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Motivation: coagulating Brownian motions in a box

Long-term objective:

coagulating Brownian motions in a box in the thermodynamic resp. hydrodynamic limit.
B Attime zero, N i.i.d. uniformly distributed initial sites B (0), ..., Bnx(0) in abox A.
B Each of them carries a mass m;(0) = 1.
B The ¢-th motion runs independently in A with diffusion parameter — (t) € (0, 00).

B Each two of them coagulate at time ¢ with rate K (| B;(t) — B;(t)|, mi(t), m;(t)) toa
new particle with mass f (m;(t), m;(t)) at the coagulation place.
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Long-term objective:

coagulating Brownian motions in a box in the thermodynamic resp. hydrodynamic limit.
B Attime zero, N i.i.d. uniformly distributed initial sites B (0), ..., Bnx(0) in abox A.
B Each of them carries a mass m;(0) = 1.
B The ¢-th motion runs independently in A with diffusion parameter — (t) € (0, 00).

B Each two of them coagulate at time ¢ with rate K (| B;(t) — B;(t)|, mi(t), m;(t)) toa
new particle with mass f(m;(t), m;(t)) at the coagulation place.

Our main question: Is there a gelation transition at some fixed time t. € (0, 00)?

That is, is there a (deterministic) time after which there is a gel in the system, i.e., a particle ¢
with size m; (t) < N?
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Motivation: coagulating Brownian motions in a box

Long-term objective:

coagulating Brownian motions in a box in the thermodynamic resp. hydrodynamic limit.
B Attime zero, N i.i.d. uniformly distributed initial sites B (0), ..., Bnx(0) in abox A.
B Each of them carries a mass m;(0) = 1.
B The ¢-th motion runs independently in A with diffusion parameter — (t) € (0, 00).

B Each two of them coagulate at time ¢ with rate K (| B;(t) — B;(t)|, mi(t), m;(t)) toa
new particle with mass f(m;(t), m;(t)) at the coagulation place.

Our main question: Is there a gelation transition at some fixed time t. € (0, 00)?

That is, is there a (deterministic) time after which there is a gel in the system, i.e., a particle ¢
with size m; (t) < N?
Modeling difficulties: choice of coagulation kernel K and mass f and location of the coagulate.

Mathematical difficulties: handling the interplay of all the mechanisms (movement, locations,
coagulation times, coagulate masses).
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A non-spatial model

The MARCUS-LUSHNIKOV model is a non-spatial mean-field version [MARCUS 1968],
[GILLESPIE 1972], [LUSHNIKOV 1978]:
Continuous-time Markov process of vectors of particle masses at time ¢t € [O, 00):

n(t)
(N) N) (N) () (N) (1) —
MY (1) = MY () 2 MO () 2 - > ML) =1, Y MV (1) = N.
=1
Coagulation mechanism:
Particles with masses m and m coagulate after an exponential random time with parameter
K (m,m) (the coagulation kernel) independently of all the other particles.

Hydrodynamic regime:

Choosing K n (m, m) < % reflects the situation that each particle feels < IV other particles
and interacts with each of them after time < IN. Hence, each particle has O(1) coagulations
per time interval. This is the situation of a hydrodynamic limit, where the box A does not grow
with N.
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Special choice

Here, we make the special choice of the multiplicative kernel:

Kn(m,m) = %

Advantage:

The model is now a function of a time-dependent version of the well-known ERDOS-RENYI
random graph model. Indeed, the vector (M’ (t)):b:(tl) is in distribution equal to the collection
of sizes of all the connected components of the graph G(N, 1 — eft/N).

Explanation:

Equip each unordered pair {i, 7} of different numbers in {1, ..., N'} independently with an
exponentially distributed random time e; ; with expected value 1 /N After the elapsure of e; ;,
there is a bond created between 7 and j. Then, at time ¢, for each pair, the probability to have a
bond between them is equal to 1 — e t/N,

After each of these elapsures, the new connected component of size m + m inherits all the
bonds of the two other components of size m respectively m, i.e., has from now mm active
bonds.
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BUFFET/PULE’s gelation phase transition

[BUFFET, PULE 1990, 1991] calculated expectations of particle masses at time ¢ in the limit

N — oo and detected a gelation phase transition d uring the time interval [log 2, 1] by looking
exclusively on expectations of macroscopic particles:

Attime ¢t € (0, t.), the total macroscopic particle part is o( V'), and at least one “giant particle”
arises with mass < N at some time ¢ € (1, c0).

(No explicit formulas, no information about microscopic nor mesoscopic particles, no large
deviations, but conjectures about exact size of macroscopic particle)

Our contribution:
Explicit large-deviation principle for the microscopic, the mesoscopic and the macroscopic part
of the system at fixed time ¢ € (0, co). Explicit identification of the gelation phase transition.
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Micro and macro

Microscopic and macroscopic empirical measures of the particle sizes:

"(t) n(t)

(N) (N) _
=N 25 @) (4 and Ma'"(t) = 2215%1\41(1\1)(”.
i=

Then Mi‘" (¢) is a random member of the set A = A/(1), where

N(e) = {)\ € [o, oo)N: Z kX, = c} (coordinatewise top.).

keN

Ma™(t) is a random element of My, = M, (1), where

My, (c {a € My, ((0,1]): za(dz) = c} (vague top.).

