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Random Schrödinger operator and Anderson localisation

Definition

Let ∆ be the standard Laplace operator on Zd, and let ξ = (ξ(z))z∈Zd be a random

potential, then ∆ + ξ is called a random Schrödinger operator.

Explicitly, (∆ + ξ)f(z) = ∆f(z) + ξ(z)f(z) for L2-functions f .

Great mathematical interest in the eigenfunctions stems from the famous

Prediction by P.W. ANDERSON (1958):

Anderson localisation: In a large part of the spectrum of ∆ + ξ, all values should be

eigenvalues, and the corresponding eigenfunction should be exponentially localised around

some (randomly distributed) site.

� Anderson localisation has been confirmed for many random potentials ξ for spectral

values close to the boundary of the spectrum, or for ∆ + βξ if |β| is large enough.

� Two proof methods (1990s, early 2000s)): Fractional moment method and Multiscale

analysis.
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Our questions

We are interested in the upper edge of the spectrum of ∆ + ξ in a large box B, i.e., in the

principal part, including the principal eigenvalue (with zero Dirichlet boundary condition),

λ1(B) = sup
{
〈g, (∆ + ξ)g〉 : g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1

}
= − inf

{
‖∇g‖22 −

∑
z

ξ(z)g2(z) : g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1
}
.

Introduce all the eigenvalues, λ1(B) > λ2(B) ≥ λ3(B) ≥ . . . ≥ λ|B|(B).

Our questions:

� What is the upper-tail behaviour of λ1(B), in particular when coupled with |B| → ∞?

� Is there an extreme-value order statistics for the top eigenvalues in this limit?

� What is the domain of attraction, what are the scaling parameters?

� Does the point process
∑|B|
k=1 δλk(B) converge, after normalisation?

� Are the corresponding eigenfunctions exponentially localised? If yes, where?

Recall: If MN = max{X1, . . . , XN} is the maximum of N i.i.d. random variables, then, if

some aN , bN exist such that (MN − aN )/bN converges towards a non-degenerate variable

in law, then this is either Gumbel, or Fréchet or Weibull. Also
∑N
k=1 δ(Xk−aN )/bN converges.
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Motivation: the time-dependent equation

Heat equation with random potential; parabolic Anderson model (PAM):

∂

∂t
u(t, z) = ∆u(t, z) + ξ(z)u(t, z), for (t, z) ∈ (0,∞)× Zd, (1)

u(0, z) = δ0(z), for z ∈ Zd. (2)

Interpretations / Motivations:

� Random mass transport through a random field of sinks and sources.

� Expected particle number in a branching random walk model in a field of random

branching and killing rates.

Eigenvalue expansion

u(t, z) ∼ uBt(t, z) =
∑
k

etλk(Bt) ϕk(0)ϕk(z),

where ϕ1, ϕ2, ϕ3 . . . are the corresponding orthonormal eigenfunctions in

Bt = t× [− 1
2
, 1
2
]d.
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Heuristic comments

� In the limit t→∞, it is by far not automatic that only λ1(Bt) survives. Rather, the

maximum of etλk(Bt) ϕk(0) over k will be decisive. Therefore, we must know the joint

behaviour of all top eigenvalues.

� All the eigenfunctions ϕk decay exponentially fast away from some random site xk. Then

the distance |xk − 0| determines the value of ϕk(0) ≈ e−c|xk|.

� The random sites xk form (after rescaling) a homogeneous Poisson point process, and

the eigenvalues λk(Bt) behave like i.i.d.

� The eigenvalue order statistics and homogeneity of the xk ’s yield a good control on the

distances between the values of etλk(Bt) ϕk(0), k = 1, 2, 3, . . . .

� Earlier work on the asymptotics of the expectation of etλ(Bt) showed [GÄRTNER, K.,

MOLCHANOV 2007 that the typical shape of the eigenfunction approaches a deterministic

shape, which is given as the maximizer of ϕ 7→ λ(ϕ)− I(ϕ), where I(ϕ) describes the

rate function for the probability that the potential looks like ϕ on a large scale.

