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Goal of this talk

� We consider a particle system in Zd having three random components:

migration, site-dependent branching/killing rates, branching/killing.

� We are generally interested in the description of the main flow of the particles at late

times, in particular in the influence of the random environment.

� Today, we report on the behaviour of the p-th moment (over the medium) of the n-th

moment (over migration and branching/killing) of the particle number.
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Goal of this talk

� We consider a particle system in Zd having three random components:

migration, site-dependent branching/killing rates, branching/killing.

� We are generally interested in the description of the main flow of the particles at late

times, in particular in the influence of the random environment.

� Today, we report on the behaviour of the p-th moment (over the medium) of the n-th

moment (over migration and branching/killing) of the particle number.

� Earlier work [ALBEVERIO, BOGACHEV, MOLCHANOV, YAROVAYA 2000] derived a recursive

formula for the n-th moment and the first asymptotic term.

� We present a direct formula and find also the second term.

� Main tools for deriving the moment formula in [ABMY00]: PDEs. Here: spines.

� Main tools for deriving the large-time asymptotics: Large deviations like in

[GÄRTNER/MOLCHANOV 1998].

� We will be able to use the vast knowledge on the parabolic Anderson model.
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Branching random walk in random environment

Ingredients:

� random migration like continuous-time simple random walk in Zd with generator

∆f(x) =
X

y∼x

ˆ

f(y) − f(x)
˜

� random, space-dependent i.i.d. killing rates ξ0 = (ξ0(z))z∈Zd and binary branching

rates ξ2 = (ξ2(z))z∈Zd

� killing and branching of the particles present at z with rates ξ0(z) resp. ξ2(z).

Probability measure and expectation: Px and Ex, starting from precisely one particle at x.

η(t, y) = particle number at time t in y.

η(t) =
X

y∈Zd

η(t, y) global particle number at time t.

Quenched moments:

mn(t, x, y) = Ex[η(t, y)n] and mn(t, x) = Ex[η(t)n],

for fixed branching/killing environment (ξ2, ξ0)..

Moment asymptotics for branching random walks in random environment · Münster, 6 December
2012 · Page 3 (13)



Connection with the parabolic Anderson model

Denote u(t, y) = m1(t, 0, y), when starting with one particle at the origin. Then it is

well-known (see [GÄRTNER/MOLCHANOV 1990] for background) that u is the unique positive

solution of the Cauchy problem for the heat equation with random potential ξ = ξ2 − ξ0:

∂

∂t
u(t, y) = ∆u(t, y) + ξ(y)u(t, y),

with initial condition u(0, ·) = δ0(·).

Feynman-Kac formula : u(t, y) = E0

h

exp
n

Z t

0

ξ(Xs) ds
o

δy(Xt)
i

.
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Moment Asymptotics [GÄRTNER/MOLCHANOV 1998]

If ξ has double-exponential tails, i.e., Prob(ξ(x) > r) ≈ exp{−er/ρ} as r → ∞, then

〈up(t, x)〉 = eH(pt) e−2dχ(ρ)pt+o(t), p ∈ N,

where H(t) = log〈etξ(0)〉 ≈ ρt log t − ρt and

χ(ρ) =
1

2
inf

µ∈P(Z)
[S(µ) + ρI(µ)].
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Comments

The two functions appearing in the variational formula are

S(µ) =
X

x∈Z

`

p

µ(x + 1) −
p

µ(x)
´2

and I(µ) = −
X

x∈Z

µ(x) log µ(x).

Moment asymptotics for branching random walks in random environment · Münster, 6 December
2012 · Page 5 (13)



Comments

The two functions appearing in the variational formula are

S(µ) =
X

x∈Z

`

p

µ(x + 1) −
p

µ(x)
´2

and I(µ) = −
X

x∈Z

µ(x) log µ(x).

The result implies that

〈mp
1(t, x)〉 = 〈m1(tp, x)〉eo(t), t → ∞,

which can easily be guessed from an eigenvalue expansion for the Anderson operator ∆ + ξ

in some large box,

m1(t, x) ≈

∞
X

k=0

etλk(ξ) 〈ek, 1l〉ek(x),

which shows that

mp
1(t, x) ≈ eptλ0(ξ)

for the principal eigenvalue λ0(ξ).
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Recursive moment formula for n ≥ 2

[ABMY00] derived the following inhomogeneous Cauchy problem:

∂

∂t
mn(t, x, y) = κ∆mn(t, x, y) + ξ(x)mn(t, x, y) + ξ2(x)hn[m1, ..., mn−1](t, x, y),

with initial condition mn(0, ·, y) = δy(·), where

hn[m1, ..., mn−1] =

n−1
X

i=1

 

n

i

!

mimn−i.

Proof idea: Use the generator of the particle system to derive an equation for the Laplace

transform of η(t, y) and differentiate n times with respect to the parameter, and put it zero.

Moment asymptotics for Weibull tails [ABMY00]

If ξ has Weibull tails, i.e., Prob(ξ(x) > r) ≈ exp{−Crα} as r → ∞, with α > 1, C > 0,

then

〈mn(t, x)p〉 = eC′(npt)α′
(1+o(1)), n, p,∈ N,

where 1
α

+ 1
α′ = 1 and C′ = C′(C,α) is explicit.
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Direct moment formula: Monotonously numbered trees

Main auxiliary object: a branching random walk (BRW) in Zd with time interval [0, t] with

≤ n − 1 splitting events. Ingredients:

� a tree T with k ∈ {0, . . . , n − 1} splits that expresses the branching structure,

� a monotonous numbering I of the splitting vertices of the tree to express their order in

time,

� a time duration attached to each bond,

� a simple random walk bridge attached to each bond.
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Figure: Two monotonous numberings of the splitting vertices of a tree with three splits.