(0,1]
and M, ((0, 1]) is the set of all measures on (0, 1] with values in No.
Note that the total masses
= Z kX and  co = / z a(dx)
keEN (0,1]

are not continuous functions of A resp. a.
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Our basic LDP 4{@

LDP for the micro- and macroscopic parts

As N — oo, the pair (Mi‘™(¢), Ma™’ (t)) satisfies an LDP with rate function

hai(At) + Iva(ast) + (1 —ex — ca)<% — logt), if cx + ca < 1,

I\ a5t) =
00 otherwise,
where
e Kt t
ha(\t) = kz:l)\k logekk_2 —|—c>\(1+§ —logt),
Iva(a;t) = /1 [m log ——~— + E:c(l — x):| a(dz)
Madth Jo 81—t T2 ’
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Consequences for the microscopic part xkz;u;h,é“ 3

Corollary 1: LDP for micro-particle size statistics

As N — oo, Mi™)(t) satisfies an LDP with rate function

1—elx=bt eyt
Invi(A\t) = inf T(\ a;t) = Imi(At) — (1 — log———M8M8 — — ).
Mi(A;t) 2 (A, o) Mi(A;t) — ( c>\)<og . 2)
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Consequences for the microscopic part

Corollary 1: LDP for micro-particle size statistics

As N — oo, Mi™)(t) satisfies an LDP with rate function

1—elex=bt oy
Invi(A\st) = inf T(\ o;t) = Inmi(A;t) — (1 — log———MMM— — | .
Mi(A;t) 2 A\ ast) = Ini (N5 8) — ( c>\)<og . 5 )

Corollary 2: LDP for macroscopic particles

As N — oo, Ma'™) (t) satisfies an LDP with rate function

. t
Tua(ast) = inf I(\a58) =hua(ast) + (1 - ca)(5 “log t)
t
+ Cta (10g(t Cta) — §Ct,a),
where Ct.o = (1 — ca) A 1.

B We also show that the map o — Ina(c; t) is minimal only in delta-measures.
B From this, we see a non-analyticity at the point where 1 — ¢, = % (only for ¢ € (1, 00)).
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Gelation phase transition

By exclusively considering the microscopic total-mass rate function,

Jui(ct) = Aeij\lff(c) Tni(Ast)

= inf [const + E"O Ak lo k!)\k]
TAEN(Q) ’ Pt k108 kk—2
e+ (1 ¥ —c cloge — tc? forc<%,
=tc —¢)log ———~
1 —etle=D) —2 — L —clogt fore>1,

we now detect the gelation phase transition.
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Gelation phase transition \Zx‘: 4 %

Microscopic total mass phase transition

1. Fort € (0, 1), the minimum of Zyy; is attained precisely at

kk72cktkflefctk

Ak(gt) = o )

keN,

and the minimum of J; (+; ¢) is attained precisely at ¢ = 1 with value Jwi(1;¢) = 0.
Therefore the infimum of the joint rate function I (-, -; t) is attained at

(A, @) = (Ai(L;1), 0).
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Gelation phase transition

Microscopic total mass phase transition

1. Fort € (0, 1), the minimum of Zyy; is attained precisely at

kk72cktkflefctk

il 5 k €N,

Ak(gt) =
and the minimum of J; (+; ¢) is attained precisely at ¢ = 1 with value Jwi(1;¢) = 0.
Therefore the infimum of the joint rate function I (-, -; t) is attained at
(A a) = (A (1;2), 0).
2. Fort € (1, 00), the minimum of Jai(+; t) is attained precisely at ¢ = [ for some
Bt € (0, %), given as the smallest positive solution to log 8; = t3; — t.
The infimum is attained precisely at (A, &) = (A*(B¢;t), (1 — B, 0,...)).
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Gelation phase transition

Microscopic total mass phase transition

1. Fort € (0, 1), the minimum of Zyy; is attained precisely at

kk72cktkflefctk

Ak(gt) = il

, k€N,
and the minimum of J; (+; ¢) is attained precisely at ¢ = 1 with value Jwi(1;¢) = 0.
Therefore the infimum of the joint rate function (-, -; t) is attained at
()‘705) = ()‘Z(l;t)v 0)'
2. Fort € (1, 00), the minimum of Jai(+; t) is attained precisely at ¢ = [ for some
Bt € (0, %), given as the smallest positive solution to log 8; = t3; — t.
The infimum is attained precisely at (A, &) = (A*(B¢;t), (1 — B, 0,...)).

