Mathematisches Institut Universität Leipzig Wintersemester 2007/08

Maß- und Integrationstheorie: Übungsblatt 12

Abgabe in den Übungen vom 15. bis 18. Januar 2008

AUFGABE 12.1 (4 Punkte) —

- (i) Zeigen Sie, dass jede monotone Funktion $f: \mathbb{R} \to \mathbb{R}$ Borel-messbar ist.
- (ii) Zeigen Sie, dass die Ableitung jeder differenzierbaren Funktion $f: \mathbb{R} \to \mathbb{R}$ Borel-messbar ist.

AUFGABE 12.2 (2 Punkte) — Wir betrachten ein Maß μ auf (\mathbb{R},\mathcal{B}) und seine Momenten erzeugende Funktion $M(t)=\int_{\mathbb{R}}\mathrm{e}^{tx}\,\mu(\mathrm{d}x)$. Wir setzen voraus, dass die Menge $I=\{t\in\mathbb{R}\colon M(t)<\infty\}$ ein nichtleeres Inneres hat. Benutzen Sie die Hölder'sche Ungleichung, um zu zeigen, dass I ein Intervall ist und $\log M$ auf I konvex.

AUFGABE 12.3 (2 Punkte) — Benutzen Sie die Young'sche Ungleichung, um die Hölder'sche Ungleichung zu zeigen.

Die Young'sche Ungleichung besagt, dass für alle $x,y\in[0,\infty)$ und alle $p,q\in(1,\infty)$ mit $\frac{1}{p}+\frac{1}{q}=1$ gilt: $x^{1/p}y^{1/q}\leq \frac{x}{p}+\frac{y}{q}$. Siehe etwa Aufgabe 13.5 der Vorlesung *Differenzial- und Integralrechnung I* des Wintersemesters 2006/07, wo dies mit Hilfe der Konkavität des Logarithmus bewiesen wurde.

AUFGABE 12.4 (4 Punkte) — Seien $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und (Ω', \mathcal{F}') ein Messraum. Sei weiter $f \colon \Omega \to \Omega'$ eine $\mathcal{F}-\mathcal{F}'$ -messbare Abbildung. Beweisen Sie:

- (i) μ ist endlich genau dann, wenn $\mu \circ f^{-1}$ endlich ist.
- (ii) Ist $\mu \circ f^{-1}$ σ -endlich, so ist auch $\mu \sigma$ -endlich.
- (iii) Die Umkehrung in (ii) ist i. Allg. falsch.

AUFGABE 12.5 (4 Punkte) — Seien μ und ν Maße und sei $\varphi = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$. Beweisen Sie:

- (i) $\varphi > 0 \nu$ -f.ü.
- (ii) Ist $\nu \leq \mu$, so gilt $\varphi \leq 1 \nu$ -f.ü.