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This summary for the seminar "Zufällige Netzwerke für Kommunikation" in Summer Semester 2015 at TU Berlin

extracts the paper of Keeler and Blaszczyszyn [1, pp. 2�4.], using the in�nite Poisson model and its invariance of

propagation in [2, pp. 1�3.] and the de�nition and some properties of the two-parameter Poisson�Dirichlet distribution

as in [3, pp. 857�859., 861�864., 869�870., 873�874]. In this summary we omit all proofs for brevity. The

propositions the proof of which takes part in the beamer for the seminar are marked by ].

1 The SINR model. Lemma 1
of [2]

We start with presenting the in�nite Poisson
model as in [2]. Here the geographic locations
of the base stations form a homogeneous Poisson
point process Φ = {Xi}i∈N with intensity λ on
R2, and the 'typical user' takes place in the origin
- without loss of generality, due to stationarity of
{Xi}. l(Xi) is the distance loss between Xi and
the origin, with l(x) = (K|x|)β for K,β > 0.

Adding fading/shadowing to the model, the

propagation loss is de�ned as LXi = l(Xi)
SXi

, where

{Sx}x∈R2 are i.i.d. positive random variables.
The power received at the origin from the base
station Xi with starting power PXi is pXi =
PXi
LXi

=
PXiSXi
l(Xi)

. In the setting of [2] no power

control is involved, hence we simply have con-
stant power PXi = P > 0. Then (and also in
general if the emitted powers are i.i.d.) we can
formulate an equivalent model when the power
is included in the associated shadowing variable:
then S̃Xi = PXiSXi are the shadowing variables
and P̃Xi = 1 is the emitted power. This slightly
simpli�es the notation.

Now let Θ = {Y } = {Yi}i∈N := {LXi}i∈N
denote the process of propagation losses experi-
enced in the origin with respect to the stations of
Φ, as a point process in R+. The distribution of
Θ determines all characteristics of the typical user
that can be expressed in the terms of propagation
losses. This motivates Lemma 1. of [2].

Lemma 1. ] Assume in�nite Poisson model with
distance-loss l and generic shadowing variable S

satisfying E(S
2
β ) <∞. Then the process of propa-

gation losses Θ experienced in the origin is a non-
homogeneous Poisson point process on R+ with

intensity measure Λ([0, t]) = E(Θ([0, t])) = at
2
β ,

where a = λπE(S
2
β )

K2 . 1

We also note that the distribution of Θ is in-
variant with respect to the distribution of the
shadowing/fading S having the same given value

of the moment E(S
2
β ) �in particular, when we

have constant shadowing sconst = (E(S
2
β )

β
2 . The

in�nite Poisson model with such a constant shad-
owing is equivalent to the model without shad-
owing (S ≡ 1 and the constant K is replaced by
K̃ = K√

E(S
2
β )

).

We de�ne the SINR process Ψ on R+ as the
ratio of signal (received by the user from a certain
base station) to interference (power received from
all the other stations) plus noise (in our model the

noise power is constant W ≥ 0), where Yi = l(Xi)
SXi

and I =
∑
Y ∈Θ

Y −1 is the power received from

the whole network. We also de�ne the signal-to-
received-power-and-noise ratio (STINR) process
Ψ′ on (0, 1]. Then we have

Ψ = {Z} :=

{
Y −1

W + (I − Y −1)
: Y ∈ Θ

}
, (1)

Ψ′ = {Z ′} =

{
Y −1

W + I
: Y ∈ Θ

}
.2 (2)

Information on the algebraically simpler Ψ′ gives
information on Ψ by Z = Z′

1−Z′ and Z
′ = Z

1+Z .

1.1 Factorial moment measures

For n ≥ 1, the nth factorial moment
measure (a.k.a. nth correlation measure)
M ′(n)(t′1, . . . , t

′
n) = M ′(n)((t′1, 1]× . . .× (t′n, 1]) of

the STINR process {Z ′} is de�ned as

M
′(n)(t′1, . . . , t

′
n) = E


∑

(Z′1,...,Z
′
n)

∈(Ψ′)×n
distinct

n∏
j=1

1{Z′j>t′j}

 .

The equivalent measure for Ψ = {Z} is de�ned
analogously, but on (t1,∞]× . . . (tn,∞)].

We need to de�ne two integrals for both mea-
sures. In,β(x) and In,β(x1, . . . , xn) for x, xi ≥ 0.
We will de�ne them in the seminar. Closed forms
of these integrals are in general not known, but
for n ≤ 20 the integrals are numerically tractable.

Let
∧
t i =

∧
t i(t
′
1, . . . , t

′
n) =

t′i
n∑
j=1

t′j

. Then, denoting

the closed unit simplex in Rn as ∆n, we have the
following proposition.

