

Weierstrass Institute for Applied Analysis and Stochastics

A large-deviation approach to coagulation

Wolfgang König TU Berlin and WIAS

based on joint work in progress with Luisa Andreis and Robert Patterson

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de Bochum, 28 Sep 2018

Long-term objective:

coagulating Brownian motions in a box in the thermodynamic resp. hydrodynamic limit.

- At time zero, N i.i.d. uniformly distributed initial sites $B_1(0), \ldots, B_N(0)$ in a box Λ .
- Each of them carries a mass $m_i(0) = 1$.
- The *i*-th motion runs independently in Λ with diffusion parameter $\frac{1}{m_i(t)} \in (0, \infty)$.
- Each two of them coagulate at time t with rate $K(|B_i(t) B_j(t)|, m_i(t), m_j(t))$ to a new particle with mass $f(m_i(t), m_j(t))$ at the coagulation place.

Long-term objective:

coagulating Brownian motions in a box in the thermodynamic resp. hydrodynamic limit.

- At time zero, N i.i.d. uniformly distributed initial sites $B_1(0), \ldots, B_N(0)$ in a box Λ .
- Each of them carries a mass $m_i(0) = 1$.
- The *i*-th motion runs independently in Λ with diffusion parameter $\frac{1}{m_i(t)} \in (0, \infty)$.
- Each two of them coagulate at time t with rate $K(|B_i(t) B_j(t)|, m_i(t), m_j(t))$ to a new particle with mass $f(m_i(t), m_j(t))$ at the coagulation place.

Our main question: Is there a gelation transition at some fixed time $t_c \in (0, \infty)$?

That is, is there a (deterministic) time after which there is a gel in the system, i.e., a particle i with size $m_i(t) \simeq N$?

Long-term objective:

coagulating Brownian motions in a box in the thermodynamic resp. hydrodynamic limit.

- At time zero, N i.i.d. uniformly distributed initial sites $B_1(0), \ldots, B_N(0)$ in a box Λ .
- Each of them carries a mass $m_i(0) = 1$.
- The *i*-th motion runs independently in Λ with diffusion parameter $\frac{1}{m_i(t)} \in (0, \infty)$.
- Each two of them coagulate at time t with rate $K(|B_i(t) B_j(t)|, m_i(t), m_j(t))$ to a new particle with mass $f(m_i(t), m_j(t))$ at the coagulation place.

Our main question: Is there a gelation transition at some fixed time $t_c \in (0, \infty)$?

That is, is there a (deterministic) time after which there is a gel in the system, i.e., a particle i with size $m_i(t) \simeq N$? Modeling difficulties: choice of coagulation kernel K and mass f and location of the coagulate.

Mathematical difficulties: handling the interplay of all the mechanisms (movement, locations, coagulation times, coagulate masses).

The MARCUS-LUSHNIKOV model is a non-spatial mean-field version [MARCUS 1968], [GILLESPIE 1972], [LUSHNIKOV 1978]:

Continuous-time Markov process of vectors of particle masses at time $t \in [0,\infty)$:

$$M_1^{(N)}(t) \ge M_2^{(N)}(t) \ge M_3^{(N)}(t) \ge \dots \ge M_{n(t)}^{(N)}(t) \ge 1, \qquad \sum_{i=1}^{n(t)} M_i^{(N)}(t) = N.$$

Coagulation mechanism:

Particles with masses m and \tilde{m} coagulate after an exponential random time with parameter $K_N(m, \tilde{m})$ (the coagulation kernel) independently of all the other particles.

Hydrodynamic regime:

Choosing $K_N(m, \widetilde{m}) \simeq \frac{1}{N}$ reflects the situation that each particle feels $\simeq N$ other particles and interacts with each of them after time $\simeq N$. Hence, each particle has O(1) coagulations per time interval. This is the situation of a hydrodynamic limit, where the box Λ does not grow with N.