Moment asymptotics for branching random walks in random environment · Münster, 6 December
2012 · Page 7 (13)



Direct moment formula: equipping the trees with times and random walks

Now equip the monotonously numbered tree with a time vector

bt = (t0, . . . , tk+1), where 0 = t0 < t1 < · · · < tk < tk+1 = t.

For a bond b, let

Y (b,bt) =
`

Y (b,bt)
r : r ∈ [tI(u), tI(v)]

´

be a continuous-time simple random walk on Zd with generator ∆, starting from zero,

independent over b. Define the branching random walk now by putting, for any leaf l,

X(l)
r := x +

i−1
X

m=1

Y (bm,bt)

tI(um)
+ Y (bi,bt)

r , r ∈ [tI(ui−1), tI(ui)], i ∈ {1, . . . , j}.
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Direct moment formula

Abbreviate

Φx(T , I, t, y) =

Z

0=t0<t1<···<tk<tk+1=t

dbt E
(T ,I,bt)
x

h

exp
“

X

(u,v)∈E

Z tI(v)

tI(u)

ξ(X(u,v)
r ) dr

”

“

Y

v∈S

ξ2(X
(u,v)

tI(v)
)
”

X

l∈L

1l{X(l)

t = y}
i

.

Moment formula, [ GÜN/K./SEKULOVIC (2012)]

For any n ∈ N,

mn(t, x, y) =

n−1
X

k=0

X

T ∈Tk

X

I∈N (T )

ck,nΦx(T , I, t, y),

and an analogous formula for mn(t, x). The constants are defined by c0,n = 1 for all n ∈ N

and

ck,n =

n−k
X

i=1

 

n

i

!

ck−1,n−i, k = 1, . . . , n − 1.

There is an analogous formula for more general branching mechanisms, but it is cumbersome.
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Some remarks on the proof

Consider the following variant of the branching process, which introduces spines to some of the

particles. The differences are:

1. We start with one particle at x, which carries n marks (called spines) 1, 2, . . . , n.

2. A particle at position y carrying j marks branches at rate 2jξ2(y) into two particles.

3. At such a branching event of a particle carrying j marks, each mark chooses

independently and uniformly at random one of the two particles to follow.

We now apply the many-to-few lemma [HARRIS/ROBERTS 2011]:

mn(t, x) = Q
(n)
x

h

exp
“

X

v∈skel(t)

Z τv∧t

σv∧t

“

(2D(v) − 1)ξ2(Z
(v)
r ) − ξ0(Z

(v)
r )
”

dr
”i

,

where

� skel(t) is the collection of particles that have carried at least one mark up to time t

� D(v) is the number of marks carried by a particle v,

� σu and τu are the birth time and the death time of particle u,

� Z(u)
s is the position of the unique ancestor of u alive at time s ∈ [0, t].

Now one evaluates the above expectation, using an induction on n.
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Moment asymptotics

Moment asymptotics, [ GÜN/K./SEKULOVIC (2012)]

Suppose that ξ2(0) is doubly-exponentially distributed with parameter ρ. In the case ρ = ∞,

we also assume, for any k ∈ N,

˙

ξ2(0)
k eξ2(0)t¸ ≤ 〈eξ2(0)t〉eo(t)

as t → ∞.

Then, for any n, p ∈ N,

〈mp
n(t, x)〉 = exp

“

H(npt) − 2dχ(ρ)npt + o(t)
”

, t → ∞.

In particular,

〈mp
n(t, x)〉 = 〈mnp

1 (t, x)〉eo(t) = 〈m1(tnp, x)〉eo(t), t → ∞.
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Explanation

Explanation for n = 2: The moment formula gives m2 = m1 + em2, where

em2(t, x) =

Z t

0

Ex

h

exp
n

Z s

0

ξ(Xr) dr +

Z t

s

ξ(X ′
r) dr +

Z t

s

ξ(X ′′
r ) dr

o

2ξ2(Xs)
i

ds,

where (Xr)r∈[0,s] and (X ′
r)r∈[s,t] and (X ′′

r )r∈[s,t] are independent walks, starting at

X0 = x, and X ′
s = X ′′

s = Xs.

� The term 2ξ2(Xs) should have hardly any influence (guaranteed by our additional

assumption).

� Guessing from [GÄRTNER/MOLCHANOV (1998)], the leading term should be eH(2t−s),

since 2t − s = s + (t − s) + (t − s) is the total time that the three random walks

spend in the random environment.

� Since H(t) � t, the leading contribution comes from s ≈ 0.

� But then we have basically a product of the contribution of two independent walks X ′ and

X ′′ on [0, t].

� This means that em2 ≈ m2
1.
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Comments and outlook

� In the proof, one separates the exponential term from the polynomial term by a careful

application of Hölder’s inequality and redoes some parts of the proof of

[GÄRTNER/MOLCHANOV 1998].

� The same should be possible for much more general branching mechanisms, but will be

cumbersome to formulate.

� Hence, in the moment formula, all the branchings should happen as soon as possible, to

optimize the total time spent by the BRW in the random environment.

� This effect should be entirely due to the positivity of esssupξ(0).

� In the case esssupξ(0) ≤ 0, it is easy to guess that 〈mn(t, 0)p〉 ≈ 〈m1(t, 0)
p〉, since

all the branchings should happen as late as possible.

� The almost sure asymptotics of mn(t, 0) should be doable as well; the expected picture

is easy to guess.

� Possibly, one can refine the techniques to derive useful asymptotics for all the p-th

moments of mn(t, 0)/〈mn(t, 0)〉. (May be, for the Pareto distribution?).

� Future work will be devoted to the analysis of the large-n limit of mn(1, 0) and of

〈mn(1, 0)〉; this corresponds to the upper tails of η(1).
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