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The Model

� Simple random walk (Sn)n∈N0 on Z
d

� Local times ℓn(z) = ∑n
i=0 1l{Si = z} for n ∈ N,z ∈ Z

d

� p-norm of local times ‖ℓn‖p = (∑z∈Zd ℓn(z)p)1/p

For p ∈ N, we have the p-fold self-intersection local time (SILT):

‖ℓn‖p
p =

n

∑
i1,...,ip=0

1l{Si1=···=Sip},

Typical behaviour [CERNY 2007] for d = 2 and [BECKER/KÖNIG 2009] for d ≥ 3:

E[‖ℓn‖p
p] ∼Ca(n), where a(n) =















n(p+1)/2 if d = 1,

n(logn)p−1 if d = 2,

n if d ≥ 3.

Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 2 (15)



Goal

Goal: Asymptotics of
1
n

logP(‖ 1
n ℓn‖p ≥ rn), n → ∞,

for (nrn)
p −E[‖ℓn‖p

p] → ∞.

� very large deviations: (nrn)
p ≫ a(n)

� large deviations: (nrn)
p ∼ γa(n) with γ > C

What is the best path strategy to produce many self-intersections?
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Rough Heuristics (1)

(only very large-deviations case (nrn)
p ≫ a(n))

Strategy to meet {‖ 1
n ℓn‖p ≥ rn}:

The path fills a ball Bαn of radius 1 ≪ αn ≪ n1/d within a time interval [0,tn] ⊂ [0,n]
in order to produce (nrn)

p self-intersections, and runs freely afterwards.
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n ℓn‖p ≥ rn}:

The path fills a ball Bαn of radius 1 ≪ αn ≪ n1/d within a time interval [0,tn] ⊂ [0,n]
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p self-intersections, and runs freely afterwards.

Then
ℓn(z) ≈ ℓtn(z) ≍ tnα−d

n for z ∈ Bαn
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Rough Heuristics (1)

(only very large-deviations case (nrn)
p ≫ a(n))

Strategy to meet {‖ 1
n ℓn‖p ≥ rn}:

The path fills a ball Bαn of radius 1 ≪ αn ≪ n1/d within a time interval [0,tn] ⊂ [0,n]
in order to produce (nrn)

p self-intersections, and runs freely afterwards.

Then
ℓn(z) ≈ ℓtn(z) ≍ tnα−d

n for z ∈ Bαn

and

(nrn)
p ≍‖ℓn‖p

p ≈ ∑
z∈Bαn

ℓtn(z)
p ≍αd

n (tnα−d
n )p = t p

n αd(1−p)
n , i.e., tn ≍ nrnαd(p−1)/p

n .
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Rough Heuristics (1)

(only very large-deviations case (nrn)
p ≫ a(n))

Strategy to meet {‖ 1
n ℓn‖p ≥ rn}:

The path fills a ball Bαn of radius 1 ≪ αn ≪ n1/d within a time interval [0,tn] ⊂ [0,n]
in order to produce (nrn)

p self-intersections, and runs freely afterwards.

Then
ℓn(z) ≈ ℓtn(z) ≍ tnα−d

n for z ∈ Bαn

and

(nrn)
p ≍‖ℓn‖p

p ≈ ∑
z∈Bαn

ℓtn(z)
p ≍αd

n (tnα−d
n )p = t p

n αd(1−p)
n , i.e., tn ≍ nrnαd(p−1)/p

n .

and

− logP(S[0,tn] ⊂ Bαn) ≍
tn
α2

n
≍ nrnα

d
p (p−1)−2

n .
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(only very large-deviations case (nrn)
p ≫ a(n))

Strategy to meet {‖ 1
n ℓn‖p ≥ rn}:

The path fills a ball Bαn of radius 1 ≪ αn ≪ n1/d within a time interval [0,tn] ⊂ [0,n]
in order to produce (nrn)

p self-intersections, and runs freely afterwards.

