

Weierstrass Institute for Applied Analysis and Stochastics



# Moment asymptotics for branching random walks in random environment

Wolfgang König (WIAS and TU Berlin) joint work with Onur Gün and Ozren Sekulovic (Berlin)

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de Münster, 6 December 2012 • We consider a particle system in  $\mathbb{Z}^d$  having three random components:

migration, site-dependent branching/killing rates, branching/killing.

- We are generally interested in the description of the main flow of the particles at late times, in particular in the influence of the random environment.
- Today, we report on the behaviour of the *p*-th moment (over the medium) of the *n*-th moment (over migration and branching/killing) of the particle number.



• We consider a particle system in  $\mathbb{Z}^d$  having three random components:

migration, site-dependent branching/killing rates, branching/killing.

- We are generally interested in the description of the main flow of the particles at late times, in particular in the influence of the random environment.
- Today, we report on the behaviour of the *p*-th moment (over the medium) of the *n*-th moment (over migration and branching/killing) of the particle number.
- Earlier work [ALBEVERIO, BOGACHEV, MOLCHANOV, YAROVAYA 2000] derived a recursive formula for the *n*-th moment and the first asymptotic term.
- We present a direct formula and find also the second term.
- Again tools for deriving the moment formula in [ABMY00]: PDEs. Here: spines.
- Main tools for deriving the large-time asymptotics: Large deviations like in [GÄRTNER/MOLCHANOV 1998].
- We will be able to use the vast knowledge on the parabolic Anderson model.



Ingredients:

random migration like continuous-time simple random walk in  $\mathbb{Z}^d$  with generator

$$\Delta f(x) = \sum_{y \sim x} [f(y) - f(x)]$$

- random, space-dependent i.i.d. killing rates  $\xi_0 = (\xi_0(z))_{z \in \mathbb{Z}^d}$  and binary branching rates  $\xi_2 = (\xi_2(z))_{z \in \mathbb{Z}^d}$
- killing and branching of the particles present at z with rates  $\xi_0(z)$  resp.  $\xi_2(z)$ .

Probability measure and expectation:  $P_x$  and  $E_x$ , starting from precisely one particle at x.

$$\begin{array}{lll} \eta(t,y) &=& {\rm particle\ number\ at\ time\ t\ in\ y.} \\ \eta(t) &=& \displaystyle\sum_{y\in \mathbb{Z}^d} \eta(t,y) \quad {\rm global\ particle\ number\ at\ time\ t.} \end{array}$$

Quenched moments:

$$m_n(t,x,y) = E_x[\eta(t,y)^n] \quad \text{ and } \quad m_n(t,x) = E_x[\eta(t)^n],$$

for fixed branching/killing environment  $(\xi_2, \xi_0)$ ..



## Connection with the parabolic Anderson model

Denote  $u(t, y) = m_1(t, 0, y)$ , when starting with one particle at the origin. Then it is well-known (see [GÄRTNER/MOLCHANOV 1990] for background) that u is the unique positive solution of the Cauchy problem for the heat equation with random potential  $\xi = \xi_2 - \xi_0$ :

$$\frac{\partial}{\partial t}u(t,y) = \Delta u(t,y) + \xi(y)u(t,y),$$

with initial condition  $u(0, \cdot) = \delta_0(\cdot)$ .

Feynman-Kac formula : 
$$u(t,y) = \mathbb{E}_0 \Big[ \exp \Big\{ \int_0^t \xi(X_s) \, \mathrm{d}s \Big\} \delta_y(X_t) \Big].$$



## Connection with the parabolic Anderson model

Denote  $u(t, y) = m_1(t, 0, y)$ , when starting with one particle at the origin. Then it is well-known (see [GÄRTNER/MOLCHANOV 1990] for background) that u is the unique positive solution of the Cauchy problem for the heat equation with random potential  $\xi = \xi_2 - \xi_0$ :

$$\frac{\partial}{\partial t}u(t,y) = \Delta u(t,y) + \xi(y)u(t,y),$$

with initial condition  $u(0, \cdot) = \delta_0(\cdot)$ .

