

Weierstrass Institute for Applied Analysis and Stochastics

A large-deviation approach to coagulation

Wolfgang König TU Berlin and WIAS

based on joint work in progress with Luisa Andreis, Heide Langhammer and Robert Patterson

Düsseldorf, 15 February 2023

The team and the purpose

Luisa Andreis (Milano)

Heide Langhammer (WIAS)

Robert Patterson (WIAS)

- We consider a spatial particle system with pair-wise coagulation after independent exponential random times.
- We are interested in the large-system limit at a given fixed time T.
- Prospectively, we want to identify criteria for gelation, i.e., the formation of giant particles.
- We decompose the configuration into the particle groups that have coagulated by time T.
- This necessitates a large-deviation approach and a variational characterisation.
- In the simpler situation of a spatial Erdős–Rényi graph, we completely solved the gelation phase transition in recent work.

Spatial coagulation models

A Markovian particle model with coagulation on $\mathcal{S}\times\mathbb{N}$ (with \mathcal{S} a compact convex metric space):

Configuration at time t:

$$((X_1(t), M_1(t)), \dots, (X_{n(t)}(t), M_{n(t)}(t)))$$
with $M_1(t) \ge M_2(t) \ge \dots \ge M_{n(t)}(t) \ge 1$ and $\sum_{i=1}^{n(t)} M_i(t) = N.$

monodispersed initial configuration $M_1(0) = \cdots = M_N(0) = 1$.

- **Dynamics:** Particles (x, m) and (y, n) are replaced by $(\frac{xm+yn}{m+n}, m+n)$ at rate $\frac{1}{N}K((x, m), (y, n))$ fixing the center of mass.
- All (non-)coagulations occur independently.
- Hence, $(n(t))_{t \in [0,\infty)}$ is a decreasing stochastic process in \mathbb{N} .
- $\mathbf{x} = (X_1(0), \dots, X_N(0))$ fixed, such that $\mu_{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \delta_{x_i} \Longrightarrow \mu$.

- Joint distribution of the statistics of all the particles (according to the initial configuration that coagulated into them) at time *T*?
- Large-deviation principle (LDP) for their statistics as $N \to \infty$ at fixed time T? Explicit rate function?
- Law of large numbers at fixed time T towards the minimizers of the rate function?
- Gelation phase transition, i.e., appearance of giant particle $M_1(t) \simeq N$ after some gelation time $t_c \in (0, \infty)$?

Remarks:

- We are in the hydrodynamic regime, where N particles are in a compact space S, not depending on N. Most particles feel $\asymp N$ other particles and have $\asymp 1$ coagulations per time interval
- The system simplifies, since we are only interested in statistics of the particles present at time T, and hence only into those initial sub-configurations that coagulate into them. However, we would like to keep control on the structure of these initial sub-configurations.

Simplification of the model:

coagulation \implies putting an edge.

That is, random growing inhomogeneous graph with vertices in S instead of particle process with coagulation. These models coincide in one special case:

Fact ${\rm For \ the \ product \ kernel}: \qquad K_N(m,\widetilde{m}) = \frac{m\,\widetilde{m}}{N},$

the model is a time-dependent version of the well-known ERDŐS-RÉNYI random graph model.

Indeed, the vector $(M_i^{(N)}(t))_{i=1}^{n(t)}$ is in distribution equal to the collection of sizes of all the connected components of the graph $\mathcal{G}(N, 1 - e^{-t/N})$.

Explanation:

Equip each $\{i, j\}$ independently with an exponentially distributed random time $e_{i,j}$ with expected value N. After the elapsure of $e_{i,j}$, there is a bond created between i and j. At time t, the probability for a bond between i and j is equal to $1 - e^{-t/N}$.

The rate of connecting two components of size m and \tilde{m} is equal to $\frac{1}{N}m\tilde{m}$, since $m\tilde{m}$ is the number of active bonds that can connect these components.

LDP for coagulation · Düsseldorf, 15 February 2023 · Page 6 (11)

On the literature

The MARCUS-LUSHNIKOV model is a non-spatial mean-field version [MARCUS 1968], [GILLESPIE 1972], [LUSHNIKOV 1978]

SMOLUCHOWSKI 1916] introduces an ODE system for the evolution of particle sizes:

$$\frac{\mathrm{d}}{\mathrm{d}t}\lambda_k(t) = \frac{1}{2}\sum_{m,\tilde{m}\in\mathbb{N}:\ m+\tilde{m}=k}\lambda_m(t)\lambda_{\tilde{m}}(t)K(m,\tilde{m}) - \lambda_k(t)\sum_{m\in\mathbb{N}}\lambda_m(t)K(k,m),$$

where $\lambda_m(t) = \lim_{N \to \infty} \frac{1}{N} \# \{ \text{particles at time } t \text{ of size } k \}.$