1This lemma follows from the Displacement Theorem (Poisson Mapping Theorem), see [5, Theorem 1.3.9.].
2STIR: STINR without noise (i.e., with W = 0), SIR: SINR without noise.
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Proposition 1. For t′i ∈ [0, 1], the factorial mo-
ment measure of order n ≥ 1 of the STINR pro-
cess Ψ′ in (1) satis�es3

M ′(n)(t′1, . . . , t
′
n) = n!

(
n∏
i=1

∧
t
−2/β

i

)
In,β(Wa−

β
2 )

× In,β(
∧
t1, . . . ,

∧
tn)1∆n

(t′1, . . . , t
′
n). (3)

Moreover, for ti ∈ (0,∞) the SINR pro-
cess (1) has the factorial moment measure
M (n)(t1, . . . , tn) = M ′(n)(t′1, . . . , t

′
n), where t′i =

ti
1+ti

, ti =
t′i

1−t′i
.

For n ≥ 1, it is easy to see that In,β(0) =
2n−1

βn−1(C′(β))n .

Proposition 2. Let M
′(n)
0 and M

(n)
0 respectively

be the factorial moment measures of the STIR and
SIR processes, i.e., M ′(n) and M (n) with W = 0.

Then M ′(n)(·) =
In,β(Wa−β/2)
In,β(0) M

′(n)
0 (·),Mn(·) =

In,β(Wa−β/2)
In,β(0) M

(n)
0 (·).

2 The PD(α, θ) process

In this section, we deal with probability distribu-
tions (Vn) with the following properties:

(Vn) = (V1, V2, . . .), V1 > V2 > . . . > 0,

∞∑
n=1

Vi = 1.

(4)

Interpretation: division of a large population into
a large number of possible species, and taking the
limit as the number of individuals �as well as
the number of species� tends to in�nity. Vn rep-
resents the proportion of the nth most common
species in the idealized in�nite population.

De�nition 1. For 0 ≤ α < 1 and θ > −a
suppose that the probability Pα,θ governs inde-
pendent random variables Un such that Un has
Beta(1 − α, θ + nα) distribution4. Let us con-
sider the so-called stick-breaking model of (Un):
Ṽ1 := U1,

Ṽn := (1− U1) · · · (1− Un−1)Un (n ≥ 2), (5)

and let V1 ≥ V2 ≥ . . . be the decreasing order
statistics of {Ṽn}.

Then the Poisson�Dirichlet distribution with
parameters (α, θ), abbreviated as PD(α, θ) is de-
�ned as the Pα,θ distribution of (Vn).5

Considering (Vn) (or equivalently, (Ṽn)) as
atoms of a point process, we can see PD(α, θ) as
a distribution of a point process.

With the aim of de�ning the Poisson�Dirichlet
process equivalently, we consider a subordinator
(τs, s ≥ 0), which is an almost surely increasing
process with stationary independent increments
and cadlag paths. We assume that (τs) has no
drift component. Then the locations of the jumps
of the subordinator (τs − τs−, s ≥ 0) form a Pois-
son point process on [0,∞). Denote the jumps of
the subordinator on (0, s) in decreasing order by
V1(τs) ≥ V2(τs) ≥ . . . Then, τs =

∑∞
i=1 Vi(τs).

Thus, knowing the Poisson process of jumps we
know the subordinator. Denoting the intensity
measure of this Poisson point process on (0,∞)
by sΛ(dx), the Laplace transform of the subordi-
nator is

E[exp(−λτs)] = exp

−s ∞∫
0

exp(−λx)Λ(dx)

 .6

(6)
Let 0 < α < 1. Then we call (τs) a stable (α) sub-
ordinator if Λ = Λα, where Λα with Λα(x,∞) =
Cx−α (x > 0), Λα(dx) = Dx−α−1. Then we
have from (6) that E[exp(−λτs)] = exp(−sKλα),
where K = CΓ(1− α).
A crucial observation of [PY] is that for any s >

0 the sequence {V1(τs)
τs

, V2(τs
τs

, . . .} has PD(α, 0)
distribution, and also for every �xed t > 0,(
V1(t)
t , V2(t)

t , . . .
)
has PD(α, 0) distribution7.

2.1 STIR process is PD( 2
β
, 0)

By Lemma 1, the signals from all the base
stations, or, equivalently, the inverse values of
the propagation process Θ, form an inhomo-
geneous Poisson process with intensity measure
2a
β t
−1−2/βdt (a is given in 1)8. Therefore, if we

set s = 1, α = 2
β and C = a, then the jumps that

the stable (α) subordinator (τs) makes in (0, s)
can be identi�ed with these signal values Y −1

i .
Thus, τ1 represents the interference in our Poisson

3Observe noise factorization in the formula! The proof of this proposition uses the memory-less property of the
exponential distribution and a coordinate change inspired by n-dimensional spherical coordinates. See in [4, pp. 20�23.].