Here, we make the special choice of the multiplicative kernel:

$$K_N(m,\widetilde{m}) = \frac{m\,\widetilde{m}}{N}.$$

Advantage:

The model is now a function of a time-dependent version of the well-known ERDŐS-RÉNYI random graph model. Indeed, the vector $(M_i^{(N)}(t))_{i=1}^{n(t)}$ is in distribution equal to the collection of sizes of all the connected components of the graph $\mathcal{G}(N, 1 - e^{-t/N})$.

Explanation:

Equip each unordered pair $\{i, j\}$ of different numbers in $\{1, \ldots, N\}$ independently with an exponentially distributed random time $e_{i,j}$ with expected value 1/N. After the elapsure of $e_{i,j}$, there is a bond created between *i* and *j*. Then, at time *t*, for each pair, the probability to have a bond between them is equal to $1 - e^{-t/N}$.

After each of these elapsures, the new connected component of size $m + \tilde{m}$ inherits all the bonds of the two other components of size m respectively \tilde{m} , i.e., has from now $m\tilde{m}$ active bonds.

[BUFFET, PULÉ 1990, 1991] calculated expectations of particle masses at time t in the limit $N \rightarrow \infty$ and detected a gelation phase transition d uring the time interval $[\log 2, 1]$ by looking exclusively on expectations of macroscopic particles:

At time $t \in (0, t_c)$, the total macroscopic particle part is o(N), and at least one "giant particle" arises with mass $\asymp N$ at some time $t \in (1, \infty)$.

(No explicit formulas, no information about microscopic nor mesoscopic particles, no large deviations, but conjectures about exact size of macroscopic particle)

Our contribution:

Explicit large-deviation principle for the microscopic, the mesoscopic and the macroscopic part of the system at fixed time $t \in (0, \infty)$. Explicit identification of the gelation phase transition.

Microscopic and macroscopic empirical measures of the particle sizes:

$$\mathrm{Mi}^{(N)}(t) = \frac{1}{N} \sum_{i=1}^{n(t)} \delta_{M_i^{(N)}(t)} \qquad \text{and} \qquad \mathrm{Ma}^{(N)}(t) = \sum_{i=1}^{n(t)} \delta_{\frac{1}{N} M_i^{(N)}(t)}.$$

Then $\mathrm{Mi}^{\scriptscriptstyle(N)}(t)$ is a random member of the set $\mathcal{N}=\mathcal{N}(1),$ where

$$\mathcal{N}(c) = \Big\{\lambda \in [0,\infty)^{\mathbb{N}} \colon \sum_{k \in \mathbb{N}} k\lambda_k = c \Big\} \qquad \text{(coordinatewise top.)}.$$

 $\mathrm{Ma}^{\scriptscriptstyle(N)}(t)$ is a random element of $\mathcal{M}_{\mathbb{N}_0}=\mathcal{M}_{\mathbb{N}_0}(1),$ where

$$\mathcal{M}_{\mathbb{N}_0}(c) = \left\{ \alpha \in \mathcal{M}_{\mathbb{N}_0}((0,1]) \colon \int_{(0,1]} x \, \alpha(\mathrm{d} x) = c \right\} \quad \text{ (vague top.)}.$$

and $\mathcal{M}_{\mathbb{N}_0}((0,1])$ is the set of all measures on (0,1] with values in \mathbb{N}_0 .

Note that the total masses

$$c_{\lambda} = \sum_{k \in \mathbb{N}} k \lambda_k$$
 and $c_{\alpha} = \int_{(0,1]} x \, \alpha(\mathrm{d}x)$

are not continuous functions of λ resp. α .

