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Referent: Jens Schmidt

General Assumptions

• Φ̂ is a marked point process (m.p.p.) with points xi ∈ Rd and marks (mi, ti) ∈ Rl ×R+

• Φ̃ is the projection of Φ̂ without marks ti

• I
Φ̃

shot-noise field on Rd generated by Φ̃ and response function L : Rd ×Rd ×Rl 7→ R+

• thermal noise field w(y) ≥ 0 for all y ∈ Rd

Definition 1 (SINR collection). Let n ∈ N and (Xi,Mi)i=1,...,n ∈ Rd × Rl be a collection
of marked points. The SINR cells of this collection of marked points for shot-noise field I

Φ̃
,

threshold ti ≥ 0 and thermal noise field w(y) ≥ 0 is:

C(Xi,Mi) := C(Xi,Mi)

(
Φ̃ + κ

n∑
j=1,j 6=i

ε(Xj ,Mj), w, ti
)

=
{
y ∈ Rd : L(y,Xi,Mi) ≥ ti

(
IΦ̃(y) + κ

n∑
j=1,j 6=i

L(y,Xj ,Mj) + w(y)
)}

where 0 < κ ≤ 1.

When we change the thresholds t′i := ti
1+κti

it follows:

C(Xi,Mi)

(
Φ̃ + κ

n∑
j=1,j 6=i

ε(Xj ,Mj), w, ti
)

= C(Xi,Mi)

(
Φ̃ + κ

n∑
j=1

ε(Xj ,Mj), w, t
′
i

)
Proposition 1. Let (C(Xi,Mi))i=1,...,n be the SINR cells of the collection of marked points

(Xi,Mi)i=1,...,n ∈ Rd × Rl for thresholds ti > 0, i = 1, . . . , n.
For any J ⊂ {1, . . . , n} satisfying

⋂
i∈J C(Xi,Mi) 6= ∅ we have

∑
i∈J t

′
i ≤ 1

κ .

Consider a collection of marked points (Xi,Mi)i=1,...,n with Xi = X ∈ Rd and ti = t ∈ R+

for all i = 1, . . . , n. With the above result it follows:

1

κ
≥
∑
i∈J

t′i ⇔
1 + tκ

tκ
≥ |J |.

The maximal number of cells covering simultaneously a point y ∈ Rd is bounded by b1+tκ
tκ c.

This upper bound is called the pole capacity. Note that the pole capacity only depends on the
thresholds and not on the marks.
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Definition 2 (SINR coverage process). The SINR coverage process is the following union of
SINR cells

Ξsinr = Ξ(Φ̂, w) =
⋃

(xi,mi,ti)∈Φ̂

C(xi,mi)(Φ̃− ε(xi,mi), w, ti).

Standard Scenario

• Φ̂ stationary independent m.p.p. (i.m.p.p.) with points in R2 and intensity λ > 0

• marks (mi, ti) have for all i the same given distribution P(mi ≤ u, ti ≤ v) = G(u, v),
which does not depend on the location of the point

• thermal noise is constant in space w(y) = W , where W ≥ 0 is a random variable
independent of Φ̂

• response function L(y, x,m) = m
l(|y−x|) , l is a omnidirectional-path-loss function

Nearest Transmitter Cell

We want to calculate the probability that the origin (denoted by O) is covered by the cell of
the nearest transmitter. For that we consider the standard scenario with a Poisson distributed
Φ, exponential distributed marks mi and deterministic marks ti = t > 0.

Denote x0 = arg minx∈Φ |x| the nearest transmitter to O (almost sure well defined) with
corresponding mark m0. The coverage probability is

p∗ := P[O ∈ C(x0,m0)(Φ̃− ε(x0,m0),W, t)] = P
[
m0 ≥ l(|x0|)) · t(I

Φ̃
− m0

l(|x0|)
+W )

]
=

∫ ∞
0

2πλr · e−πλr2 · LW (µt · l(r)) · exp
{
−2πλ

∫ ∞
r

u

1 + l(u)
t·l(r)

du
}

dr,

where µ = 1
E[m0]

and LW is the Laplace transform of W .

For the proof of these statement we consider |x0| = r and applying the law of total proba-
bility.

ΞSINR as a Random Closed Set

In stochastic geometry it is customary to require ΞSINR to be a closed set, but we want to
check the stronger property that the number of cells of ΞSINR which hit a given bounded
set is finite. Let Ci := C(xi,mi)(Φ̃ − ε(xi,mi), w, ti) be the i-th cell and K be bounded. Then
NK :=

∑
(xi,mi)∈Φ̃

1(K ∩ Ci 6= ∅) is the number of cells that hit the given set K.

We will give some conditions such that E[NK ] is finite for abitrary large K. Therefore we
assume that Φ̂ is an i.m. Poisson p.p. with i.i.d. marks (m, t), which are independent of Φ̂.
Now we consider two different types of response functions.
(A) there exists a finite R such that for all x, y ∈ Rd with |y−x| > R it follows L(y, x,m) = 0

for all m ∈ Rl,
(B) there exist A > 0 and β > 0 such that L(y, x,m) < A |m|

|y−x|β for all y, x ∈ Rd, m ∈ Rl

Now we get the following proposition.
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Proposition 2. Let Φ̂ be an i.m. Poisson p.p. with intensity measure Λ and with i.i.d. marks
(m, t), which are independent of Φ̂. We have E[NK ] < ∞ for abitrary large bounded, measu-
reble K if one of the following statements holds:

i) (A) is satisfied and w(y) > 0 for all y ∈ Rd almost surely,
ii) (B) is satisfied, w(y) > W > 0 for all y ∈ Rd almost surely and for all R > 0 it holds

E
[
Λ
(
B
(

0, R+
(A|m0|
t0W

) 1
β

))]
<∞,

iii) (B) is satisfied, L(y, x,m) > 0 almost surely for all y ∈ Rd and for all R > 0 it holds∫
Rd
e−Λ(B(0,|x|))E

[
Λ
(
B
(

0, R+
( A|m1|
t1 infy:|y|<R L(y, x,m0)

) 1
β

))]
Λ(dx) <∞,

where (m0, t0) and (m1, t1) are independent marks with the same distribution.

Factorial Moments

We abbreviate Ny := N{y}, where N{y} denote the number of cells covering point y ∈
Rd. For a natural number n the n-th factorial moment of Ny is given by E[N

(n)
y ], where

k(n) = k(k − 1)+ . . . (k − n+ 1)+,∀k ∈ N.
If there exists a constant ρ > 0 such that ti > ρ for all marks, then Ny <

1
ρ almost surely.

With the expansion of the generating function we get

P[Ny = n] =
1

n!

∞∑
k=0

(−1)k
E[N

(n+k)
y ]

k!

since Ny is finite. We can see, that if we know something about the expectation of the n-th
factorial moment of Ny, then we get informations about the distribution of Ny.

If we assume that Φ̂ is an i.m. Poisson p.p. with intensity measure Λ, then we get by the
refined Campbell theorem

E[N (n)
y ] =

∫
Rd
. . .

∫
Rd

P
[
y ∈

n⋂
k=1

C(xk,mk)(Φ̃ +

n∑
i=1,i 6=k

ε(xi,mi), w, ti)
]

Λ(dx1) . . .Λ(dxn).
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