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The team and the purpose

Luisa Andreis (Milano) Heide Langhammer (WIAS) Robert Patterson (WIAS)

� We consider a spatial particle system with pair-wise coagulation after independent

exponential random times.

� We are interested in the large-system limit at a given fixed time T .

� Prospectively, we want to identify criteria for gelation, i.e., the formation of giant particles.

� We decompose the configuration into the particle groups that have coagulated by time T .

� This necessitates a large-deviation approach and a variational characterisation.

� In the simpler situation of a spatial Erdős–Rényi graph, we completely solved the gelation

phase transition in recent work.
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Spatial coagulation models

A Markovian particle model with coagulation on S × N (with S a compact convex metric

space):

� Configuration at time t:(
(X1(t),M1(t)), . . . , (Xn(t)(t),Mn(t)(t))

)
with M1(t) ≥M2(t) ≥ · · · ≥Mn(t)(t) ≥ 1 and

n(t)∑
i=1

Mi(t) = N.

� monodispersed initial configuration M1(0) = · · · = MN (0) = 1 .

� Dynamics: Particles (x,m) and (y, n) are replaced by (xm+yn
m+n

,m+ n) at rate
1
N
K((x,m), (y, n)) fixing the center of mass.

� All (non-)coagulations occur independently.

� Hence, (n(t))t∈[0,∞) is a decreasing stochastic process in N.

� x = (X1(0), . . . , XN (0)) fixed, such that µx = 1
N

∑N
i=1 δxi =⇒ µ.
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Our questions

� Joint distribution of the statistics of all the particles (according to the initial configuration

that coagulated into them) at time T ?

� Large-deviation principle (LDP) for their statistics as N →∞ at fixed time T ? Explicit

rate function?

� Law of large numbers at fixed time T towards the minimizers of the rate function?

� Gelation phase transition, i.e., appearance of giant particle M1(t) � N after some

gelation time tc ∈ (0,∞)?

Remarks:

� We are in the hydrodynamic regime, where N particles are in a compact space S , not

depending on N . Most particles feel� N other particles and have� 1 coagulations per

time interval

� The system simplifies, since we are only interested in statsitics of the particles present at

time T , and hence only into those initial sub-configurations that coagulate into them.

However, we would like to keep control on the structure of these initial sub-configurations.
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The product kernel

Simplification of the model:

coagulation =⇒ putting an edge.

That is, random growing inhomogeneous graph with vertices in S instead of particle process

with coagulation. These models coincide in one special case:

Fact

For the product kernel : KN (m, m̃) =
mm̃

N
,

the model is a time-dependent version of the well-known ERDŐS-RÉNYI random graph model.

Indeed, the vector (M (N)

i (t))
n(t)
i=1 is in distribution equal to the collection of sizes of all the

connected components of the graph G(N, 1− e−t/N ).

Explanation:

Equip each {i, j} independently with an exponentially distributed random time ei,j with

expected value N . After the elapsure of ei,j , there is a bond created between i and j. At time

t, the probability for a bond between i and j is equal to 1− e−t/N .

The rate of connecting two components of size m and m̃ is equal to 1
N
mm̃, since mm̃ is the

number of active bonds that can connect these components.
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On the literature

� The MARCUS-LUSHNIKOV model is a non-spatial mean-field version [MARCUS 1968],

[GILLESPIE 1972], [LUSHNIKOV 1978]

� [SMOLUCHOWSKI 1916] introduces an ODE system for the evolution of particle sizes:

d

dt
λk(t) =

1

2

∑
m,m̃∈N : m+m̃=k

λm(t)λm̃(t)K(m, m̃)−λk(t)
∑
m∈N

λm(t)K(k,m),

where λm(t) = limN→∞
1
N

#{particles at time t of size k}.
� Convergence of stochastic coagulation processes towards these ODEs was expected for

long time, but the first rigorous proof was given only in [LANG, NGUYEN 1980].

� A variant, also including the gel, is called FLORY’S equation.

� FOURNIER/LAURENÇOT (2005-09) derive these equations for a strongly gelling kernel

K(m, m̃) = mαm̃+ m̃αm with α ∈ (0, 1].

� JEON (1998) and REZANKHANLOU (2013) give gelation criteria on the kernel:

K(m, m̃) = (mm̃)a with a > 1
2

and K(m, m̃) = mq + m̃q with q ∈ (1, 2) are

gelling.

� In progress (ANDREIS, IYER, MAGNANINI): comparison of spatial coagulation particle

models to non-spatial ones, using generators, coupling and limiting equations.
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The model

Recall the coagulation process

Z = (Zt)t∈[0,∞), with Zt = (Xi(t),Mi(t))i=1,...,n(t),

with mechanism(
(X,m), (Y, m̃)

)
7→
(Xm+ Y m̃

m+ m̃
,m+ m̃

)
with rate

1

N
K
(
(X,m), (Y, m̃)

)
.

