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Definition of the SSG

Definition
Let the points in Φ,ΦE ⊂ R2 be distributed according to
independent poisson point processes of intensity λ, λE . We call Φ
the set of legitimate nodes and ΦE the set of eavesdropper nodes
and define

SINRxy := l(dxy)
γ
∑

z∈Φ,z 6=x l(dzy) + 1

for all x, y ∈ Φ and

SINRxe := l(dxe)
γE
∑

z∈Φ,z 6=x l(dze) + 1

for all x ∈ Φ, e ∈ ΦE .
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Definition of the SSG

Definition
We say that the signal attenuation function l : [0,∞)→ [0,∞)
fulfills standard assumptions if l is strictly decreasing on its support
and

∫∞
0 xl(x) dx <∞.

Furthermore, we say that l fulfills the additional decay condition if
for all c > 0 there is M > 0 such that ∀ x ≥ 0 : l(x + M ) ≤ cl(x).
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Definition of the SSG

Definition
The maximum rate of secure communication [Wyner 1975]
between x, y ∈ Φ is given by

RSINR
xy := 0 ∨ min

e∈ΦE
log2

(1 + SINRxy
1 + SINRxe

)
.
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Definition of the SSG

Definition

For θ ≥ 0 we define the SINR secrecy graph
SSG(θ) := {Φ, E}, where E := {(x, y) : RSINR

xy > θ}.
We call x ∈ Φ connected to y ∈ Φ if (x, y) ∈ E .
If there is a sequence of edges from x ∈ Φ to z ∈ Φ we speak
of a path from x to z and write x → z.
The connected component, also called cluster, of x ∈ Φ is
given by Cx := {z ∈ Φ : x → z}.

In the following, we will only consider SSG := SSG(0) with edge
set E := {(x, y) : SINRxy > SINRxe ∀e ∈ ΦE}.
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Main Theorem: Existence of Distinct Regimes with and without Percolation

Theorem
Let P0 be the palm distribution of Φ and ΦE with respect to
0 ∈ Φ. Let l be a signal attenuation function fulfilling standard
assumptions. For all λE ∈ (0,∞) and γE ∈ [0, 1],

1 there is λ1 ∈ (0,∞), γ1 ∈ (0, 1) such that
∀λ > λ1, γ < γ1 : P0(|C0| =∞) > 0 (supercritical regime,
i.e. percolation occurs),

2 if l satisfies the additional decay condition, there is
λ2 ∈ (0,∞) such that
∀λ < λ2, γ ∈ [0, 1] : P0(|C0| =∞) = 0 (subcritical regime,
i.e. percolation does not occur).
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Connecting SSG Percolation to Percolation on a Square Lattice

For the proof of the first part, it is sufficient to consider the case of
γE = 0, as percolation in this case implies percolation for arbitrary
γE ∈ [0, 1]. The edge set then reduces to
E = {(x, y) : SINRxy > l(dxe) ∀ e ∈ ΦE}.
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Connecting SSG Percolation to Percolation on a Square Lattice

Definition

Let S be the square lattice with side s > 0 with a vertex at
the origin and S′ := S + (s/2, s/2) be the dual lattice. For an
edge a of S let a′ be the edge of S′ which crosses a.
Choose α(s) > 0 such that l(3s) < l(

√
5s)

1+α(s) . For an edge a of
S let S1(a) and S2(a) be its two adjent squares and Y (a) the
7s × 8s rectangle of S which contains a 3s surrounding of
S1(a) ∪ S2(a).
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Connecting SSG Percolation to Percolation on a Square Lattice

Definition
For any edge a of S consider indicator variables A(a),B(a),C (a)
given by

1 A(a) = 1 iff S1(a) ∩ Φ 6= ∅ and S2(a) ∩ Φ 6= ∅,
2 B(a) = 1 iff Y (a) ∩ ΦE = ∅,
3 C (a) = 1 iff for all x, y ∈ (S1(a) ∪ S2(a)) ∩ Φ we have

Ixy :=
∑

z∈Φ,z 6=x l(dzy) ≤ α(s)
γ .

Then a and a′ are defined to be open edges if
D(a) := A(a)B(a)C (a) = 1 and closed edges otherwise.
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Connecting SSG Percolation to Percolation on a Square Lattice

Lemma
If an edge a of S is open, then (x, y) ∈ E for all
x, y ∈ (S1(a) ∪ S2(a)) ∩ Φ.

