Lemma 7: First, note that for each we have
. Indeed, for all small enough, we have
, and by the assumption , it

follows that there exists such that

for all

Since , we have

for each

(14)

Then, the finiteness of the Laplace transform for each
follows by (14) noticing that by the choice of it holds

. By (4), for each and
such that , we have

(15)

Choose and take the as in (15).
By the finiteness of the Laplace transform and (5), we have

The conclusion follows letting tend to .

Proof of Lemma 8: Fix . By assumption, there exists
such that

for all . Since , we have

Hence, for all

(16)

In order to obtain the logarithmic asymptotics of the above
integral, we need a version of Laplace’s method that is detailed
in Lemma 17. By this lemma, we have

(17)

Similarly, for all

(18)
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By Lemma 17 in the Appendix, together with the principle of
the largest term (see, e.g., [10, Lemma 2.1]), we deduce that

(19)

Since can be chosen arbitrarily small, it follows from
(16)–(19) that

which is the claim of the lemma.

We need the following variant of Laplace’s method to prove
Lemma 8.

Lemma 17: For fixed constants , and ,
define the function , and

. Then

Proof: It is implicit from the assumption that is finite
everywhere. Consider the function

Note that it is differentiable with a unique maximum attained at
and

For each large enough and , we have

Choose for some , and take logarithms in the
above inequality. Then

(20)

Similarly, for each large enough and , we have

Again, choose , for some , and take logarithms
in the above inequality. Then

(21)

where the last equality follows from the fact that

as . By (20) and (21), we get

(22)
Similarly, one can prove that

(23)

Finally, for any , we have

Choose again , and take the logarithm in the
above inequality. Then, it is readily seen that

(24)

as . The conclusion follows by (22)–(24) and the prin-
ciple of the largest term (see, e.g., [10, Lemma 2.1]).

Proof of Lemma 9: The proof uses a key result about subex-
ponential distributions [1, Lemma 2.2 p. 259], which states that

as , under the assumption that the are i.i.d. subex-
ponential and independent of , which has exponential tail. In
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our case, is Poisson with mean , so the assumptions hold.
Thus, for all small enough, it holds

as

The claim of the lemma follows from the assumption
, by letting decrease to zero.

Proof of Lemma 10: Since has compact support with
supremum , for arbitrarily small , there is a
(depending on ) such that . Recall
that the independent thinning with retention probability of a
Poisson point process with intensity is a Poisson point process
with intensity (see, e.g., [4]). Therefore, if we define

, then is a Poisson random variable
with mean . We now have

Thus

from which we deduce that, for

(25)

The equality in (25) follows by Lemma 18 (which guarantees
that the family of random variables obeys an LDP on

with speed and good rate function ).
Letting decrease to zero, we obtain the claim of the lemma.

We now provide a large deviation principle for the Poisson
distribution, which was used in the proof of Lemma 10 (see also
the proof of Lemma 11).

Lemma 18: Let be a Poisson random variable with mean
. Then, the family of random variables obeys

an LDP on with speed and good rate function
.

Proof: We will show that

(26)

for all . Then, the claim follows by extending these bounds
to arbitrary open and closed sets by standard techniques (see the

proof of Theorem 1). The bounds in (26) are obvious for .
For and small enough, we have

where denotes the integer part of , so using the usual upper
bound for the tail of the Poisson distribution, we get for any

and small enough

(27)

By Stirling’s formula, we have

as . Finally, we get (26) by taking the logarithm, mul-
tiplying by and passing to the limit as in
(27).

Proof of Lemma 11: For arbitrary , we have

(28)

Denote by the integer part of , and take
, where the constant will

be specified later. Along similar lines as in the proof of
Lemma 18 one can show that the family of random vari-
ables obeys an LDP on with speed

and good rate function .
Therefore

as , and so

(29)

We have suppressed the dependence of on for notational
convenience. Next, by the assumption that

, we obtain

and so

(30)
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Substituting (29) and (30) in (28), we get

The maximum value of the lower bound is attained at
. Substituting this into the right-hand

side of the latter inequality, we get

as claimed. This completes the proof of the lemma.

The following variant of the principle of the largest term is
used in the proof of Theorem 1.

Lemma 19: Let and be two sequences of
positive numbers such that for all . Assume that

and

(31)

where is a sequence of positive numbers converging to
, and . Then

Proof: Using assumption (31) and the fact that ,
it follows that for all small enough, and there
exists such that for all , it holds

and

Thus

Taking the logarithm, multiplying by , and passing to the limit
as in the above inequality, we have

The claim follows since is arbitrary.

Proof of Lemma 13: For each , let be independent
of and have distribution given by

Then, stochastically dominates and so they can be coupled
in such a way that almost surely. Moreover, it is easy
to see that obeys an LDP on with speed and
rate function . Since is independent of , we have by
[10, Th. 4.14] that the family satisfies an LDP on

with speed and rate function .

Therefore, by the contraction principle (see, e.g., [5, Th. 4.2.1])
the family obeys an LDP on with speed

and good rate function

Since , it holds .
We have thus shown that obeys an LDP with the same

speed and rate function as . Moreover, since is non-
negative, we have for all . Hence, we
can obtain lower bounds on and upper bounds on

from the corresponding bounds on and , re-
spectively. These can be extended to a full LDP as in the proof
of Theorem 1.

Proof of Lemma 14: We will prove the lemma in the case of
bounded . The other two cases are similar. Define
and . Since the random variables are
i.i.d., and for each the family obeys an LDP on
with speed and good rate function (the proof
is identical to Theorem 1), then the family sat-
isfies an LDP on with speed and good rate func-
tion (see, e.g., [10, Th. 4.14]).
Similarly, by Theorem 1, the family sat-
isfies an LDP on with speed and good rate
function . There-
fore, by the contraction principle (see, e.g., [5, Th. 4.2.1]), it fol-
lows that the family obeys an LDP on with speed

and good rate function given by

Now define . We have

(32)

Indeed, the are i.i.d. and have the same distribution as
. Now, recall that , thus .

Using the convexity of , we obtain that, for all
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Substituting this in (32), we get

where . Note that this infinite sum is finite
by the assumption that . Now, using the Chernoff’s bound,
we have for all

By similar computations as in the proof of Lemma 6, it follows

Moreover, and we showed above that
obeys an LDP on with speed and rate function

. Hence, by Lemma 13, we see that
also obeys an LDP with the same speed and rate function, as
claimed.
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