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Motivation: a non-spatial coagulation model

The MARCUS-LUSHNIKOV model is a non-spatial (i.e., a mean-field) coagulation model

[MARCUS 1968], [GILLESPIE 1972], [LUSHNIKOV 1978]:

Continuous-time Markov process of vectors of particle masses at time t ∈ [0,∞):

M (N)

1 (t) ≥M (N)

2 (t) ≥M (N)

3 (t) ≥ · · · ≥M (N)

n(t)(t) ≥ 1,

n(t)∑
i=1

M (N)

i (t) = N.

We start with M (N)

i (0) = 1 for any i.

Coagulation mechanism:

Particles with masses m and m̃ coagulate after an exponential random time with parameter

KN (m, m̃) (the coagulation kernel) independently of all the other particles.

Our main question:

Is there a gelation phase transition at some fixed time tc ∈ (0,∞) in the limit N →∞?

That is, is there a (deterministic) time after which a gel emerges, i.e., a particle with size

M (N)

1 (t) � N?
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The multiplicative coalescent

Here, we make the special choice of the multiplicative kernel:

KN (m, m̃) =
mm̃

N
.

Advantage:

The model is now a function of a time-dependent version of the well-known ERDŐS-RÉNYI

random graph model. Indeed, the vector (M (N)

i (t))
n(t)
i=1 is in distribution equal to the collection

of sizes of all the connected components of the graph G(N, 1− e−t/N ).

Explanation:

Equip each unordered pair {i, j} of different numbers in {1, . . . , N} independently with an

exponentially distributed random time ei,j with expected value N . After the elapsure of ei,j ,

there is a bond created between i and j. Then, at time t, for each pair, the probability to have a

bond between them is equal to 1− e−t/N .

Imagine the component containing i (with size m) and the one containing j (with size m̃) have

been turned into a new component (with size m+ m̃). Then the new component inherits all

the active mm̃ exponential random times of the two earlier components.
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Our purpose

From now, we stick to the sparse Erdős–Rényi graph on [N ] = {1, . . . , N}.

Goal 1: Explicit joint large-deviation principle for the statistics of all the component sizes k,

distinguished into microscopic (k � 1), mesoscopic (1� k � N ) and the macroscopic

(k � N ) sizes. Explicit identification of the gelation phase transition as a consequence.

Goal 2: The same for a ”spatial” version, the inhomogeneous Erdős-Rényi graph.

Earlier works on LDPs for sparse random graphs:

� [O’CONNELL 1998]: LDP for size of larges component and number of isolated points

� [ENGEL, MONASSON, HARTMANN 2004]: LDP for free energy of a tilted version with

weights on the number of components, connections with Potts model.

� [BORDENAVE, CAPUTO 2015]: LDP for the microscopic connected subgraphs

� [PUHALSKII 2005]: LDP for the number of components, number of macroscopic

components, number of excess edges in them. (Proof ansatz and rate function very

different from ours).
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Micro and macro

Fix t > 0 and consider the standard Erdős–Rényi graph G(N, t
N

) with components of sizes

S(N)

1 ≥ S(N)

2 ≥ · · · ≥ S(N)
n ≥ 1.

Microscopic and macroscopic empirical measures of the particle sizes:

Mi(N) =
1

N

n∑
i=1

δ
S
(N)
i

and Ma(N) =

n∑
i=1

δ 1
N
S
(N)
i

.

Then Mi(N) is a random member of the setN = N (1), where

N (c) =
{
λ ∈ [0,∞)N :

∑
k∈N

kλk = c
}

(coordinatewise top.).

Ma(N) is a random element ofMN0 =MN0(1), where

MN0(c) =
{
α ∈MN0((0, 1]) :

∫
(0,1]

xα(dx) = c
}

(vague top.).

andMN0((0, 1]) is the set of all measures on (0, 1] with values in N0.