Empirical process Ξt(A,m) = #{particles in A with size m},

Ξ = (Ξ(t))t∈[0,∞), with Ξt =

n(t)∑
i=1

δ(Xi(t),Mi(t)) ∈MN0(S × N),

with mechanism

φ 7→ φ− δ(x,m) − δ(x′,m′) + δ
( xm+x′m′

m+m′ ,m+m′)

with rate

Mφ

(
(x,m), (x′,m′)

)
=

1

N
K
(
. . .
)
×

{
φ({x},m)φ({x′},m′), if (x,m) 6= (x′,m′),

φ({x},m)(φ({x},m)− 1) otherwise.
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Tree decomposition

From now on, fix T ∈ (0,∞). Let ΓT be the set of trajectories [0, T ]→MN0(S × N) and

Γ(1)

T = {ξ ∈ ΓT : ξT (S × N) = 1}

the set of trees on the time interval [0, T ], i.e., of trajectories that coagulate into one particle.

Decompose Ξ|[0,T ] into the subtrees Ξ(C), and consider the empirical measure of the trees,

V(T )

N =
1

N

∑
C

δΞ(C) ∈M(Γ(1)

T ).

Non-coagulation probability as an interaction between trees:

R(T )(ξ, ξ′) = − log Pξ0∪ξ′0
(
Ξ1 = Ξ2

∣∣Ξ1 = ξ,Ξ2 = ξ′
)
, ξ, ξ′ ∈ Γ(1)

T ,

Tree decomposition

Px

(
V(T )

N ∈ dν
)

= E
[
e−

1
2

∑
i6=j R

(T )(Ξi,Ξj)1l{ 1
N
Y ∈ dν}

∣∣∣ 1
N
Y0 ∈ Cµx

]
×eN|ν0|

∏
k

(τ (T,N)

k )Nν0(k),

where Y =
∑
i δΞi ∼ Poi

NPoiµx⊗Q(T,N) is a Poisson point process on Γ(1)

T .

The reference process Y admits a nice formula and is a good starting point for asymptotics.
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Coagulation probability

Introduce the rescaled tree-restriction of the process measure and its total mass (the

coagulation probability), when started in the configuration k ∈MN0(S):

Q(T,N)

k = N |k|−1Pk|Γ(1)
T

and τ (T,N)

k = Q(T,N)

k (Γ(1)

T ).

Convergence of Q(T,N)

k and τ (T,N)

k

Q(T )

k = lim
N→∞

Q(T,N)

k and τ (T )

k = lim
N→∞

τ (T,N)

k = Q(T )

k (Γ(1)

T ) ∈ (0,∞).

(We have explicit formulas in terms of the kernel M .)

The following assumption implies that gelation takes place not too early:

Assumption on the kernel

There is a H > 0 such that K((x,m), (x̃, m̃)) ≤ Hmm̃ for x, x̃ ∈ S,m, m̃ ∈ N.

We have τ (T )

k ≈ |k| log(TH|k|) as |k| → ∞ under this assumption.
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The LDP

Here is our current main result: exponential asymptotics under explicit preclusion of gelation.

Gelation does not occur if V(T )

N lies, for some A > 0, in

Af,A =
{
ν ∈M(Γ(1)

T ) :

∫
MN0 (S)

ν0(dk) f(|k|) ≤ A
}
, lim

r→∞

f(r)

r log r
=∞.

The LDP

Pick T ∈ (0,∞) and µ ∈M1(S). Pick the initial configuration ({x1}, . . . , {xN}) with

µx = 1
N

∑N
i=1 δxi =⇒ µ.

Then, for any A > 0, the distribution of V(T )

N under PNµx( · |V(T )

N ∈ Af,A) satisfies the LDP

onAf,A with rate function

Iµ(ν) = H(ν|Poiµ ⊗Q(T )
)− 〈ν, log τ (T )〉+

1

2
〈ν ⊗ ν,R(T )〉 − |ν0|,
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Remarks

� We have explicit formulas for Q(T ) and R(T ).

� The assumption on K says that gelation occurs in our spatial model after a giant

component emerges in some Erdős–Rényi graph.

� The characterisation of the distribution of V(T )

N in terms of a tree decomposition

necessitates the use of large deviations, since the non-coagulation probability terms are

exponential in N .

� Conditioning onAf,A gives a full LDP without need of thinking about macroscopic

particles. (=⇒ future work.) Interesting is only A→∞.

� The Euler–Lagrange equations for a possible minimizer ν(∗) of Iµ read

ν(∗)(dξ) = (Poiµ ⊗Q(T ))(dξ) e−R(T )(ν(∗))(ξ)+1 e
∫
S a(x) ξ0(dx), ξ ∈ Γ(1)

T ,

with some Euler–Lagrange function a : S → R. (R(T ) is the convolution operator with

kernel R(T ).) This needs to be further analysed in future. ν(∗) should satisfy the

Smoluchovski equations.

� Gelation should occur precisely if and only if Iµ does have a minimizer. Understanding

this criterion deeper is subject to future work.
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