LDP for coagulation · Bochum, 28 Sep 2018 · Page 6 (16)

LDP for the micro- and macroscopic parts

As $N\to\infty,$ the pair $({\rm Mi}^{\scriptscriptstyle (N)}(t),{\rm Ma}^{\scriptscriptstyle (N)}(t))$ satisfies an LDP with rate function

$$I(\lambda, \alpha; t) = \begin{cases} I_{\mathrm{Mi}}(\lambda; t) + I_{\mathrm{Ma}}(\alpha; t) + (1 - c_{\lambda} - c_{\alpha}) \left(\frac{t}{2} - \log t\right), & \text{if } c_{\lambda} + c_{\alpha} \le 1, \\ \infty & \text{otherwise,} \end{cases}$$

where

$$I_{\mathrm{Mi}}(\lambda;t) = \sum_{k=1}^{\infty} \lambda_k \log \frac{k! t \lambda_k}{\mathrm{e} \, k^{k-2}} + c_\lambda \Big(1 + \frac{t}{2} - \log t \Big),$$

$$I_{\mathrm{Ma}}(\alpha;t) = \int_0^1 \Big[x \log \frac{x}{1 - \mathrm{e}^{-tx}} + \frac{t}{2} x (1 - x) \Big] \alpha(\mathrm{d}x).$$

Corollary 1: LDP for micro-particle size statistics

As $N
ightarrow \infty, \operatorname{Mi}^{(N)}(t)$ satisfies an LDP with rate function

$$\mathcal{I}_{\mathrm{Mi}}(\lambda;t) = \inf_{\alpha \in \mathcal{M}_{\mathbb{N}}} I(\lambda,\alpha;t) = I_{\mathrm{Mi}}(\lambda;t) - (1-c_{\lambda}) \left(\log \frac{1-\mathrm{e}^{(c_{\lambda}-1)t}}{1-c_{\lambda}} - \frac{c_{\lambda}t}{2} \right).$$

Corollary 1: LDP for micro-particle size statistics

As $N
ightarrow \infty, \operatorname{Mi}^{(N)}(t)$ satisfies an LDP with rate function

$$\mathcal{I}_{\mathrm{Mi}}(\lambda;t) = \inf_{\alpha \in \mathcal{M}_{\mathbb{N}}} I(\lambda,\alpha;t) = I_{\mathrm{Mi}}(\lambda;t) - (1-c_{\lambda}) \left(\log \frac{1-\mathrm{e}^{(c_{\lambda}-1)t}}{1-c_{\lambda}} - \frac{c_{\lambda}t}{2} \right).$$

Corollary 2: LDP for macroscopic particles

As $N
ightarrow \infty, \operatorname{Ma}^{\scriptscriptstyle(N)}(t)$ satisfies an LDP with rate function

$$\mathcal{I}_{\mathrm{Ma}}(\alpha;t) = \inf_{\lambda \in \mathcal{N}} I(\lambda,\alpha;t) = I_{\mathrm{Ma}}(\alpha;t) + (1-c_{\alpha}) \left(\frac{t}{2} - \log t\right) + C_{t,\alpha} \left(\log(t C_{t,\alpha}) - \frac{t}{2} C_{t,\alpha}\right),$$

where $C_{t,\alpha} = (1 - c_{\alpha}) \wedge \frac{1}{t}$.

- We also show that the map $\alpha \mapsto I_{Ma}(\alpha; t)$ is minimal only in delta-measures.
- From this, we see a non-analyticity at the point where $1 c_{\alpha} = \frac{1}{t}$ (only for $t \in (1, \infty)$).

Gelation phase transition

By exclusively considering the microscopic total-mass rate function,

$$\begin{split} \mathcal{J}_{\mathrm{Mi}}(c;t) &= \inf_{\lambda \in \mathcal{N}(c)} \mathcal{I}_{\mathrm{Mi}}(\lambda;t) \\ &= \inf_{\lambda \in \mathcal{N}(c)} \left[\mathrm{const.} + \sum_{k=1}^{\infty} \lambda_k \log \frac{k! \lambda_k}{k^{k-2}} \right] \\ &= tc + (1-c) \log \frac{1-c}{1-\mathrm{e}^{t(c-1)}} + \begin{cases} c \log c - tc^2 & \text{for } c < \frac{1}{t}, \\ -\frac{1}{2t} - \frac{t}{2}c^2 - c \log t & \text{for } c \ge \frac{1}{t}, \end{cases} \end{split}$$

we now detect the gelation phase transition.