Note that the total masses

cλ =
∑
k∈N

kλk and cα =

∫
(0,1]

xα(dx)

are discontinuous functions of λ resp. α.
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Our basic LDP

LDP for the micro- and macroscopic parts

As N →∞, the pair (Mi(N),Ma(N)) satisfies an LDP with rate function

I(λ, α; t) =

IMi(λ; t) + IMa(α; t) + (1− cλ − cα)
(
t
2
− log t

)
, if cλ + cα ≤ 1,

∞ otherwise,

where

IMi(λ; t) =

∞∑
k=1

λk log
k!tλk
e kk−2

+ cλ
(

1 +
t

2
− log t

)
,

IMa(α; t) =

∫ 1

0

[
x log

x

1− e−tx
+
t

2
x(1− x)

]
α(dx).
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Gelation phase transition

Microscopic total mass phase transition

1. For t ∈ (0, 1), the minimum of micro-part of the rate function is attained precisely at

λ∗k(c; t) =
kk−2cktk−1e−ctk

k!
, k ∈ N,

and the minimum of the micro total mass is attained precisely at c = 1. Therefore the

infimum of the joint rate function I(·, ·; t) is attained at (λ, α) = (λ∗k(1; t),0).

2. For t ∈ (1,∞), the minimum of the micro total mass rate function is attained precisely at

c = βt for some βt ∈ (0, 1
t
), given as the smallest positive solution to log βt = tβt− t.

The infimum is attained precisely at (λ, α) = (λ∗(βt; t), (1− βt, 0, . . . )).

Hence, tc = 1 is the gelation transition time. On a linear level, we can say:

� Before time 1, all particles are finitely large, and the statistics of their sizes follow the Borel

distribution.

� After time 1, there is precisely one macroscopic particle of size∼ (1− βt)N , and a

Borel-distributed statistics of remaining particle sizes.
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Mesoscopic part

LDP for mesoscopic total mass

Fix t ∈ [0,∞) and ε > 0 and R ∈ N. Then the mesoscopic (ε,R)-total mass,

Me
(N)

R,ε =
1

N

∑
i : R<M

(N)
i (t)<εN

S(N)

i .

satisfies an LDP with some rate function J (ε,R)

Me whose limit for ε ↓ 0 and R→∞ is equal to

JMe(c) = (1− c)
(

log(1− c)t− (1− c)t
2

)
+
t

2
− log t.

� JMe is strictly increasing and has a unique zero at c = 0.

� We also proved that Me
(N)

RN ,εN satisfies an LDP with rate function JMe if

1� RN ≤ NεN � N .
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On the proof

Let Pk,p be the probability measure for G ∼ G(k, p). Put

µk(p) = Pk,p
(
G is connected

)
,

then we have

Distribution of statistics

For any N and any ` = (`k)k ∈ NN
0 satisfying

∑
k k`k = N , write

AN (`) =
⋂
k∈N

{#{i : S(N)

i = k} = `k},

then

PN,p(AN (`)) = N !
∏
k

µk(p)`k (1− p)
1
2
k(N−k)`k

k!`k `k!
.

Proof: elementary combinatorics.

LDP for the inhomogeneous ER-graph · UCSD Seminar, 14 October 2021 · Page 9 (22)



Bounds and asymptotics for the connectivity probability

Micro and macro asymptotics [STEPANOV 1970]

�

(1− p)
1
2
(k−1)(k−2) ≤ µk(p)

kk−2pk−1
≤ 1, k ∈ N.

In particular, if k = o(
√
N), then

µk( t
N

) = kk−2( t
N

)k−1, N →∞.

�

µbαN ( t
N

) ∼
(

1− αt

eαt − 1

)(
1− e−αt

)αN
, α ∈ (0, 1).
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Smoluchowski ODEs and pathwise large deviations

Consequences for the coagulation model:

� In [SMOLUCHOWSKI 1916] a system of ODEs is introduced for the evolution of the

(microscopic) particle sizes:

d

dt
λk(t) =

1

2

∑
m,m̃∈N : m+m̃=k

λm(t)λm̃(t)K(m, m̃)−λk(t)
∑
m∈N

λm(t)K(k,m),

where K = limN→∞NKN , and

λm(t) = limN→∞
1
N

#{particles at time t of size k}.
� One can check that the minimizers λ∗k of our variational formula satisfy them.