4For a, b > 0, the Beta(a, b) distribution has density
Γ(a+b)

Γ(a)Γ(b)
xa−1(1−x)b−11[0,1](x). In an i.i.d. sample of n elements

from a uniform distribution on (0, 1), then the kth smallest element of this sample has distribution Beta(k, n− k+ 1).
5In the talk we also introduce the concept of a size-biased permutation of the sequence (Vn) in the setting (4), the

fact that the two-parameter Poisson�Dirichlet distribution is invariant under size-biased permutation, and the inter-
pretation of this property for the STIR process, the so-called randomized access policy. In fact, if (Vn) = (V1, V2, . . .)
is as in de�nition 1, then (Ṽi) is a size-biased permutation of (Vi), see [3, pp. 856�857.].

6See [5, p. 6] about the Laplace functional of a Poisson point process.
7The proof of this observation [3, Proposition 6.] exceeds the frames of our talk.
8This follows by writing ΛΘ−1 (( 1

t
,∞)) = ΛΘ([0, t)) and then di�erentiating this cumulative distribution function.
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model, with Laplace transform E[exp(−λτ1)] =
E[exp(−λI)] = exp[−aΓ(1− 2/β)λ2/β ].

Thus, the subordinator representation of the
PD process relates the PD(α, 0) process to our
STIR process as follows. If {Z ′(i)} denote the de-
creasing order statistics of {Z ′}, then we have:

Proposition 3. Assume W = 0.
Then the sequence {Z ′(i)} equals {Vi} in distribu-

tion to for α = 2
β , θ = 0. I.e, the STIR process

Ψ′ is a PD( 2
β , 0) point process.

3 Consequences of the PD-
SINR correspondence

Knowing Proposition 3, we can apply many re-
sults known about the PD( 2

β , 0) process to the
STINR, SINR and STIR processes. The �rst ex-
ample shows that the ratios of successive STINR
values have beta distributions. Proving this re-
quires another proposition �rst [3, Proposition
10.], which takes part in the talk with proof.

Proposition 4. ] If (Vn) has PD(α, 0) distribu-

tion (α ∈ (0, 1)), then Rn = Vn+1

Vn
has Beta(nα, 1)

distribution, i.e., P(Rn ≤ x) = xnα for x ∈ [0, 1],
and the Rn are mutually independent.

Since (Vn) can be recovered from (Rn):

V1 =
1

1 +R1 +R1R2 +R1R2R3 + . . .
,

Vn+1 = V1R1 . . . Rn for n ≥ 1, (7)

the next corollary follows from proposition 4:

Corollary 1. Suppose (Rn) is a sequence of inde-
pendent random variables with Rn ∼ Beta(nα, 1)
for all n ≥ 1 and for some 0 < α < 1. Then (Vn)
de�ned by (7) has PD(0, α) distribution.

Now, considering these propositions with α =
2
β , we conclude for the STINR process.

Proposition 5. ] For the STINR process Ψ′

(W ≥ 0), W
I = 1

∞∑
i=1

Z′
(i)

− 1 and W + I = (Lα )
−β
2 ,

where the limit L := lim
i→∞

i(Z ′i)
2
β both exists al-

most surely and for all p-means with p ≥ 1.

Proposition 6. ] For the STINR process Ψ′

(W ≥ 0), the random variables Ri :=
Z′(i+1)

Z′
(i)

have, respectively, Beta( 2i
β , 1) distributions, fur-

thermore Ri are mutually independent.

Finally, we mention a consequence for the fac-
torial moment measures.

Let cn,α,θ =
n∏
i=1

Γ(θ+1+(i−1)α)
Γ((1−α))Γ(θ+iα) ; in particular

cn,2/β,0 = 2/β)n−1(n−1)!
(Γ(2n/β)Γ(1−2/β)n) .

Proposition 7. The nth factorial moment den-
sity (a.k.a. the nth correlation function) of the
STINR process Ψ′ (W ≥ 0) is given by

µ(n)(t′1, . . . , t
′
n) := (−1)n

∂nM ′(n)(t′1, . . . , t
′
n)

∂t′1 . . . ∂t
′
n

=

cn, 2
β
,0

In,β(Wa−β/2)

In,β(0)

(
n∏
i=1

t
′−( 2

β
+1)

i

)(
1−

n∑
j=1

t′j

) 2n
β
−1

(8)

for (t′1, . . . , t
′
n) ∈ ∆n and zero elsewhere.

This proposition applies a result about the fac-
torial moment densities of the PD(α, θ) process
[6, Theorem 2.1] to the STIR process, which is
PD( 2

β , 0). The noise factorization in (3) makes it

possible to conclude for the STINR process.9
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