Feynman-Kac formula : 
$$u(t,y) = \mathbb{E}_0 \Big[ \exp \Big\{ \int_0^t \xi(X_s) \, \mathrm{d}s \Big\} \delta_y(X_t) \Big].$$

### Moment Asymptotics [GÄRTNER/MOLCHANOV 1998]

If  $\xi$  has double-exponential tails, i.e.,  $\operatorname{Prob}(\xi(x) > r) \approx \exp\{-\mathrm{e}^{r/\rho}\}$  as  $r \to \infty$ , then

$$\langle u^p(t,x)\rangle = e^{H(pt)} e^{-2d\chi(\rho)pt + o(t)}, \quad p \in \mathbb{N},$$

where  $H(t) = \log \langle e^{t\xi(0)} \rangle \approx \rho t \log t - \rho t$  and

$$\chi(\rho) = \frac{1}{2} \inf_{\mu \in \mathcal{P}(\mathbb{Z})} [\mathcal{S}(\mu) + \rho \mathcal{I}(\mu)].$$



#### Comments

The two functions appearing in the variational formula are

$$\mathcal{S}(\mu) = \sum_{x \in \mathbb{Z}} \left( \sqrt{\mu(x+1)} - \sqrt{\mu(x)} \right)^2 \quad \text{ and } \quad \mathcal{I}(\mu) = -\sum_{x \in \mathbb{Z}} \mu(x) \log \mu(x).$$



#### Comments

The two functions appearing in the variational formula are

$$\mathcal{S}(\mu) = \sum_{x \in \mathbb{Z}} \left( \sqrt{\mu(x+1)} - \sqrt{\mu(x)} \right)^2 \quad \text{ and } \quad \mathcal{I}(\mu) = -\sum_{x \in \mathbb{Z}} \mu(x) \log \mu(x).$$

The result implies that

$$\langle m_1^p(t,x)\rangle = \langle m_1(tp,x)\rangle e^{o(t)}, \quad t \to \infty,$$

which can easily be guessed from an eigenvalue expansion for the Anderson operator  $\Delta+\xi$  in some large box,

$$m_1(t,x) \approx \sum_{k=0}^{\infty} \mathrm{e}^{t\lambda_k(\xi)} \langle \mathrm{e}_k, 1 \rangle \mathrm{e}_k(x),$$

which shows that

$$m_1^p(t,x) \approx \mathrm{e}^{pt\lambda_0(\xi)}$$

for the principal eigenvalue  $\lambda_0(\xi)$ .



[ABMY00] derived the following inhomogeneous Cauchy problem:

 $\frac{\partial}{\partial t}m_n(t,x,y) = \kappa \Delta m_n(t,x,y) + \xi(x)m_n(t,x,y) + \xi_2(x)h_n[m_1,...,m_{n-1}](t,x,y),$ 

with initial condition  $m_n(0,\cdot,y)=\delta_y(\cdot),$  where

$$h_n[m_1, ..., m_{n-1}] = \sum_{i=1}^{n-1} {n \choose i} m_i m_{n-i}.$$

Proof idea: Use the generator of the particle system to derive an equation for the Laplace transform of  $\eta(t, y)$  and differentiate n times with respect to the parameter, and put it zero.

## Moment asymptotics for Weibull tails [ABMY00]

If  $\xi$  has Weibull tails, i.e.,  $\operatorname{Prob}(\xi(x) > r) \approx \exp\{-Cr^{\alpha}\}$  as  $r \to \infty$ , with  $\alpha > 1, C > 0$ , then

$$\langle m_n(t,x)^p \rangle = \mathrm{e}^{C'(npt)^{\alpha'}(1+o(1))}, \qquad n, p, \in \mathbb{N},$$

where  $\frac{1}{\alpha} + \frac{1}{\alpha'} = 1$  and  $C' = C'(C, \alpha)$  is explicit.