� Convergence of stochastic coagulation processes towards these ODEs was expected for

long time, but the first rigorous proof was given only in [LANG, NGUYEN 1980].

� In [LUSHNIKOV 1978] the formation of a gel is realized and explained.

� Pathwise large deviations appear cumbersome, but doable.

� Such LDPs have been derived by [MIELKE et. al. (2017)] for general chemical reactions,

following a Freidlin-Wentsel approach, but the rate function is rather inexplicit and not

easy to evaluate at a fixed time.
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Comparison to Bose-Einstein condensation (I)

Consider the non-interacting Bose gas in the thermodynamic limit at temperature

1/β ∈ (0,∞) with particle density ρ ∈ (0,∞). Then the partition function is given by

ZN (β, ρ) =
∑

(`k)k∈N∈NN
0 :

∑
k k`k=N

∏
k

N `k

`k! k`k
[ρ(4πβk)

d
2 ]−`k .

The free energy per particle is then

f(β, ρ) = lim
N→∞

1

N
logZN (β, ρ) = − inf

λ∈N (ρ)
I(λ), where I(λ) =

∑
k∈N

λk log
λkk

(4πβk)
d
2 e
.

Comparison: In Lushnikov’s model, we face roughly

tNe
t
2
N

∑
(`k)k∈N :

∑
k k`k=N

∏
k

k(k−2)`k t−`k

`k! k!`k
.

The two respective minimizers are

kλ(Lush)

k (c; t) =
1

t

(cte−ct)k

k1−k k!
and kλ(BEC)

k (α; t) =
1

ρ(4πβ)
d
2

e−αk

k
d
2

,

where c and α control the value of
∑
k kλk (note that k1−k k! � k3/2).
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Comparison to Bose-Einstein condensation (II)

One difference: In the non-interacting Bose gas, the macroscopic part gives no energetic

contribution, while in the Lushnikov model it does.

In the Bose gas, increasing ρ drives more and more particles into the finite cycles. There is a

natural threshold, the critical inverse temperature βc, characterised by

(4πβ)
d
2 ρ =

∑
k∈N

k−
d
2 .

Only when all finite cycles are filled entirely, the first “infinite” cycle arises.

The BEC is a saturation transition.

In contrast, in the Lushnikov model, increasing t makes each particle larger, until some decide

to make the jump to infinity. However, the other micro particles keep growing (recall that

βt <
1
t

).

The gelation phase transition is an explosion transition.
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The sparse inhomogeneous Erdős-Rényi graph

� type space: compact metric space S
� vertex distribution: probability measure µ on S
� connectivity probability function: positive symmetric irreducible kernel κ from S to S .

� vertex set: [N ] = {1, . . . , N}. Vertex i has the type xi ∈ S . Type vector

x = (x1, . . . , xN ) ∈ SN .

GN = G([N ], x, 1
N
κ) is the graph on [N ] = {1, . . . , N}, having a bond {i, j} with

probability 1
N
κ(xi, xj) ∧ 1, independently over all pairs (i, j) with i 6= j.

� There is a spatial coagulation model that can be mapped onto this graph model.

� The 120-pages article [BOLLOBAS, JANSON, RIORDAN 2007] derived a sufficient and

necessary criterion for the phase transition of the existence of a giant component in GN .

The main tool is a multitype branching process.

� We will prove the extension to an LDP for the statistics of the microscopic and the

macroscopic components of GN , and obtain this criterion independently in a different way.

