Prof. Dr. WOLFGANG KÖNIG 14. Juli 2007 8:15 – 10:15 Uhr

HAUPTKLAUSUR ZUR VORLESUNG ANALYSIS A DIFFERENTIAL- UND INTEGRALRECHNUNG 2

Name:	
Vorname:	
Matrikelnummer:	
Übungsleiter(in):	

- Tragen Sie zu allererst die obigen Angaben ein, dann lesen Sie bitte die gesamte Klausur bis zum Ende durch.
- Das einzige zugelassene Hilfsmittel ist ein einseitig von Ihrer Hand beschriebenes DIN A4-Blatt mit beliebigem Text. Bei Nicht-Deutschsprachigen ist auch ein Wörterbuch zugelassen.
- Mit einer Gesamtpunktzahl von mindestens 40 (von 100) gilt diese Klausur als bestanden.
- Bitte tragen Sie auf dieser Seite sonst nichts ein.

Viel Erfolg!

Aufgaben-Nr.	1	2	3	4	5
Punkte					

GESAMTPUNKTZAHL:

20 P.	Aufgabe	1 —
4 0 I •	muzanc	1

- (i) Berechnen Sie die Werte der Integrale $I_1 = \int_0^{\pi/2} \sin x \cos x \, dx$ und $I_2 = \int_0^2 x^5 e^{x^3} \, dx$.
- (ii) Bestimmen Sie je eine reelle und eine komplexe Partialbruchzerlegung der Funktion $f(x)=\frac{x^3}{1+x^2}$, und geben Sie jeweils damit eine Stammfunktion F an.

20 P. Aufgabe 2 — Beweisen oder widerlegen Sie die folgenden Aussagen.

- (i) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, definiert durch $f(x,y) = \sin(xy) xy^2$, hat ein Extremum im Ursprung.
- (ii) Falls $f_1, f_2, \ldots : [0, \infty) \to \mathbb{R}$ (uneigentlich) Riemann-integrierbar sind und $(f_n)_n$ gleichmäßig auf $[0, \infty)$ gegen die Nullfunktion konvergiert, so gilt $\lim_{n\to\infty} \int_0^\infty f_n(x) \, \mathrm{d}x = 0$.
- (iii) Jede Funktion $f \in \mathcal{C}^4(\mathbb{R} \to \mathbb{R})$ mit $0 = f^{(k)}(0)$ für $k = 0, \dots, 3$ und $f^{(4)}(0) < 0$ hat in 0 ein lokales striktes Maximum. (Hierbei ist $f^{(k)}$ die k-te Ableitung.)
- (iv) Die Kurve $\varphi \colon [0,1] \to \mathbb{R}^3$, definiert durch $\varphi(t) = (t, \sin t, \cos t)$, hat die Bogenlänge $\sqrt{3}$.

20 P. Aufgabe 3 ——

- (i) Untersuchen Sie jeweils, ob die Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}$, definiert durch $f(x,y) = \frac{x^2y}{x^4+y^2}$ für $(x,y) \neq (0,0)$ und f(0,0) = 0, im Ursprung (a) stetig, (b) partiell differenzierbar, (c) total differenzierbar und (d) stetig differenzierbar ist.
- (ii) Geben Sie für die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$, definiert durch $g(x,y) = x^2y$, das Taylorpolynom bis einschließlich zweiter Ordnung mit Entwicklungspunkt (1,1) an.
- **20 P.** Aufgabe 4 Entscheiden Sie ohne Begründung für jede der folgenden Aussagen, ob sie wahr oder falsch ist. Schreiben Sie hierfür ein w für "wahr" bzw. ein f für "falsch" in den Kasten vor der Aussage.

Die Fourierreihe der Funktion $f \colon [-\pi, \pi] \to \mathbb{R}$, definiert durch $f(x) = \pi + x$ für $x \in [-\pi, 0]$ und $f(x) = \pi - x$ für $x \in (0, \pi]$ und 2π -periodische Forsetzung, konvergiert gleichmäßig gegen f.

Falls $f_1, f_2, \ldots : [0, 1] \to \mathbb{R}$ Riemann-integrierbar sind und die Folge $(f_n)_n$ gleichmäßig auf [0, 1] gegen die Nullfunktion konvergiert, so gilt $\lim_{n \to \infty} \int_0^1 f_n(x) \, \mathrm{d}x = 0$.

Das uneigentliche Integral $\int_1^\infty (\frac{1}{x} - \frac{1}{x+1}) dx$ konvergiert.

Das Intervall [0,1] ist vollständig, wenn man es mit der diskreten Metrik d(x,y)=1 für $x \neq y$ und d(x,x)=0 für jedes $x \in [0,1]$ ausstattet.

Bewertung: Jede richtige Antwort erhält fünf Punkte, für jede falsche werden zwei Punkte abgezogen, bei Offenlassen werden weder Punkte gegeben noch abgezogen, und negative Gesamtpunktzahlen werden zu Null gesetzt.

20 P. Aufgabe 5 — Sei $f: X \to \mathbb{R}$ eine Funktion auf einem kompakten metrischen Raum X mit der Eigenschaft, dass jedes $x \in X$ eine Umgebung besitzt, in der f beschränkt ist. Zeigen Sie, dass f in X beschränkt ist.