Then
ℓn(z) ≈ ℓtn(z) ≍ tnα−d

n for z ∈ Bαn

and

(nrn)
p ≍‖ℓn‖p

p ≈ ∑
z∈Bαn

ℓtn(z)
p ≍αd

n (tnα−d
n )p = t p

n αd(1−p)
n , i.e., tn ≍ nrnαd(p−1)/p

n .

and

− logP(S[0,tn] ⊂ Bαn) ≍
tn
α2

n
≍ nrnα

d
p (p−1)−2

n .

Optimal choices:

tn ≍
{

n if d < 2p
p−1 ,

nrn if d > 2p
p−1 ,

, and αn ≍







r
p

d(1−p)
n if d < 2p

p−1 ,

1 if d > 2p
p−1 .
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Rough Heuristics (2)

Hence, we conjecture

Theorem A.

−1
n

logP(‖ 1
n ℓn‖p ≥ rn) ≍

1
n

tn
α2

n
≍ 1

α2
n
≍ r

2p
d(p−1)∨1
n ≍







r
2p

d(p−1)
n if d < 2p

p−1 ,

rn if d > 2p
p−1 .
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Rough Heuristics (2)

Hence, we conjecture

Theorem A.

−1
n

logP(‖ 1
n ℓn‖p ≥ rn) ≍

1
n

tn
α2

n
≍ 1

α2
n
≍ r

2p
d(p−1)∨1
n ≍







r
2p

d(p−1)
n if d < 2p

p−1 ,

rn if d > 2p
p−1 .

� Lower-critical dimension: homogeneous squeezing on a large area.

� Upper-critical dimension: short-time clumping on finitely many sites.
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Precise heuristics (1)

First subcritical dimensions d < 2p
p−1 .

Scaled normalized version of ℓn:

Ln(x) =
αd

n

n
ℓn

(

⌊xαn⌋
)

, for x ∈ R
d .

Upper tails of self-intersection local times · Luminy, 6 December 2010 · Seite 6 (15)



Precise heuristics (1)

First subcritical dimensions d < 2p
p−1 .

Scaled normalized version of ℓn:

Ln(x) =
αd

n

n
ℓn

(

⌊xαn⌋
)

, for x ∈ R
d .

Weak large-deviation principle (in the spirit of DONSKER-VARADHAN) with speed
nα−2

n and rate function

I ( f ) =
1
2

∥

∥∇ f
∥

∥

2
2,

i.e.,
P(Ln ∈ ·) = exp

{

− n

α2
n

[

inf
f 2∈·

I ( f )+o(1)
]}

.
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n and rate function

I ( f ) =
1
2

∥

∥∇ f
∥

∥

2
2,

i.e.,
P(Ln ∈ ·) = exp

{

− n

α2
n

[

inf
f 2∈·

I ( f )+o(1)
]}

.

Note that

‖ℓn‖p =
(

∑
z∈Zd

ℓn(z)
p
)1/p

= nα−d
n

(

∑
z∈Zd

Ln
( z

αn

)p
)1/p

= nα
d(1−p)

p
n ‖Ln‖p = nrn‖Ln‖p.
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i.e.,
P(Ln ∈ ·) = exp

{

− n

α2
n

[

inf
f 2∈·

I ( f )+o(1)
]}

.

Note that

‖ℓn‖p =
(

∑
z∈Zd

ℓn(z)
p
)1/p

= nα−d
n

(

∑
z∈Zd

Ln
( z

αn

)p
)1/p

= nα
d(1−p)

p
n ‖Ln‖p = nrn‖Ln‖p.