The main tool is the explicit identification of the joint distribution of the statistics of all the

connected components according to their multi-types.
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[BJR07]’s phase transition

For a measure ν on S , introduce the operator

Tκ,ν : L2(ν)→ L2(ν), Tκ,νf(x) =

∫
S
κ(x, y)f(y) ν(dy),

and its norm
Σ(κ, ν) = ‖Tκ,ν‖L2(ν) = sup

f∈L2(ν) : ‖f‖
L2(ν)

=1

‖Tκ,νf‖L2(ν).

Existence of a giant component

� If Σ(κ, µ) ≤ 1, then the largest component of GN has size o(N) as N →∞ with high

probability (in fact, O(logN)).

� If Σ(κ, µ) > 1, then it has size� N . More precisely, if ρ : S → [0,∞) denotes the

maximal solution of

ρ = 1− e−Tκ,µρ,

then the size of the largest component of GN is∼ N
∫
S ρ(x)µ(dx).

The sizes of the microscopic clusters are characterized in terms of the distribution of the sizes

of the offspring of the multitype branching process, in which each particle of type x ∈ S has

offspring with distribution that is a Poisson process with intensity κ(x, y)µ(dy).
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The connected components

Assume that S is a finite set. Assume that µN = 1
N

∑N
i=1 δxi =⇒ µ as N →∞.

We denote by (Ci)i the collection of the connected components of GN .

Let ηr(A) be the number of type-r sites in A ⊂ [N ], and η(A) = (ηr(A))r∈S .

For k ∈ NS0 let MiN (k) := 1
N

∑
i δη(Ci)(k), then

∑
k MiN (k)kr = µN (r).

For α ∈ (0, 1]S let MaN (k) :=
∑
i δ 1

N
η(Ci)(k), then

∫
(0,1]S MaN (dy) yr = µN (r).

Joint distribution of the cluster types

For any l = (lk)k∈NS0
∈ N(NS0 )

0 satisfying
∑
k lkkr = NµN (r) for any r ∈ S ,

P(NMiN (k) = lk ∀k) =
(∏
r∈S

(NµN (r))!
)

×
∏
k∈NS

pN (k)lk

lk! (kr!)
lk

( ∏
r,s∈S

(
1− κ(r, s)

N

)ks(NµN (r)−kr)/2
)lk

with pN (k) the connection probability for the graph G(|k|, x, 1
N
κ) for any k-compatible x.

LDP for the inhomogeneous ER-graph · UCSD Seminar, 14 October 2021 · Page 16 (22)



The connection probability

Define

τ(k) :=
∑

T∈T (k,x)

∏
{i,j}∈E(T )

κ (xi, xj) , k ∈ NS0 ,

where x ∈ S|k| is k-compatible, and T (k, x) is the set of spanning trees on [|k|].

Notable extension of [STEPANOV 1970]:

Asymptotics of pN (k) as N →∞

pN (k) ∼ N1−|k|τ(k), k ∈ NS0 .

and

1

N
log pN (bNyc)→

∑
r∈S

yr log
(

1− e−
∑
s∈S κ(r,s)ys

)
, y ∈ (0, 1]S .

The second assertion is of independent interest and is also proved for S a compact metric

space. The technical problem is that giant clusters can be connected with just one bond, whose

probabily is not seen on the exponential scale.
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The LDP

Denote cr(λ) =
∑
k∈NS0

λkkr and cr(α) =
∫
(0,1]S α(dy) yr .

The LDP

As N →∞, the pair (MiN ,MaN ) satisfies a large-deviations principle with rate function

I(λ, α) = IMi(λ) + IMa(α) + IMe(µ− c(λ)− c(α)),

where

IMi(λ) =
∑
k∈NS

λk log
λk

τ(k)
∏
s∈S

µ
ks
s
ks!

+
∑
k∈NS

λk(|k| − 1) +
1

2
〈c(λ), κµ〉,

IMa(α) =

∫
[0,1]S

α(dy)
(〈
y, log

y

1− e−κ∗y

〉
+

1

2
〈y, κ ∗ (µ− y)〉

)
,

IMe(ν) =
〈
ν, log

ν

(κ ∗ ν)µ

〉
+

1

2
〈ν, κ ∗ µ〉.

