Mathematical Institute University Leipzig Summer term 2005 Prof. Dr. Wolfgang König Dr. Ramon Plaza

ODE for Physicists - Homework 8

Due: June 7, 2005

- 21. (3 pts.) (a) Find the general solution to $y'' + 4y = x^2$ using ansatz of type of the right-hand side.
 - (b) Find the general solution to $y'' + 4y = x^2$ using variation of constants.
 - (c) Find the general solution to $y'' + 4y = x^2 + 5\cos 2x$ using any method.
- 22. (4 pts.) Use the method of power series to find the general solution to $(1 + x^2)y'' + xy' y = 0$. Prove that the solution series converges for |x| < 1.
- 23. (5 pts.) Let $f: [0, \infty) \to \mathbb{R}$ be a function such that, for s in some nontrivial interval $I \subset \mathbb{R}$, the Laplace transform of f, i.e., the function $F(s) = \mathcal{L}f(s) = \int_0^\infty e^{-st} f(t) dt$, is well-defined.
 - (a) Fix n ∈ N and assume that also the Laplace transform of the map t → tⁿ f(t) exists on I. Identify its Laplace transform in terms of F. Hint: Use induction over n. You may use Lebesgue's theorem: If a sequence of functions f_n converges pointwise to a function f and if there is an integrable function g such that |f_n| ≤ g for any n ∈ N, then lim_{n→∞} ∫ f_n(x) dx = ∫ f(x) dx.
 - (b) Assume that the Laplace transform of the map $t \mapsto \frac{1}{t}f(t)$ also exists on *I*. Identify its Laplace transform in terms of *F*.
- 24. (4 pts.) Compute the Laplace transform (with explicit identification of its domain) of
 - (a) the polynomial $t \mapsto t^n$ for $n \in \mathbb{N}$,
 - (b) the map $t \mapsto te^{2t}$,
 - (c) the map $t \mapsto \frac{1}{t} \sin(\omega t)$ for $\omega \in \mathbb{R} \setminus \{0\}$. *Hint:* You may use that the Laplace transform of the map $t \mapsto \sin(\omega t)$ is the map $s \mapsto \frac{\omega}{s^2 + \omega^2}$.