Hence,

{‖ 1
n ℓn‖p ≥ rn} =

{

‖Ln‖p ≥ 1
}

and
n

α2
n

= nr
2p

d(p−1)
n .
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Precise Heuristics (2)

Hence, we conjecture, for d < 2p
p−1 ,

Theorem B.

lim
n→∞

r
2p

d(1−p)
n

n
logP(‖ 1

n ℓn‖p ≥ rn) = −χd,p,

where

χd,p = inf
{1

2
‖∇ f ‖2

2 : f ∈ H1(Rd),‖ f 2‖p = 1 = ‖ f ‖2

}

.
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Precise Heuristics (2)

Hence, we conjecture, for d < 2p
p−1 ,

Theorem B.

lim
n→∞

r
2p

d(1−p)
n

n
logP(‖ 1

n ℓn‖p ≥ rn) = −χd,p,

where

χd,p = inf
{1

2
‖∇ f ‖2

2 : f ∈ H1(Rd),‖ f 2‖p = 1 = ‖ f ‖2

}

.

Remark:

χd,p > 0 ⇐⇒ d(p−1) ≤ 2p [GANTERT/KÖNIG/SHI 2004]

.
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Precise Heuristics (3)

Now supercritical dimensions d > 2p
p−1 . We approximate

{‖ 1
n ℓn‖p ≥ rn} ≈

{

‖ℓstn‖p ≥ nrn
}

=
{

∥

∥

∥

1
stn

ℓstn

∥

∥

∥

p
≥ 1

s

}

.
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{

∥

∥

∥

1
stn
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∥

∥

∥

p
≥ 1

s

}

.

Now 1
stn

ℓstn satisfies a large-deviation principle with scale stn and some rate function
I (d).
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{

‖ℓstn‖p ≥ nrn
}

=
{

∥

∥

∥

1
stn

ℓstn

∥

∥

∥

p
≥ 1

s

}

.

Now 1
stn

ℓstn satisfies a large-deviation principle with scale stn and some rate function
I (d). Hence, we conjecture

Theorem B.
lim
n→∞

1
nrn

logP(‖ 1
n ℓn‖p ≥ rn) = −χd,p,

where

χd,p = inf
s∈(0,∞)

s inf
{

I
(d)(g2) : g ∈ ℓ2(Zd),‖g2‖p =

1
s
,‖g‖2 = 1

}

= inf
{

I (d)(g2)

‖g2‖p
: g ∈ ℓ2(Zd),‖g‖2 = 1

}

.
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1
nrn

logP(‖ 1
n ℓn‖p ≥ rn) = −χd,p,

where

χd,p = inf
s∈(0,∞)

s inf
{

I
(d)(g2) : g ∈ ℓ2(Zd),‖g2‖p =

1
s
,‖g‖2 = 1

}

= inf
{

I (d)(g2)

‖g2‖p
: g ∈ ℓ2(Zd),‖g‖2 = 1

}

.

In the time-continuous case,

χd,p = inf
{1

2
‖∇g‖2

2 : ‖g2‖p = 1
}

.
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Comments

� Alternative formulations in terms of exponential moments of ‖ℓn‖p.

� Continuous-time case very similar.

� Proof of lower bounds quite easy with the help of Hölder’s inequality and some
approximations.

� Proof of upper bounds much more difficult due to bad continuity properties of
the map f 7→ ‖ f ‖p.

� Well-known compactification procedure by periodic path folding works well in
subcritical dimensions, but not in supercritical ones.
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Comments

� Alternative formulations in terms of exponential moments of ‖ℓn‖p.

� Continuous-time case very similar.

� Proof of lower bounds quite easy with the help of Hölder’s inequality and some
approximations.

� Proof of upper bounds much more difficult due to bad continuity properties of
the map f 7→ ‖ f ‖p.

� Well-known compactification procedure by periodic path folding works well in
subcritical dimensions, but not in supercritical ones.