� entropies⇐⇒ combinatorics

� terms with 1
2
⇐⇒ non-connection probabilities

� term τ times Poisson⇐⇒ reference process, conditioned on being connected
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Remarks

� We indeed prove this also for S a compact metric space. The lift from discrete S to

continuous S is a cumbersome and technical work in the spirit of the DAWSON–GÄRTNER

theorem.

� We do not know about earlier work in that direction.

� One application is to i.i.d. random x1, . . . , xN =⇒ quenched LDP. Annealed versions

follow easily.

� Standard consequences are contracted separate LDPs for MiN and MaN . (=⇒
interesting conditional phase transition, see later)

� We abstained from formulating an LDP for the mesoscopic part.
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Discussion of minimizers

Given c = (cr)r∈NS0
, the Euler-Lagrange equations for minimizers λ of IMi subject to

c(λ) = c, i.e.,
∑
k λkkr = cr for r ∈ S , are

λk = τ(k)
∏
r∈NS0

tkrr
kr!

, k ∈ NS0 .

The only candidate is tr(c) = cr e−κ∗c(r). Call the solution λ∗(c) if it exists.

Existence of λ∗(c)

� t(c) is a solution⇐⇒ c̃ 7→ t(c̃) is invertible and the inverse map is analytic in t(c),

� this invertibility is true if and only if Σ(κ, c) < 1.

Minimizers of LDP rate function

� If Σ(κ, µ) ≤ 1, then λ∗(µ) exists, and (λ∗(µ), 0) is the minimizer of I . No giant

component arises.

� If Σ(κ, µ) > 1, then the optimal microcluster distribution c∗ is characterised by

cr = µr eκ∗(µ−c)(r), and the minimizer of I is equal to (λ(c∗), δµ−c∗). The latter

corresponds to a giant cluster with∼ N(µr− c∗r) vertices of multitype r ∈ NS0 for any r.
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Connection to the multi-type branching process

Recall the multitype branching process, in which each particle of type x ∈ S has offspring with

distribution that is a Poisson process with intensity κ(x, y)µ(dy).

Denote by Ξ(dr) the entire progeneity (total offspring) of type r ∈ S the process. Let Pr
denote the probability measure when the process starts with just one particle of type r.

Then

µ(dr)Pr(Ξ ∈ dk) = λµ(dk)k(dr), k ∈MN0(S), r ∈ S.

In words: the empirical statistics of the microscopic components in GN in the subcritical case

approximate the distribution of the total offspring of the characteristic branching process.
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An interesting conditional phase transition of saturation type

Contraction principle =⇒MaN satisfies an LDP with rate function

IMa(α) = inf
λ
I(λ, α) = IMa(α) + J(µ− cα),

where

J(c) =

{
IMi(λc) if Σ(κ, c) ≤ 1,

IMi(λb∗) + IMe(c− b∗) if Σ(κ, c) > 1,

and b∗ = b∗(c) ∈M(S) is the minimal solution 6= c of the characteristic equation

κ(c− b∗)(r) b∗(dr) = (c− b∗)(dr), b∗ ≤ c,
and b∗ is saturated in the sense that Σ(κ, b∗) = 1.

Hence, conditional on {MaN ≈ α}, we have, as N →∞,

MiN
N→∞
=⇒

{
λµ−cα if Σ(κ, µ− cα) < 1 =⇒ no mesoscopic part,

λb∗ if Σ(κ, µ− cα) ≥ 1 =⇒ mesoscopic part.

=⇒ saturation phase transition: If the macroscopic part α is fixed, and more and more bonds

are trown in, then first the microscopic part increases until λb∗ is attained, then it is frozen, and

only the mesoscopic part increases. (=⇒ frozen percolation)
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