Mathematical Institute University Leipzig Summer term 2005

Prof. Dr. Wolfgang König Dr. Ramon Plaza

ODE for Physicists - Homework 5

Due: May 10, 2005

- 12. (4 pts.) (Variation of constants.)
 - (a) Let $a, c \in (0, \infty)$ and $b \in \mathbb{R}$. Show that every solution of $y' + ay = be^{-cx}$, approaches 0 as $x \to +\infty$.
 - (b) Solve the following IVP:

$$y' + y = \frac{1}{1 + x^2}, \qquad y(2) = 3.$$

13. (2 pts.) (Application of first order equations.)

A cylindrical tank of radius r_0 and height h_0 is filled with water. The water leaves the tank through a round hole of radius δ_0 in the bottom of the tank, where $r_0 > \delta_0 > 0$. The velocity of the flow is $v = \sqrt{h}$, where h is the depth of water of the tank. Find the time required to empty the tank.

Hint: The volume of water that runs out of the tank in time dt is $dV = \pi \delta_0^2 \sqrt{h} dt$. What is the expression of dV in terms of dh?

- 14. (8 pts.) (Integrating factor.)
 - (a) Find the general solution to $\frac{1}{2}y^2 + 2ye^x + (y + e^x)y' = 0.$
 - (b) Find the general solution to $y' + y = y^2(\cos x \sin x)$. Hint: Substitute v = 1/y.
 - (c) Solve $1 + (1 + xy)e^{xy} + (1 + x^2e^{xy})y' = 0.$
 - (d) Find all the functions $\psi(x)$ such that the differential equation $y^2 \sin x + y\psi(x)y' = 0$ is exact. Solve the equation for these ψ 's.
- 15. (2 pts.) (Ansatz of the type of the right hand side.)

Find the general solution to:

- (a) $y' + 3y = e^{2x} + x^2$.
- (b) $y' 2y = e^x \sin x$.