Now we survey proofs for upper bounds.
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Triangular decomposition and smoothing

[CHEN 2009, Theorems 8.2.1 and 8.4.2] proves Theorem B for p = 2 in dimensions
d ∈ {2,3}, even for rn = 1

n (E[‖ℓn‖2
2]+nbn)

1/2 with 1 ≪ bn ≪ n.
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Triangular decomposition and smoothing

[CHEN 2009, Theorems 8.2.1 and 8.4.2] proves Theorem B for p = 2 in dimensions
d ∈ {2,3}, even for rn = 1

n (E[‖ℓn‖2
2]+nbn)

1/2 with 1 ≪ bn ≪ n. Main tools:

� triangular decomposition of the number of self-intersections:

‖ℓn‖2
2 =

2N

∑
j=1

η (N)

j +
N

∑
j=1

2 j−1

∑
k=1

ξ (N)

j,k ,

where N ∈ N is a large auxiliary parameter and

η (N)

j = ∑
( j−1)n2−N<i<i′≤ jn2−N

1l{Si = Si′},

ξ (N)

j,k = ∑
(2k−2)n2− j<i≤(2k−1)n2− j

(2k−1)n2− j<i′≤(2k)n2− j

1l{Si = Si′}.
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d ∈ {2,3}, even for rn = 1

n (E[‖ℓn‖2
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2 =
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∑
j=1

2 j−1

∑
k=1

ξ (N)
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where N ∈ N is a large auxiliary parameter and

η (N)

j = ∑
( j−1)n2−N<i<i′≤ jn2−N

1l{Si = Si′},

ξ (N)

j,k = ∑
(2k−2)n2− j<i≤(2k−1)n2− j

(2k−1)n2− j<i′≤(2k)n2− j

1l{Si = Si′}.

� a smoothing technique with the help of a convolution of a smooth approximation
of the delta measure,

� a compactness criterion by [DE ACOSTA 1984] (bounds for certain exponential
integrals of the Minkowski functional). Requires Hahn-Banach theorem,
topological duality between Lp and Lq, and Arzelá-Ascoli’s theorem.
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Iterated bisection

[ASSELAH 2009] proves Theorem A for both large and very large deviations.
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Iterated bisection

[ASSELAH 2009] proves Theorem A for both large and very large deviations.

He extends the triangular decomposition to arbitrary p > 1 by a bisection technique
for ‖ℓn‖p

p,
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Iterated bisection

[ASSELAH 2009] proves Theorem A for both large and very large deviations.

He extends the triangular decomposition to arbitrary p > 1 by a bisection technique
for ‖ℓn‖p

p, i.e., for a sum of p-th powers of integers:

(l1 + l2)
p ≤ lp

1 + lp
2 +2p

∞

∑
i=0

bp−2
i+1 l1l21l{bi ≤ max{l1, l2} < bi+1} l1, l2 ∈ N,

where 1 = b0 < b1 < b2 < .. . defines a suitable partitioning of [1,∞).
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Iterated bisection

[ASSELAH 2009] proves Theorem A for both large and very large deviations.

He extends the triangular decomposition to arbitrary p > 1 by a bisection technique
for ‖ℓn‖p

p, i.e., for a sum of p-th powers of integers:

(l1 + l2)
p ≤ lp

1 + lp
2 +2p

∞

∑
i=0

bp−2
i+1 l1l21l{bi ≤ max{l1, l2} < bi+1} l1, l2 ∈ N,

where 1 = b0 < b1 < b2 < .. . defines a suitable partitioning of [1,∞).

Furthermore, he uses a decomposition of the space into regions where the local
times are small, medium-sized or large, and he decomposes the event {‖ 1

n ℓn‖p ≥ rn}
into various subevents.
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Surgery on circuits and clusters

[ASSELAH 2008a] and [ASSELAH 2008b] proves Theorem B for p = 2, d ≥ 5 in the
large-deviation regime.
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Surgery on circuits and clusters

[ASSELAH 2008a] and [ASSELAH 2008b] proves Theorem B for p = 2, d ≥ 5 in the
large-deviation regime.

The ansatz is an upper estimate of ‖ℓn‖2
2 −E[‖ℓn‖2

2] in terms of ‖1lΛℓs
√

n‖2
2 for many

choices of a finite set Λ ⊂ Z
d on the event {Ss

√
n = 0}.
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Surgery on circuits and clusters

[ASSELAH 2008a] and [ASSELAH 2008b] proves Theorem B for p = 2, d ≥ 5 in the
large-deviation regime.