LDP for coagulation · Bochum, 28 Sep 2018 · Page 9 (16)

Microscopic total mass phase transition

1. For $t\in(0,1),$ the minimum of $\mathcal{I}_{\mathrm{Mi}}$ is attained precisely at

$$\lambda_k^*(c;t) = \frac{k^{k-2}c^k t^{k-1} \mathrm{e}^{-ctk}}{k!}, \qquad k \in \mathbb{N},$$

and the minimum of $\mathcal{J}_{\mathrm{Mi}}(\cdot;t)$ is attained precisely at c=1 with value $\mathcal{J}_{\mathrm{Mi}}(1;t)=0$. Therefore the infimum of the joint rate function $I(\cdot,\cdot;t)$ is attained at $(\lambda,\alpha) = (\lambda_k^*(1;t),\mathbf{0}).$

Microscopic total mass phase transition

1. For $t\in(0,1),$ the minimum of $\mathcal{I}_{\mathrm{Mi}}$ is attained precisely at

$$\lambda_k^*(c;t) = \frac{k^{k-2}c^kt^{k-1}\mathrm{e}^{-ctk}}{k!}, \qquad k \in \mathbb{N},$$

and the minimum of $\mathcal{J}_{\mathrm{Mi}}(\cdot;t)$ is attained precisely at c=1 with value $\mathcal{J}_{\mathrm{Mi}}(1;t)=0$. Therefore the infimum of the joint rate function $I(\cdot,\cdot;t)$ is attained at $(\lambda,\alpha) = (\lambda_k^*(1;t),\mathbf{0}).$

2. For $t \in (1, \infty)$, the minimum of $\mathcal{J}_{Mi}(\cdot; t)$ is attained precisely at $c = \beta_t$ for some $\beta_t \in (0, \frac{1}{t})$, given as the smallest positive solution to $\log \beta_t = t\beta_t - t$. The infimum is attained precisely at $(\lambda, \alpha) = (\lambda^*(\beta_t; t), (1 - \beta_t, 0, \dots))$.

Microscopic total mass phase transition

1. For $t\in(0,1),$ the minimum of $\mathcal{I}_{\mathrm{Mi}}$ is attained precisely at

$$\lambda_k^*(c;t) = \frac{k^{k-2}c^kt^{k-1}\mathrm{e}^{-ctk}}{k!}, \qquad k \in \mathbb{N},$$

and the minimum of $\mathcal{J}_{\mathrm{Mi}}(\cdot;t)$ is attained precisely at c=1 with value $\mathcal{J}_{\mathrm{Mi}}(1;t)=0$. Therefore the infimum of the joint rate function $I(\cdot,\cdot;t)$ is attained at $(\lambda,\alpha) = (\lambda_k^*(1;t),\mathbf{0}).$

2. For $t \in (1, \infty)$, the minimum of $\mathcal{J}_{Mi}(\cdot; t)$ is attained precisely at $c = \beta_t$ for some $\beta_t \in (0, \frac{1}{t})$, given as the smallest positive solution to $\log \beta_t = t\beta_t - t$. The infimum is attained precisely at $(\lambda, \alpha) = (\lambda^*(\beta_t; t), (1 - \beta_t, 0, \dots))$.

Hence, $t_{\rm c} = 1$ is the gelation transition time. On a linear level, we can say:

- Before time 1, all particles are finitely large, and the statistics of their sizes follow the Borel distribution.
- After time 1, there is precisely one macroscopic particle of size $(1 \beta_t)N$, and a Borel-distributed statistics of remaining particle sizes.

