Mathematisches Institut Universität Leipzig Wintersemester 2008/09

Wahrscheinlichkeitstheorie II: Übungsblatt 16

Abgabe in den Übungen vom 5. und 6. November 2008

AUFGABE 16.1 (4 Punkte) — Es seien X_1, X_2, X_3, \ldots beliebige Zufallsgrößen. Zeigen Sie, dass $(X_n)_{n \in \mathbb{N}}$ genau dann stochastisch gegen Null konvergiert, wenn $\lim_{n \to \infty} \mathbb{E}[|X_n|/(1+|X_n|)] = 0$ gilt.

AUFGABE 16.2 (3 Punkte) — Sei $(X_i)_{i\in I}$ eine Familie von Zufallsgrößen. Es existiere eine Funktion $H\colon [0,\infty)\to [0,\infty)$ mit $\lim_{x\to\infty} H(x)/x=\infty$ und $\sup_{i\in I} \mathbb{E}[H(X_i)]<\infty$. Zeigen Sie, dass $(X_i)_{i\in I}$ gleichgradig integrierbar ist.

AUFGABE 16.3 (3 Punkte) — Es sei Φ eine Familie von Teil- σ -Algebren und X eine integrierbare Zufallsgröße. Zeigen Sie, dass $\{\mathbb{E}[X\mid\mathcal{A}]:\mathcal{A}\in\Phi\}$ gleichgradig integrierbar ist.

AUFGABE 16.4 (2 Punkte) — Sei (E, \mathbf{d}) ein metrischer Raum. Zeigen Sie, dass eine Folge $(x_n)_{n \in \mathbb{N}}$ in E genau dann gegen ein $x \in E$ konvergiert, wenn die Folge der Diracmaße δ_{x_n} gegen δ_x konvergiert.

AUFGABE 16.5 (SATZ VON SLUTZKY) (4 Punkte) — Sei (E, d) ein polnischer Raum, und seien X, X_1, X_2, \ldots und Y_1, Y_2, \ldots Zufallsgrößen mit Werten in E. Die Verteilung von X_n konvergiere schwach gegen die von X, und die Folge $\operatorname{d}(X_n, Y_n)$ konvergiere in Wahrscheinlichkeit gegen Null. Zeigen Sie, dass dann auch die Verteilung von Y_n schwach gegen die von X konvergiert.