The ansatz is an upper estimate of ‖ℓn‖2
2 −E[‖ℓn‖2

2] in terms of ‖1lΛℓs
√

n‖2
2 for many

choices of a finite set Λ ⊂ Z
d on the event {Ss

√
n = 0}.

Asselah introduces for infinite-time random walk a map from finite n-dependent boxes
to bounded subboxes that compares paths with high values of local times in the large
box to those having high local time values in the small box.
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Dynkin’s isomorphism

The critical value p = d
d−2 in dimensions d ≥ 3 is considered by [CASTELL 2010]. It

turns out that that Theorem B is true with αn as in the lower-critical dimension and
χd,p as in the upper-critical dimension. Later [LAURENT 2010A] and [LAURENT

2010b] extension to a proof of Theorem B for all p > 1 in the very-large deviation
case.
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The critical value p = d
d−2 in dimensions d ≥ 3 is considered by [CASTELL 2010]. It

turns out that that Theorem B is true with αn as in the lower-critical dimension and
χd,p as in the upper-critical dimension. Later [LAURENT 2010A] and [LAURENT

2010b] extension to a proof of Theorem B for all p > 1 in the very-large deviation
case.

Main idea:

The joint law of ℓ(R)
τ in a box BR with R ≍ t1/d , stopped at an independent

exponential time τ with parameter ≍ rt is related to Z2, the square of a Gaussian
process Z = (Zx)x∈BR with covariance matrix equal to the Green function, GR,τ .
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Dynkin’s isomorphism

The critical value p = d
d−2 in dimensions d ≥ 3 is considered by [CASTELL 2010]. It

turns out that that Theorem B is true with αn as in the lower-critical dimension and
χd,p as in the upper-critical dimension. Later [LAURENT 2010A] and [LAURENT

2010b] extension to a proof of Theorem B for all p > 1 in the very-large deviation
case.

Main idea:

The joint law of ℓ(R)
τ in a box BR with R ≍ t1/d , stopped at an independent

exponential time τ with parameter ≍ rt is related to Z2, the square of a Gaussian
process Z = (Zx)x∈BR with covariance matrix equal to the Green function, GR,τ .

Now concentration inequalities for Gaussian integrals can be applied. The tail
behaviour of ‖Z‖2p −M (with M the median) is equal to that of a Gaussian variable
with variance equal to sup{〈 f ,GR,τ f 〉 : f ∈ ℓ2p(Zd),‖ f ‖2p = 1}, and this converges
towards χd,p.
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Polynomial moments

� Expand exp{θα2−d+d/p
t ‖ℓt‖p},

� explicitly write out ℓt(z) =
∫ t

0 δz(Sr)dr and the pk-th moments and summarize
and transform the arising multi-sum as far as possible,

� use integrability of the p-th power of the Green function of Brownian motion
around its singularity,

� compactify by periodization for the p-th powers of the Green function.
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t ‖ℓt‖p},

� explicitly write out ℓt(z) =
∫ t

0 δz(Sr)dr and the pk-th moments and summarize
and transform the arising multi-sum as far as possible,

� use integrability of the p-th power of the Green function of Brownian motion
around its singularity,

� compactify by periodization for the p-th powers of the Green function.

� [VAN DER HOFSTAD/MÖRTERS/K. 2006], lower-critical dimension:

E
(

‖ℓt‖pk
p 1l{S[0,t] ⊂ BLαt }

)

≤ kkpCkαk[d+(2−d)p]
t , k ≥ t

α2
t

,

which implies a bit less than Theorem B, but only for αt ≪ t1/(d+1).
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Polynomial moments

� Expand exp{θα2−d+d/p
t ‖ℓt‖p},

� explicitly write out ℓt(z) =
∫ t

0 δz(Sr)dr and the pk-th moments and summarize
and transform the arising multi-sum as far as possible,

� use integrability of the p-th power of the Green function of Brownian motion
around its singularity,

� compactify by periodization for the p-th powers of the Green function.

