Mathematisches Institut Universität Leipzig Sommersemester 2007

Analysis A: Übungsblatt 24

Abgabe in den Übungen vom 19. bis 22. Juni 2007

AUFGABE 24.1 (1 Punkt) — Berechnen Sie die Bogenlänge der Schraubenlinie $f: [a, b] \to \mathbb{R}^3$, gegeben durch $f(t) = (r \cos t, r \sin t, ct)$, wobei a < b und $r, c \in (0, \infty)$.

AUFGABE 24.2 (4 Punkte) — LOGARITHMISCHE SPIRALE. Wir betrachten die Kurve $f: \mathbb{R} \to \mathbb{R}^2$, gegeben durch $f(t) = e^{ct}(\cos t, \sin t)$, wobei $c \in (0, \infty)$ ein Parameter ist. Wir bezeichnen ihre Bogenlänge im Parameterintervall [a, b] mit $L_{a,b}$.

- (i) Skizzieren Sie die Kurve für $c = \frac{1}{2\pi}$ im Parameterbereich $[-2\pi, 2\pi]$.
- (ii) Es sei $c \in (0, \infty)$ beliebig. Berechnen Sie die Bogenlänge $L_{a,b}$ für alle a < b sowie den Grenzwert $\lim_{a \to -\infty} L_{a,0}$.
- iii) Zeigen Sie, dass f jeden Kreis um den Ursprung in genau einem Punkt schneidet, und berechnen Sie den Kosinus des Schnittwinkels im Schnittpunkt.

AUFGABE 24.3 (4 Punkte) — Zeigen Sie, dass die Abbildung $f: [0,1] \to \mathbb{R}^2$, gegeben durch

$$f(t) = \begin{cases} \left(t, t \cos \frac{\pi}{t}\right), & \text{falls } t \neq 0, \\ (0, 0), & \text{falls } t = 0, \end{cases}$$

eine Kurve ist, die nicht rektifizierbar ist.

AUFGABE 24.4 (3 Punkte) — PARAMETRISIERUNG AUF BOGENLÄNGE. Es sei $f: [0,1] \to \mathbb{R}^n$ eine reguläre Kurve. Zeigen Sie, dass eine \mathcal{C}^1 -Parametertransformation $\varphi \colon [\alpha,\beta] \to [0,1]$ existiert, so dass $g:=f\circ\varphi$ auf Bogenlänge parametrisiert ist, d. h., dass für jedes $t\in [\alpha,\beta]$ die Bogenlänge von g im Intervall $[\alpha,t]$ gleich $t-\alpha$ ist. In welchem Sinne ist diese Parametertransformation eindeutig?

AUFGABE 24.5 (4 Punkte) — Es sei $(f_j)_{j\in\mathbb{N}}$ eine Folge rektifizierbarer Kurven $f_j\colon [0,1]\to\mathbb{R}^n$, die gleichmäßig auf [0,1] gegen eine Kurve f konvergiert. Ferner sei die Folge $(L_j)_{j\in\mathbb{N}}$ der Bogenlängen der f_j beschränkt. Zeigen Sie, dass f dann rektifizierbar ist und ihre Bogenlänge nicht größer ist als $\liminf_{j\to\infty} L_j$. Geben Sie ein Beispiel, in dem sie sogar echt kleiner ist.

Aktuelle Information: Die Fachschaftsratswahlen finden vom **12. bis 14. Juni** statt. Sie können Ihre Stimme an diesen Tagen zwischen 8 und 17 Uhr im Büro der Fachschaft (Raum 4-45 in der Johannisgasse 26) abgeben; jede(r) Wähler(in) bekommt einen Eierkuchen!