Proof.
Let x, y ∈ (S1(a) ∪ S2(a)) ∩ Φ be arbitrary.
Then, dxy ≤

√
5s and Ixy ≤ α(s)

γ by property C (a) = 1, hence

SINRxy ≥ l(
√

5s)
1+α(s) .

For all e ∈ ΦE , by property B(a) = 1 we have dxe > 3s and via
l(3s) < l(

√
5s)

1+α(s) we get SINRxy > SINRxe.
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Showing Percolation on the Square Lattice

Theorem
Any finite open cluster of S is surrounded by a closed circuit of S′
[Grimmett 1999, page 284][Kesten 1982, page 386].
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Showing Percolation on the Square Lattice

Lemma
Let {ai}1≤i≤n be a collection of distinct edges in S. Then,

1 P0(A(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p1
n where

p1 := 6
√

1− (1− exp(−λs2))2,
2 P0(B(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p2

n where
p2 := 449

√
1− exp(−56s2λE),

3 [Dousse et al. 2006] P0(C (ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p3
n where

p3 := exp
(

2λ
K
∫∞

0 xl(x) dx + l(0)
K −

α(s)
γK

)
and K > 0 only

depends on l and s.
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Showing Percolation on the Square Lattice

Lemma
Let {ai}1≤i≤n be a collection of distinct edges in S. Then,
P0(A(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p1

n where
p1 := 7

√
1− (1− exp(−λs2))2.

Proof.
There is T ⊆ {ai}1≤i≤n with |T | ≥ n

7 such that the interiors of
{S1(a) ∪ S2(a)}a∈T do not overlap.
Hence, the variables {A(a)}a∈T are independent and
P0(A(a) = 0) ≤ 1− (1− exp(−λs2))2 for all a ∈ T .
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Showing Percolation on the Square Lattice

Lemma
Let {ai}1≤i≤n be a collection of distinct edges in S. Then,
P0(B(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p2

n where
p2 := 449

√
1− exp(−56s2λE).

Proof.
There is Q ⊆ {ai}1≤i≤n with |Q| ≥ n

449 such that the interiors of
{Y (a)}a∈Q do not overlap.
Hence, the variables {B(a)}a∈Q are independent and as all Y (a)
consist of 56 squares of S, we get
P0(B(a)) = 0) = 1− exp(−56s2λE) for all a ∈ Q.
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Showing Percolation on the Square Lattice

Lemma
Let {ai}1≤i≤n be a collection of distinct edges in S. Then,
P0(D(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ qn where q := √p1 + 4

√p2 + 4
√p3.
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Showing Percolation on the Square Lattice

Lemma
For small enough q > 0, the probability of having a closed circuit
in S ′ surrounding the origin is lower than 1.

Proof.
The number of possible circuits of length n around the origin is
lower than n3n−2. Hence, by the previous lemma, the probability
in question is lower than

∑∞
n=1 n3n−2qn = 1

3(1−3q)2 .
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Conclusion

As having no closed circuit in S′ surrounding the origin implies
percolation in S implies percolation of SSG, we have
P0(|C0| =∞) > 0 for small enough q > 0.
Let ε > 0 be such that all q ≤ ε are small enough.
Choose

s > 0 small enough such that
p2 = 449

√
1− exp(−56s2λE) ≤ (ε/3)4,

λ ∈ (0,∞) large enough such that
p1 = 7

√
1− (1− exp(−λs2))2 ≤ (ε/3)2,

γ small enough such that
p3 = exp

(
2λ
K
∫∞

0 xl(x) dx + l(0)
K −

α(s)
γK

)
≤ (ε/3)4.