LDP for mesoscopic total mass

Fix $t\in [0,\infty)$ and $\varepsilon>0$ and $R\in\mathbb{N}.$ Then the mesoscopic (ε,R) -total mass,

$$\overline{\mathrm{Me}}_{R,\varepsilon}^{(N)}(t) = \frac{1}{N} \sum_{i: \ R < M_i^{(N)}(t) < \varepsilon N} M_i^{(N)}(t).$$

satisfies an LDP with some rate function $\mathcal{J}_{Me}^{(\varepsilon,R)}(\cdot;t)$ whose limit for $\varepsilon\downarrow 0$ and $R\to\infty$ is equal to

$$\mathcal{J}_{\rm Me}(c;t) = (1-c) \Big(\log(1-c)t - \frac{(1-c)t}{2} \Big) + \frac{t}{2} - \log t.$$

On the proof

Put

$$\mu_t^{(N)}(k) = \mathbf{P}\big(\mathcal{G}(k,1-\mathrm{e}^{-\frac{t}{N}}) \text{ is connected}\big),$$

then we have

Distribution of statistics

For any N and any $\ell=(\ell_k)_k\in\mathbb{N}_0^{\mathbb{N}}$ satisfying $\sum_kk\ell_k=N,$ write

$$A_{N,t}(\ell) = \bigcap_{k \in \mathbb{N}} \{ \#\{i \colon M_i^{(N)}(t) = k\} = \ell_k \},\$$

then

$$\mathbb{P}_{N}(A_{N,t}(\ell)) = N! \prod_{k} \frac{\mu_{t}^{(N)}(k)^{\ell_{k}} \mathrm{e}^{-\frac{t}{2N}k(N-k)\ell_{k}}}{k!^{\ell_{k}} \ell_{k}!}$$

This follows directly from the characterisation of the Lushnikov model as a function of the Erdős-Rényi graph.

Micro and macro asymptotics

As $N \to \infty$,

$$\mu_t^{(N)}(k) \sim k^{k-2} \left(\frac{t}{N}\right)^{k-1}, \quad k \in \mathbb{N}.$$

and

$$\frac{1}{N}\log\mu_t^{(N)}(\lfloor\alpha N\rfloor) \to \alpha\log\left(1-\mathrm{e}^{-t\alpha}\right), \qquad \alpha \in (0,1).$$

- The first one is basically standard.
- The second is based on estimates from [VAN DER HOFSTAD/SPENCER 2006].
- This large-deviation assertion seems to be new in the investigation of Erdős-Rényi graphs.
- We have also a conditional LLN for the number of open bonds given that the graph $\mathcal{G}(\lfloor \alpha N \rfloor, 1 e^{-t/N})$ is connected.
- Now the main LDP follows by using Stirling's formula and the fact that the cardinality of the relevant λ 's is $e^{o(N)}$.

- In [SMOLUCHOWSKI 1916] a system of ODEs is introduced for the evolution of the (microscopic) particle sizes (as part of his famous work on Brownian motion).
- Convergence of stochastic coagulation processes towards these ODEs was expected for long time, but the first rigorous proof was given only in [LANG, NGUYEN 1980].
- In [LUSHNIKOV 1978] the formation of a gel is realized and explained.
- Pathwise large deviations appear cumbersome, but doable. Such LDPs have been derived by [MIELKE et. al (2017)] following a Freidlin-Wentsel approach, but the rate function is rather inexplicit and not easy to evaluate at a fixed time.

Consider the non-interacting Bose gas in the thermodynamic limit at temperature $1/\beta \in (0,\infty)$ with particle density $\rho \in (0,\infty)$. Then the partition function is given by

$$Z_{\Lambda_N}^{(\beta)} = \sum_{(\ell_k)_{k \in \mathbb{N}} \in \mathbb{N}_0^{\mathbb{N}}: \sum_k k \ell_k = N} \prod_k \frac{N^{\ell_k}}{\ell_k! k^{\ell_k}} [\rho(4\pi\beta k)^{\frac{d}{2}}]^{-\ell_k},$$

where Λ_N is the centred box in \mathbb{R}^d with volume N/ρ .