Hence, t. = 1 is the gelation transition time. On a linear level, we can say:
W Before time 1, all particles are finitely large, and the statistics of their sizes follow the Borel
distribution.
B After time 1, there is precisely one macroscopic particle of size (1 — 3;) N, and a
Borel-distributed statistics of remaining particle sizes.
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Mesoscopic part

LDP for mesoscopic total mass

Fix t € [0,00) ande > 0 and R € N. Then the mesoscopic (e, R)-total mass,

My _ L ()
MeR,e(t) - N Z Mi (t)
i: R<MN) (1) <eN
satisfies an LDP with some rate function J,s. ™ (+; t) whose limit for £ . 0 and R — oo is

equal to

Ime(e;t) = (1 — c)(log(l — o)t — @) I % —log t.

B Jue(+;t) is strictly increasing and has a unique zero at ¢ = 0.

B We presume that Mie(}g\;,m (t) satisfies an LDP with rate function Jae(-; t) if
1< Ry < Ney < N.
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On the proof 'Zf‘g”}

Put
e (k) = P(G(k, 1 — e V)is connected),

then we have

Distribution of statistics

Forany N and any £ = ({x), € NY satisfying klr = N, write
k

An () = ({#{i: MIV () = k} = i},

keN

then ¢ k(N —k)e
() — ok (N—

_ pi (k)re” 2N i

Pn(An,:(£)) = N! H - Kok 0y
k

This follows directly from the characterisation of the Lushnikov model as a function of the
Erdés-Rényi graph.
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Asymptotics for the connectivity probability @

Micro and macro asymptotics

As N — oo,

t\ k-1
(N) k=2t
1 (k) ~ kb ( N) , kel

d
an 1

~ log u™ (laN]) = alog (1 —e™*),  a€(0,1).

The first one is basically standard.
The second is based on estimates from [VAN DER HOFSTAD/SPENCER 2006].

This large-deviation assertion seems to be new in the investigation of Erdés-Rényi graphs.

We have also a conditional LLN for the number of open bonds given that the graph
G(laN],1 — e ¥N)is connected.

B Now the main LDP follows by using Stirling’s formula and the fact that the cardinality of

the relevant \'s is eV,
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Smoluchowski ODEs and pathwise large deviations

B In [SMoLUCHOWSKI 1916] a system of ODEs is introduced for the evolution of the
(microscopic) particle sizes (as part of his famous work on Brownian motion).

B Convergence of stochastic coagulation processes towards these ODEs was expected for
long time, but the first rigorous proof was given only in [LANG, NGUYEN 1980].
B In [LusHNIKOV 1978] the formation of a gel is realized and explained.

B Pathwise large deviations appear cumbersome, but doable. Such LDPs have been
derived by [MIELKE et. al (2017)] following a Freidlin-Wentsel approach, but the rate
function is rather inexplicit and not easy to evaluate at a fixed time.
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Comparison to Bose-Einstein condensation (l)

Consider the non-interacting Bose gas in the thermodynamic limit at temperature
1/ € (0, 00) with particle density p € (0, c0). Then the partition function is given by

B _ 4
Zin = Z H lx 'klk p(dm k)=~
(£x)kenENY 1 Xy klp=N

where A is the centred box in R? with volume N/p.
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Comparison to Bose-Einstein condensation (l)

Consider the non-interacting Bose gas in the thermodynamic limit at temperature
1/ € (0, 00) with particle density p € (0, c0). Then the partition function is given by

B) _ 4
Zay = Z H lx 'klk p(dm k)=~
(£x)kenENY 1 Xy klp=N

where Ay is the centred box in R? with volume N/p. The free energy per particle is then

Aok
,p) = lim L Z$ =~ inf I(X), where I(A)=) Ailog———1.
(B,p) = Jim —log Wt I ) zk: Hlog e
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Comparison to Bose-Einstein condensation (l) \kztxx;;,é“ 3

Consider the non-interacting Bose gas in the thermodynamic limit at temperature
1/ € (0, 00) with particle density p € (0, c0). Then the partition function is given by

» _ ¢
Zay = Z H lx lkek p(am k)]
(r)keNeNY: Xy k=N
where Ay is the centred box in R? with volume N/p. The free energy per particle is then
Ak

(47rﬂk)%e'

= 1l lZ(B):—’fI)\ h IN =) Ml
£(B,p) NgnNog \Jnf I, where I(3) zk: x log

Comparison: In Lushnikov’s model, we face roughly

Jo(k=2)lk 4 =L

theb™ 2 11 AV

(Ck)ken: g klp=N k
The two respective minimizers are

1 (cte h)* =
k)\(Lush) (07 t) = — - and k)\(BEC) (Oé, t) 4
k t kl=kE! N 9(471-5)%

where ¢ and « control the value of >, kA (note that BR R < K32,
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Comparison to Bose-Einstein condensation (lI)

In the Bose gas, increasing (3 drives more and more particles into the finite cycles. There is a
natural threshold, the critical inverse temperature ., characterised by

(47B) %p— ij
keN

Only when all finite cycles are filled entirely, the first “infinite” cycle arises.

The BEC is a saturation transition.

In contrast, in the Lushnikov model, increasing ¢ makes each particle larger, until some decide
to make the jump to infinity. After this happens for the first time, the other micro particles keep

growing (recall that 3¢ < ).

| The gelation phase transition is an explosion transition.
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