Main auxiliary object: a branching random walk (BRW) in  $\mathbb{Z}^d$  with time interval [0, t] with  $\leq n - 1$  splitting events. Ingredients:

- $\blacksquare$  a tree  ${\mathcal T}$  with  $k\in\{0,\ldots,n-1\}$  splits that expresses the branching structure,
- a monotonous numbering I of the splitting vertices of the tree to express their order in time,
- a time duration attached to each bond,
- a simple random walk bridge attached to each bond.

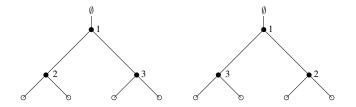


Figure: Two monotonous numberings of the splitting vertices of a tree with three splits.



## Direct moment formula: equipping the trees with times and random walks

Now equip the monotonously numbered tree with a time vector

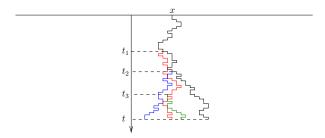
$$\widehat{t} = (t_0, \dots, t_{k+1}),$$
 where  $0 = t_0 < t_1 < \dots < t_k < t_{k+1} = t.$ 

For a bond b, let

$$Y^{(b,\hat{t})} = \left(Y_r^{(b,\hat{t})} \colon r \in [t_{I(u)}, t_{I(v)}]\right)$$

be a continuous-time simple random walk on  $\mathbb{Z}^d$  with generator  $\Delta$ , starting from zero, independent over *b*. Define the branching random walk now by putting, for any leaf *l*,

$$X_r^{(l)} := x + \sum_{m=1}^{i-1} Y_{t_{I(u_m)}}^{(b_m,\hat{t})} + Y_r^{(b_i,\hat{t})}, \qquad r \in [t_{I(u_{i-1})}, t_{I(u_i)}], i \in \{1, \dots, j\}.$$





#### **Direct moment formula**

Abbreviate

$$\begin{split} \Phi_x(\mathcal{T}, I, t, y) &= \int_{0=t_0 < t_1 < \dots < t_k < t_{k+1} = t} \mathrm{d}\hat{t} \, \mathbb{E}_x^{(\mathcal{T}, I, \hat{t})} \Big[ \exp\Big(\sum_{(u, v) \in E} \int_{t_{I(u)}}^{t_{I(v)}} \xi(X_r^{(u, v)}) \, \mathrm{d}r \Big) \\ & \Big(\prod_{v \in S} \xi_2(X_{t_{I(v)}}^{(u, v)}) \Big) \sum_{l \in L} \mathbbm{1}\{X_t^{(l)} = y\} \Big]. \end{split}$$

# Moment formula, [ GÜN/K./SEKULOVIC (2012)]

For any  $n \in \mathbb{N}$ ,

$$m_n(t, x, y) = \sum_{k=0}^{n-1} \sum_{\mathcal{T} \in T_k} \sum_{I \in \mathcal{N}(\mathcal{T})} c_{k,n} \Phi_x(\mathcal{T}, I, t, y),$$

and an analogous formula for  $m_n(t,x).$  The constants are defined by  $c_{0,n}=1$  for all  $n\in\mathbb{N}$  and

$$c_{k,n} = \sum_{i=1}^{n-k} {n \choose i} c_{k-1,n-i}, \quad k = 1, \dots, n-1.$$

There is an analogous formula for more general branching mechanisms, but it is cumbersome.



#### Some remarks on the proof

Consider the following variant of the branching process, which introduces spines to some of the particles. The differences are:

- 1. We start with one particle at x, which carries n marks (called spines)  $1, 2, \ldots, n$ .
- 2. A particle at position y carrying j marks branches at rate  $2^{j}\xi_{2}(y)$  into two particles.
- At such a branching event of a particle carrying j marks, each mark chooses independently and uniformly at random one of the two particles to follow.

We now apply the many-to-few lemma [HARRIS/ROBERTS 2011]:

$$m_n(t,x) = \mathbb{Q}_x^{(n)} \Big[ \exp\Big(\sum_{v \in \text{skel}(t)} \int_{\sigma_v \wedge t}^{\tau_v \wedge t} \left( (2^{D(v)} - 1)\xi_2(Z_r^{(v)}) - \xi_0(Z_r^{(v)}) \right) dr \Big) \Big],$$

where

- skel(t) is the collection of particles that have carried at least one mark up to time t
- $\square$  D(v) is the number of marks carried by a particle v,
- $\sigma_u$  and  $\tau_u$  are the birth time and the death time of particle u,
- $\blacksquare Z_s^{(u)} \text{ is the position of the unique ancestor of } u \text{ alive at time } s \in [0, t].$

Now one evaluates the above expectation, using an induction on n.