- Convergence of stochastic coagulation processes towards these ODEs was expected for long time, but the first rigorous proof was given only in [LANG, NGUYEN 1980].
- A variant, also including the gel, is called **FLORY's equation**.
- FOURNIER/LAURENÇOT (2005-09) derive these equations for a strongly gelling kernel $K(m, \tilde{m}) = m^{\alpha} \tilde{m} + \tilde{m}^{\alpha} m$ with $\alpha \in (0, 1]$.
- JEON (1998) and REZANKHANLOU (2013) give gelation criteria on the kernel: $K(m, \widetilde{m}) = (m\widetilde{m})^a$ with $a > \frac{1}{2}$ and $K(m, \widetilde{m}) = m^q + \widetilde{m}^q$ with $q \in (1, 2)$ are gelling.
- In progress (ANDREIS, IYER, MAGNANINI): comparison of spatial coagulation particle models to non-spatial ones, using generators, coupling and limiting equations.

The model

Recall the coagulation process

$$Z = (Z_t)_{t \in [0,\infty)},$$
 with $Z_t = (X_i(t), M_i(t))_{i=1,\dots,n(t)},$

with mechanism

$$\big((X,m),(Y,\widetilde{m})\big)\mapsto \Big(\frac{Xm+Y\widetilde{m}}{m+\widetilde{m}},m+\widetilde{m}\Big)\qquad\text{with rate }\frac{1}{N}K\big((X,m),(Y,\widetilde{m})\big).$$

 $\text{Empirical process } \Xi_t(A,m) = \#\{ \text{particles in } A \text{ with size } m \},$

$$\Xi = (\Xi(t))_{t \in [0,\infty)}, \quad \text{ with } \Xi_t = \sum_{i=1}^{n(t)} \delta_{(X_i(t), M_i(t))} \in \mathcal{M}_{\mathbb{N}_0}(\mathcal{S} \times \mathbb{N}),$$

with mechanism

$$\phi \mapsto \phi - \delta_{(x,m)} - \delta_{(x',m')} + \delta_{(\frac{xm+x'm'}{m+m'},m+m')}$$

with rate

$$M_{\phi}\big((x,m),(x',m')\big) = \frac{1}{N}K\big(\dots\big) \times \begin{cases} \phi(\{x\},m)\phi(\{x'\},m'), & \text{if } (x,m) \neq (x',m'), \\ \phi(\{x\},m)(\phi(\{x\},m)-1) & \text{otherwise.} \end{cases}$$

Tree decomposition

From now on, fix $T \in (0, \infty)$. Let Γ_T be the set of trajectories $[0, T] \to \mathcal{M}_{\mathbb{N}_0}(\mathcal{S} \times \mathbb{N})$ and $\Gamma_T^{(1)} = \{ \xi \in \Gamma_T : \xi_T(\mathcal{S} \times \mathbb{N}) = 1 \}$

the set of trees on the time interval [0, T], i.e., of trajectories that coagulate into one particle. Decompose $\Xi|_{[0,T]}$ into the subtrees $\Xi^{(C)}$, and consider the empirical measure of the trees,

$$\mathcal{V}_N^{(T)} = \frac{1}{N} \sum_C \delta_{\Xi^{(C)}} \in \mathcal{M}(\Gamma_T^{(1)}).$$

Non-coagulation probability as an interaction between trees:

$$R^{(T)}(\xi,\xi') = -\log \mathbb{P}_{\xi_0 \cup \xi'_0} \left(\Xi_1 \nleftrightarrow \Xi_2 \,\middle|\, \Xi_1 = \xi, \Xi_2 = \xi' \right), \qquad \xi, \xi' \in \Gamma_T^{(1)},$$

Tree decomposition

$$\begin{split} \mathbb{P}_{\mathbf{x}}\big(\mathcal{V}_{N}^{(T)}\in\mathrm{d}\nu\big) &= \mathbb{E}\Big[\mathrm{e}^{-\frac{1}{2}\sum_{i\neq j}R^{(T)}(\Xi_{i},\Xi_{j})}\mathbbm{1}\big\{\frac{1}{N}Y\in\mathrm{d}\nu\big\} \ \Big| \ \frac{1}{N}Y_{0}\in\mathcal{C}_{\mu_{\mathbf{x}}}\Big] \\ &\times\mathrm{e}^{N|\nu_{0}|}\prod_{k}(\tau_{k}^{(T,N)})^{N\nu_{0}(k)}, \end{split}$$
 where $Y = \sum_{i}\delta_{\Xi_{i}}\sim\mathrm{Poi}_{N\mathrm{Poi}_{\mu_{\mathbf{x}}}\otimes\overline{\mathbb{Q}}^{(T,N)}}$ is a Poisson point process on $\Gamma_{T}^{(1)}.$

The reference process \boldsymbol{Y} admits a nice formula and is a good starting point for asymptotics.

