Wahrscheinlichkeitstheorie II: Übungsblatt 24

Abgabe in den Übungen vom 14. und 15. Januar 2009

AUFGABE 24.1 (4 Punkte) — Es sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsgrößen, und es sei $(M_n)_{n\in\mathbb{N}_0}$ ein nichtnegatives Martingal, d. h., für jedes $n\in\mathbb{N}$ sei $M_n\geq 0$ integrierbar und messbar bezüglich $\sigma(X_1,\ldots,X_n)$ mit $\mathbb{E}[M_n\mid X_1,\ldots,X_{n-1}]=M_{n-1}$. Es sei $M_0=1$. Für $n\in\mathbb{N}$ definieren wir ein Wahrscheinlichkeitsmaß \mathbb{P}_n durch die Dichte $\frac{\mathrm{d}\mathbb{P}_n}{\mathrm{d}\mathbb{P}}=M_n$. Zeigen Sie, dass die Folge der Verteilungen von (X_1,\ldots,X_n) unter \mathbb{P}_n konsistent ist.

AUFGABE 24.2 (4 Punkte) — Es sei $N \in \mathbb{N} \setminus \{1, 2\}$ und $I = \{1, \dots, N\}$. Weiter sei für $a, b, c \in I$

$$p(a,b,c) := \begin{cases} 1, & \text{falls } a = b = c, \\ \frac{1}{N-2}, & \text{falls } \#\{a,b,c\} = 3, \\ 0 & \text{sonst.} \end{cases}$$

Definiere für $n \in \mathbb{N} \setminus \{1\}$ einen Markovkern K_n von I^n nach I durch

$$K_n((i_1,\ldots,i_n),\ i_{n+1}) := p(i_{n-1},\ i_n,\ i_{n+1}), \qquad i_1,\ldots,i_{n+1} \in I.$$

Es sei Q_1 die Gleichverteilung auf I sowie $Q_2 := Q_1 \otimes Q_1$ und $Q_{n+1} := Q_n \otimes K_n$ für $n \geq 2$. Nach dem Satz von Ionescu Tulcea gibt es einen stochastischen Prozess $(X_n)_n$, dessen endlich dimensionale Verteilungen die Q_n sind. Zeigen Sie:

- (i) $(X_n)_n$ ist stationär.
- (ii) $(X_n)_n$ ist keine Markovkette.
- (iii) $((X_n, X_{n+1}))_n$ ist eine Markovkette auf $I \times I$.

AUFGABE 24.3 (DER self-avoiding walk) (4 Punkte) — Für jedes $n \in \mathbb{N}$ sei \mathbb{P}_n die gleichförmige Verteilung auf der Menge aller n-schrittigen Nächstnachbarschaftspfade im \mathbb{Z}^d , die in $X_0 = 0$ starten und keinen Punkt mehr als einmal besuchen. Zeigen Sie, dass $(\mathbb{P}_n)_{n \in \mathbb{N}}$ nicht konsistent ist.

AUFGABE 24.4 (4 Punkte) — Sei $f: \mathbb{R}^2 \to [0,\infty)$ die gemeinsame Lebesguedichte der beiden Zufallsgrößen X und Y. Mit $\mathbb{P}_X = \mathbb{P}_X = \mathbb{P} \circ X^{-1}$ bezeichnen wir die Verteilung von X. Ferner setzen wir $f_X(x) = \int f(x,y) \, \lambda(\mathrm{d}y)$ für $x \in \mathbb{R}$. Zeigen Sie Folgendes.

- 1. Die Funktion f_X ist \mathbb{P}_X -fast sicher wohldefiniert und positiv.
- 2. Sei μ irgendein Wahrscheinlichkeitsmaß auf \mathbb{R} , dann wird durch

$$K(x,A) = \begin{cases} \int_A \frac{f(x,y)}{f_X(x)} \lambda(\mathrm{d}y), & \text{falls } f_X(x) \text{ wohldefiniert und positiv ist,} \\ \mu(A) & \text{sonst,} \end{cases}$$

wobei $A \subset \mathbb{R}$ messbar ist, ein Markovkern K von \mathbb{R} nach \mathbb{R} definiert.

3. K ist eine reguläre Version der bedingten Verteilung von Y gegeben X.