� All the details of the above heavily depend on the upper-tail behaviour of ξ(0), i.e., on the

asymptotics of Prob(ξ(0) > r) as r → esssupξ(0).
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Literature

� Surveys: [K. 16] and [ASTRAUSKAS 16]

� Eigenvalue order statistics and Poisson point process convergence at spectral top

(single-site eigenfunctions): [ASTRAUSKAS 08, 12, 13]

� Eigenvalue order statistics and Poisson point process convergence at spectral top

(non-generate eigenfunctions, double-exp. dist) [BISKUP, K. 16], see below

� Poisson point process convergence in Anderson localisation regime: [MOLCHANOV 81],

[MINAMI 96], [KILIP, NAKANO 07], [GERMINET, KLOPP 13, 14]

� Concentration of the PAM in one single site: [K., LACOIN, MÖRTERS, SIDOROVA 09 ],

[LACOIN, MÖRTERS 12], [FIODOROV, MUIRHEAD 14], [SIDOROVA, TWAROWSKI 16]

� Concentration of the PAM in one non-degenerate island: [BISKUP, K., DOS SANTOS 18],

see below, related partial result [DING, XU 18] for bounded potential

� first steps for white noise in d = 2 by [ALLEZ/CHOUK], [CHOUK/VAN ZUIJLEN (2019)] and

[PERKOWSKI/K./VAN ZUIJLEN (2019+)].

Open:

Eigenvalue order statistics, Poisson point process convergence at spectral top for bounded

potentials, and concentration of the PAM in one island for other potential distributions,

e.g. Gaussian fields in Rd (smooth or white noise).
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Eigenvalue order statistics and point process convergence

We are working here for ξ double-exponentially distributed, i.e., for some % ∈ (0,∞),

Prob(ξ(0) > r) = exp
{
− er/%

}
, r ∈ R.

Theorem 1 [BISKUP/K., CMP 16]

There is a number χ = χ% ∈ (0, 2d) and a sequence (aL)L∈N with

aL = % log log |BL| − χ+ o(1) as L→∞ and, for any L ∈ N, a sequence (X(L)

k )k in

BL such that, in probability,

lim
L→∞

∑
z : |z−X(L)

k
|≤logL

ϕk(z)2 = 1, k ∈ N,

and the law of ∑
k∈N

δ( 1
L
X

(L)
k

,(λk(BL)−aL) logL
)

converges weakly to a Poisson process on B1 × R with intensity measure dx⊗ e−λ dλ.

� Hence, the top eigenvalues in BL are of order log logL and leave gaps of order

1/ logL (rather than 1/|BL| as in the bulk of the spectrum).

� The localisation centres are separated by� L and are homogeneously distributed.

� We have an assertion reminding on Anderson localisation at the edge of the spectrum.
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Mass concentration in the PAM

Theorem 2 [BISKUP, K., DOS SANTOS, PTRF 18]

Put rL = L logL log log logL and

ΨL,t(z, λ) =
t

rL
(λ− aL) logL− |z|

L
,

and pick k such that ΨL,t(X
(L)

k , λk(BL)) is maximal. Put Zt = X(L)

k .

Then, with Lt defined by rLt = t, for any Rt � log t,

lim
R→∞

lim
t→∞

1

U(t)

∑
z : |z−Zt|≤R

u(t, z) = 1 in probability.

� Hence, the total mass essentially comes from a single� log t-island in the centred box

with radius Lt � t/(log t log log log t).

� The Poisson process convergence holds only in the box BLt , and the contribution from

Bc
t log2 t is easily seen to be negligible. The intermediate region is delicate.

� The two terms in ΨL,t come from the eigenvalue and the probabilistic cost for the

random walk in the Feynman-Kac formula. The choice of rL comes from an optimisation

of P0(|Xs| � L)e(t−s)λ1 ≈ e−L log(L/s)e(t−s)aL over s ∈ [0, t].
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Ageing

A system is said to age if its significant changes come after longer and longer (or shorter and

shorter) time lags.