� [VAN DER HOFSTAD/MÖRTERS/K. 2006], lower-critical dimension:

E
(

‖ℓt‖pk
p 1l{S[0,t] ⊂ BLαt }

)

≤ kkpCkαk[d+(2−d)p]
t , k ≥ t

α2
t

,

which implies a bit less than Theorem B, but only for αt ≪ t1/(d+1).
� [CHEN/MÖRTERS 2008]: The intersection local time I of p random walks in

d > 2p
p−1 satisfies

lim
a→∞

a−1/p logP(I > a) = −pχd,p.

This is based on [K./MÖRTERS 2002, Lemma 2.1]: For any positive variable X ,

lim
k→∞

1
k

logE

[ Xk

k!p

]

= κ ⇐⇒ lim
a→∞

a−1/p logP(X > a) = −peκ/p.

(Should be extendable to prove Theorem B in supercritical dimensions.)
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Density of local times

� explicit formula for the joint density of the local times (ℓt(z))z∈B [BRYDGES/VAN

DER HOFSTAD/K. 2007],

� formula impenetrable, but handy upper bound. A discrete, t-dependent
variational formula arises,

� Gamma-convergence techniques for deriving the precise asymptotics.
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� formula impenetrable, but handy upper bound. A discrete, t-dependent
variational formula arises,

� Gamma-convergence techniques for deriving the precise asymptotics.

[BECKER/K. 2010]: Theorem B in subcritical dimensions.
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� explicit formula for the joint density of the local times (ℓt(z))z∈B [BRYDGES/VAN

DER HOFSTAD/K. 2007],

� formula impenetrable, but handy upper bound. A discrete, t-dependent
variational formula arises,

� Gamma-convergence techniques for deriving the precise asymptotics.

[BECKER/K. 2010]: Theorem B in subcritical dimensions.
Main steps:

1
t

logE

(

exp
{

tα−2λ
t

∥

∥

1
t ℓ(Lαt )

t

∥

∥

p

})

≤ ρ (d)

d,p(Lαt ,α−2λ
t )+ εt ,

where λ = 2p+d−dp
2p ∈ (0,1) and

ρ (d)

d,p(R,θ ) = sup
µ∈M1(BR)

[

θ‖µ‖p −‖(−∆R)1/2√µ‖2
2

]

.
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exp
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tα−2λ
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∥

∥
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∥

∥

p
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ρ (d)

d,p(R,θ ) = sup
µ∈M1(BR)

[

θ‖µ‖p −‖(−∆R)1/2√µ‖2
2

]

.

Furthermore,
limsup

L→∞
limsup

t→∞
α2

t ρ (d)

d,p(Lαt ,α−2λ
t ) ≤ ρ (c)

p,d(1)
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� formula impenetrable, but handy upper bound. A discrete, t-dependent
variational formula arises,

� Gamma-convergence techniques for deriving the precise asymptotics.

[BECKER/K. 2010]: Theorem B in subcritical dimensions.
Main steps:

1
t

logE

(

exp
{

tα−2λ
t

∥

∥

1
t ℓ(Lαt )

t

∥

∥

p

})

≤ ρ (d)

d,p(Lαt ,α−2λ
t )+ εt ,

where λ = 2p+d−dp
2p ∈ (0,1) and

ρ (d)

d,p(R,θ ) = sup
µ∈M1(BR)

[

θ‖µ‖p −‖(−∆R)1/2√µ‖2
2

]

.

Furthermore,
limsup

L→∞
limsup

t→∞
α2

t ρ (d)

d,p(Lαt ,α−2λ
t ) ≤ ρ (c)

p,d(1)

Severe restrictions: d ≤ 2
p−1 and rt ≫ (log t/t)

d(p−1)
p(d+2) .
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