Consider the non-interacting Bose gas in the thermodynamic limit at temperature $1/\beta \in (0,\infty)$ with particle density $\rho \in (0,\infty)$. Then the partition function is given by

$$Z_{\Lambda_N}^{(\beta)} = \sum_{(\ell_k)_{k \in \mathbb{N}} \in \mathbb{N}_0^{\mathbb{N}}: \sum_k k \ell_k = N} \prod_k \frac{N^{\ell_k}}{\ell_k! k^{\ell_k}} [\rho(4\pi\beta k)^{\frac{d}{2}}]^{-\ell_k},$$

where Λ_N is the centred box in \mathbb{R}^d with volume N/ρ . The free energy per particle is then

$$f(\beta,\rho) = \lim_{N \to \infty} \frac{1}{N} \log Z_{\Lambda_N}^{(\beta)} = -\inf_{\lambda \in \mathcal{N}(\rho)} I(\lambda), \quad \text{where} \quad I(\lambda) = \sum_k \lambda_k \log \frac{\lambda_k k}{(4\pi\beta k)^{\frac{d}{2}} \mathrm{e}^{-\frac{d}{2}}}$$

Consider the non-interacting Bose gas in the thermodynamic limit at temperature $1/\beta \in (0,\infty)$ with particle density $\rho \in (0,\infty)$. Then the partition function is given by

$$Z_{\Lambda_N}^{(\beta)} = \sum_{(\ell_k)_{k \in \mathbb{N}} \in \mathbb{N}_0^{\mathbb{N}}: \sum_k k \ell_k = N} \prod_k \frac{N^{\ell_k}}{\ell_k! k^{\ell_k}} [\rho(4\pi\beta k)^{\frac{d}{2}}]^{-\ell_k},$$

where Λ_N is the centred box in \mathbb{R}^d with volume N/ρ . The free energy per particle is then

$$f(\beta,\rho) = \lim_{N \to \infty} \frac{1}{N} \log Z_{\Lambda_N}^{(\beta)} = -\inf_{\lambda \in \mathcal{N}(\rho)} I(\lambda), \quad \text{where} \quad I(\lambda) = \sum_k \lambda_k \log \frac{\lambda_k k}{(4\pi\beta k)^{\frac{d}{2}} \mathrm{e}^{-\frac{d}{2}}}$$

Comparison: In Lushnikov's model, we face roughly

$$t^N \mathrm{e}^{\frac{t}{2}N} \sum_{(\ell_k)_{k \in \mathbb{N}}: \sum_k k \ell_k = N} \prod_k \frac{k^{(k-2)\ell_k} t^{-\ell_k}}{\ell_k! \, k!^{\ell_k}}.$$

The two respective minimizers are

$$k\lambda_k^{(\text{Lush})}(c;t) = \frac{1}{t} \; \frac{(ct \mathrm{e}^{-ct})^k}{k^{1-k} \; k!} \quad \text{and} \quad k\lambda_k^{(\text{BEC})}(\alpha;t) = \frac{1}{\rho(4\pi\beta)^{\frac{d}{2}}} \frac{\mathrm{e}^{-\alpha k}}{k^{\frac{d}{2}}},$$

where c and α control the value of $\sum_k k\lambda_k$ (note that $k^{1-k} k! \asymp k^{3/2}$).

LDP for coagulation · Bochum, 28 Sep 2018 · Page 15 (16)

Loibniz

In the Bose gas, increasing β drives more and more particles into the finite cycles. There is a natural threshold, the critical inverse temperature β_c , characterised by

$$(4\pi\beta)^{\frac{d}{2}}\rho = \sum_{k\in\mathbb{N}} k^{-\frac{d}{2}}.$$

Only when all finite cycles are filled entirely, the first "infinite" cycle arises.

The BEC is a saturation transition.

In contrast, in the Lushnikov model, increasing t makes each particle larger, until some decide to make the jump to infinity. After this happens for the first time, the other micro particles keep growing (recall that $\beta_t < \frac{1}{t}$).

The gelation phase transition is an explosion transition.