Hence, one can see from the frequency of changes how much time has elapsed.

Ageing properties of the PAM can now be studied in terms of the time lags between jumps of

the concentration site.

These ones, in turn, may be described as follows.

Theorem 3: Scaling limit of concentration location [BKDS 18]

As t→∞, the process (Zθt/Lt)θ∈[1,∞) converges in distribution to a process

(Z(θ))θ∈[1,∞), whose marginals Z(θ) have d independent components, which are centered

and Laplace-distributed (i.e., with density z 7→ e−|z|/θ).

Furthermore, (Zt)t∈[0,∞) is aging in the sense that, for any s > 0,

lim
t→∞

Prob
(
Zt = Zt+θt for every θ ∈ [0, s]

)
exists and is a non-trivial function of s.
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Some elements of the proof of Theorem 1 (I)

Put εR = 2d
(

1 + A
2d

)1−2R

.

The top eigenvalues in B = BL remain the top eigenvalues after discarding potential

values significantly less than the eigenvalues.

Fix A > 0 and R ∈ N and put U =
⋃
z∈B : ξ(z)≥λ1(B)−2ABR(z). Then

λk(B) ≥ λ1(B)−A/2 =⇒ |λk(B)− λk(U)| ≤ εR.

� The corresponding `2-normalized eigenvector ϕ = ϕk decays rapidly away from U .

� Proof uses the martingale (ϕ(Yn)
∏n−1
l=0

2d
2d+λ−ξ(Yl)

)n∈N (with (Yn)n an SRW).

� Furthermore, we use that ∂ξ(z)λk(B) = ϕ(z)2.

� Introduce ξs = ξ − s1lB\U for s ∈ [0,∞]. Then

|∂sλk(ξs, B)| =
∑

z∈B\U

ϕk,ξs(z)2,

which is very small. Integrating over s ∈ [0,∞] gives the estimate.
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Some elements of the proof of Theorem 1 (II)

The top eigenvalues are the principal eigenvalues in local regions, and the

corresponding eigenfunctions are exponentially localised.

A bit more precisely, with the help of the variational characterisation of the asymptotics of the

PAM [GÄRTNER/K./MOLCHANOV 07], one proves the following.

� U consists of connected components of bounded size, which are far away from each

other.

� For any component C , if λ1(C) is close to aL ≈ ρ log logL, then λ1(C) is bounded

away from λ2(C).

� If λ is an eigenvalue of ∆ + ξ larger than λ1(BL)−A/2 and ϕ a corresponding

`2-normalised eigenfunction such that the distance of λ to the nearest eigenvalue

(spectral gap) is larger than 3εR, then ϕ decays exponentially away from one of the

components of U .

� The proof uses that the path [0,∞] 3 s 7→ λk(ξs, BL) (with ξs = ξ − s1lBL\U ) does

not cross other eigenvalues and therefore admits a continuous choice of corresponding

eigenfunctions. The one for s =∞ puts all its mass in one component, and the one for

s = 0 is uniformly close.
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Some elements of the proof of Theorem 1 (III)

The scale aL satisfies Prob(λ1(BR) > aL) = 1/|BL|.
Hence we may expect finitely many sites in BL where the local eigenvalue is≈ aL.

λ1(BR) lies in the max-domain of a Gumbel random variable

As L→∞, for any s ∈ R,

Prob(λ1(BR) > aL + s/ logL) = e−s
1

|BL|
(1 + o(1)).

� The event {λ1(BR) > a} is more or less the same as the event that some shift of the

potential ξ(·) is larger than a+ χ+ ψ(·) for some well-chosen function ψ.

� Shifting ξ by an amount of s/ logL yields an additional factor of e−s, using properties of

ψ and of the distribution of ξ and some information from the variational characterisation.
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