Then we have q = √p1 + 4
√p2 + 4

√p3 ≤ ε.
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Bounding the SSG by Clusters in another Square Lattice

For the proof of the second part, it is sufficient to consider the
case of γ = 0 and γE = 1, as percolation in this case implies
percolation for arbitrary γ, γE ∈ [0, 1].
The edge set then reduces to
E = {(x, y) : l(dxy) > SINRxe ∀ e ∈ ΦE} where

SINRxe = l(dxe)∑
z∈Φ,z 6=x l(dze) + 1 .
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Bounding the SSG by Clusters in another Square Lattice

Definition

For initially arbitrary m > 0 and c > 0 fix M (m, c) > 9m
such that l

(
d + 1

9M (m, c)
)
≤ l(d)

1+c for all d ≥ M (m, c).
Let M be the square lattice with side M (m, c) with a vertex
at the origin and M′ be the dual lattice.
For an edge a of M let S1(a) and S2(a) be its two adjent
squares and Ti(a) be the square with side m with the same
center as Si(a).
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Bounding the SSG by Clusters in another Square Lattice

Definition
For any edge a of M consider indicator variables Ã(a), B̃(a), C̃ (a)
given by

1 Ã(a) = 1 iff T1(a) ∩ ΦE 6= ∅ and T2(a) ∩ ΦE 6= ∅,
2 B̃(a) = 1 iff (S1(a) ∪ S2(a)) ∩ Φ = ∅,
3 C̃ (a) = 1 iff for all e ∈ (T1(a) ∪ T2(a)) ∩ ΦE we have

Ie :=
∑

z∈Φ l(dze) ≤ c.
Then a and a′ are defined to be open edges iff
D̃(a) := Ã(a)B̃(a)C̃ (a) = 1.
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Bounding the SSG by Clusters in another Square Lattice

Lemma
Edges of SSG cannot cross open edges of M.

Proof.
Assume we have x, y ∈ Φ such that the straight line between x
and y crosses an open edge a of M.
By properties Ã(a) = 1 and B̃(a) = 1 and M (m, c) > 9m there is
an e ∈ ΦE such that we have dxy > dxe + 1

9M (m, c).
As l(dxe + 1

9M (m, c)) ≤ l(dxe)
1+c and by property C̃ (a) = 1 also

Ie ≤ c, we get SINRxy ≤ SINRxe and hence (x, y) /∈ E .
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Existence of Open Circuits in the Square Lattice

Lemma
Let {ai}1≤i≤n be a collection of distinct edges in M which do not
contain the origin. Then,

1 P0(Ã(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ r1
n where

r1 := 7
√

1− (1− exp(−λE m2))2,
2 P0(B̃(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ r2

n where
r2 := 7

√
1− exp(−2λM 2),

3 [Dousse et al. 2006] P0(C̃ (ai) = 0 ∀ 1 ≤ i ≤ n) ≤ r3
n where

r3 := exp
(

4λπ
K
∫∞

0 xl(x) dx + l(0)
K −

c
K

)
and K > 0 only

depends on l and M ,
4 P0(D̃(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ rs

n where
rs := √r1 + 4

√r2 + 4
√r3.
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Existence of Open Circuits in the Square Lattice

Lemma
For small enough q > 0, the probability of having an open circuit
in M surrounding the origin is equal to 1.
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Conclusion

As having an open circuit in M surrounding the origin implies that
the cluster C0 is finite, we have P0(|C0| =∞) = 0 for small
enough rs > 0.
Let ε > 0 be such that all rs ≤ ε are small enough.
Choose

m ∈ (0,∞) large enough such that
r1 = 7

√
1− (1− exp(−λE m2))2 ≤ (ε/3)2

c ∈ (0,∞) large enough such that
r ′3 := exp

(
4π
K
∫∞

0 xl(x) dx + l(0)
K −

c
K

)
≤ (ε/3)4,

λ ∈ (0, 1) small enough such that
r2 := 7

√
1− exp(−2λM (m, c)2) ≤ (ε/3)4.

Then we have r3 = exp
(

4λπ
K
∫∞

0 xl(x) dx − c
K

)
≤ r ′3 and

rs = √r1 + 4
√r2 + 4

√r3 ≤ ε.
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Finally,

THE END.

Andreas Preiß
Percolation of the SINR Secrecy Graph (SSG)


	Definitions and Main Theorem
	Definition of the SSG
	Main Theorem: Existence of Distinct Regimes with and without Percolation

	Proof of Part 1
	Connecting SSG Percolation to Percolation on a Square Lattice
	Showing Percolation on the Square Lattice
	Conclusion

	Proof of Part 2
	Bounding the SSG by Clusters in another Square Lattice
	Existence of Open Circuits in the Square Lattice
	Conclusion

	References