LDP for coagulation · Düsseldorf, 15 February 2023 · Page 8 (11)

Coagulation probability

Introduce the rescaled tree-restriction of the process measure and its total mass (the coagulation probability), when started in the configuration $k \in \mathcal{M}_{\mathbb{N}_0}(\mathcal{S})$:

$$\mathbb{Q}_{k}^{(T,N)} = N^{|k|-1} \mathbb{P}_{k}|_{\Gamma_{T}^{(1)}} \quad \text{ and } \quad \tau_{k}^{(T,N)} = \mathbb{Q}_{k}^{(T,N)}(\Gamma_{T}^{(1)}).$$

Convergence of
$$\mathbb{Q}^{(\mathbf{T},\mathbf{N})}_{\mathbf{k}}$$
 and $\tau^{(\mathbf{T},\mathbf{N})}_{\mathbf{k}}$

$$\mathbb{Q}_k^{(T)} = \lim_{N \to \infty} \mathbb{Q}_k^{(T,N)} \quad \text{and} \quad \tau_k^{(T)} = \lim_{N \to \infty} \tau_k^{(T,N)} = \mathbb{Q}_k^{(T)}(\Gamma_T^{(1)}) \in (0,\infty).$$

(We have explicit formulas in terms of the kernel M.)

The following assumption implies that gelation takes place not too early:

Assumption on the kernel

 $\text{There is a } H>0 \text{ such that } \quad K((x,m),(\widetilde{x},\widetilde{m})) \leq Hm\widetilde{m} \qquad \text{for } x,\widetilde{x}\in\mathcal{S},m,\widetilde{m}\in\mathbb{N}.$

We have
$$au_k^{(T)}pprox |k|\log(TH|k|)$$
 as $|k|
ightarrow\infty$ under this assumption.

The LDP

Here is our current main result: exponential asymptotics under explicit preclusion of gelation. Gelation does not occur if $\mathcal{V}_N^{(T)}$ lies, for some A > 0, in

$$\mathcal{A}_{f,A} = \Big\{ \nu \in \mathcal{M}(\Gamma_T^{(1)}) \colon \int_{\mathcal{M}_{\mathbb{N}_0}(\mathcal{S})} \nu_0(\mathrm{d}k) f(|k|) \le A \Big\}, \qquad \lim_{r \to \infty} \frac{f(r)}{r \log r} = \infty.$$

The LDP

Pick $T \in (0, \infty)$ and $\mu \in \mathcal{M}_1(\mathcal{S})$. Pick the initial configuration $(\{x_1\}, \ldots, \{x_N\})$ with $\mu_{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \delta_{x_i} \Longrightarrow \mu$. Then, for any A > 0, the distribution of $\mathcal{V}_N^{(T)}$ under $\mathbb{P}_{N\mu_{\mathbf{x}}}(\cdot | \mathcal{V}_N^{(T)} \in \mathcal{A}_{f,A})$ satisfies the LDP on $\mathcal{A}_{f,A}$ with rate function

$$I_{\mu}(\nu) = H(\nu | \operatorname{Poi}_{\mu} \otimes \overline{\mathbb{Q}}^{(T)}) - \langle \nu, \log \tau^{(T)} \rangle + \frac{1}{2} \langle \nu \otimes \nu, R^{(T)} \rangle - |\nu_{0}|,$$

Remarks

- We have explicit formulas for $\mathbb{Q}^{(T)}$ and $R^{(T)}$.
- The assumption on K says that gelation occurs in our spatial model after a giant component emerges in some Erdős–Rényi graph.
- The characterisation of the distribution of V_N^(T) in terms of a tree decomposition necessitates the use of large deviations, since the non-coagulation probability terms are exponential in N.
- Conditioning on $\mathcal{A}_{f,A}$ gives a full LDP without need of thinking about macroscopic particles. (\Longrightarrow future work.) Interesting is only $A \to \infty$.
 - The Euler–Lagrange equations for a possible minimizer $u^{(*)}$ of I_{μ} read

$$\nu^{(*)}(\mathrm{d}\xi) = (\mathrm{Poi}_{\mu} \otimes \mathbb{Q}^{(T)})(\mathrm{d}\xi) \,\mathrm{e}^{-\Re^{(T)}(\nu^{(*)})(\xi) + 1} \,\mathrm{e}^{\int_{\mathcal{S}} a(x)\,\xi_{0}(\mathrm{d}x)}, \qquad \xi \in \Gamma_{T}^{(1)},$$

with some Euler–Lagrange function $a \colon S \to \mathbb{R}$. ($\mathfrak{R}^{(T)}$ is the convolution operator with kernel $R^{(T)}$.) This needs to be further analysed in future. $\nu^{(*)}$ should satisfy the Smoluchovski equations.

Gelation should occur precisely if and only if I_{μ} does have a minimizer. Understanding this criterion deeper is subject to future work.