# Moment asymptotics, [ GÜN/K./SEKULOVIC (2012)]

Suppose that  $\xi_2(0)$  is doubly-exponentially distributed with parameter  $\rho$ . In the case  $\rho = \infty$ , we also assume, for any  $k \in \mathbb{N}$ ,

$$\left\langle \xi_2(0)^k \, \mathrm{e}^{\xi_2(0)t} \right\rangle \le \left\langle \mathrm{e}^{\xi_2(0)t} \right\rangle \mathrm{e}^{o(t)} \quad \text{as } t \to \infty.$$

Then, for any  $n, p \in \mathbb{N}$ ,

$$\langle m_n^p(t,x) \rangle = \exp\left(H(npt) - 2d\chi(\rho)npt + o(t)\right), \quad t \to \infty.$$

In particular,

$$\langle m_n^p(t,x)\rangle = \langle m_1^{np}(t,x)\rangle e^{o(t)} = \langle m_1(tnp,x)\rangle e^{o(t)}, \quad t \to \infty.$$



## Explanation

Explanation for n=2: The moment formula gives  $m_2=m_1+\widetilde{m}_2$ , where

$$\widetilde{m}_{2}(t,x) = \int_{0}^{t} \mathbb{E}_{x} \left[ \exp \left\{ \int_{0}^{s} \xi(X_{r}) \, \mathrm{d}r + \int_{s}^{t} \xi(X_{r}') \, \mathrm{d}r + \int_{s}^{t} \xi(X_{r}'') \, \mathrm{d}r \right\} 2\xi_{2}(X_{s}) \right] \mathrm{d}s,$$

where  $(X_r)_{r\in[0,s]}$  and  $(X'_r)_{r\in[s,t]}$  and  $(X''_r)_{r\in[s,t]}$  are independent walks, starting at  $X_0 = x$ , and  $X'_s = X''_s = X_s$ .

- The term  $2\xi_2(X_s)$  should have hardly any influence (guaranteed by our additional assumption).
- Guessing from [GÄRTNER/MOLCHANOV (1998)], the leading term should be  $e^{H(2t-s)}$ , since 2t s = s + (t s) + (t s) is the total time that the three random walks spend in the random environment.
- Since  $H(t) \gg t$ , the leading contribution comes from  $s \approx 0$ .
- But then we have basically a product of the contribution of two independent walks X' and X'' on [0, t].
- This means that  $\widetilde{m}_2 \approx m_1^2$ .



- In the proof, one separates the exponential term from the polynomial term by a careful application of Hölder's inequality and redoes some parts of the proof of [GÄRTNER/MOLCHANOV 1998].
- The same should be possible for much more general branching mechanisms, but will be cumbersome to formulate.
- Hence, in the moment formula, all the branchings should happen as soon as possible, to optimize the total time spent by the BRW in the random environment.
- This effect should be entirely due to the positivity of  $essup\xi(0)$ .
- In the case  $\operatorname{esssup}\xi(0) \leq 0$ , it is easy to guess that  $\langle m_n(t,0)^p \rangle \approx \langle m_1(t,0)^p \rangle$ , since all the branchings should happen as late as possible.
- The almost sure asymptotics of  $m_n(t, 0)$  should be doable as well; the expected picture is easy to guess.
- Possibly, one can refine the techniques to derive useful asymptotics for all the *p*-th moments of  $m_n(t,0)/\langle m_n(t,0) \rangle$ . (May be, for the Pareto distribution?).
- Future work will be devoted to the analysis of the large-*n* limit of  $m_n(1,0)$  and of  $\langle m_n(1,0) \rangle$ ; this corresponds to the upper tails of  $\eta(1)$ .

