Definitions and Main Theorem

Proof of Part 1 0000 000000 Proof of Part 2 0000 00 References 00

Percolation of the SINR Secrecy Graph (SSG)

Following Vaze and Iyer 2014

Andreas Preiß

Seminar on Random Networks, July 14th, 2015

Andreas Preiß Percolation of the SINR Secrecy Graph (SSG)

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
• 000 0	0000 000000 0	0000 00 0	
Definition of the CCC			

Let the points in $\Phi, \Phi_E \subset \mathbb{R}^2$ be distributed according to independent poisson point processes of intensity λ, λ_E . We call Φ the set of legitimate nodes and Φ_E the set of eavesdropper nodes and define

$$SINR_{xy} := \frac{l(d_{xy})}{\gamma \sum_{z \in \Phi, z \neq x} l(d_{zy}) + 1}$$

for all $x, y \in \Phi$ and

$$SINR_{xe} := \frac{l(d_{xe})}{\gamma_E \sum_{z \in \Phi, z \neq x} l(d_{ze}) + 1}$$

for all $x \in \Phi, e \in \Phi_E$.

Andreas Preiß

Definitions and Main Theorem

Proof of Part 1 0000 000000 Proof of Part 2 0000 00 References 00

Definition of the SSG

Definition

We say that the signal attenuation function $l: [0, \infty) \to [0, \infty)$ fulfills standard assumptions if l is strictly decreasing on its support and $\int_0^\infty x l(x) dx < \infty$. Furthermore, we say that l fulfills the additional decay condition if for all c > 0 there is M > 0 such that $\forall x \ge 0$: $l(x + M) \le c l(x)$.

Definitions and	Main	Theorem
0000		

Proof of Part 1 0000 000000 Proof of Part 2 0000 00 References 00

Definition of the SSG

Definition

The maximum rate of secure communication [Wyner 1975] between $x, y \in \Phi$ is given by

$$R_{xy}^{\mathrm{SINR}} := 0 \lor \min_{e \in \Phi_E} \log_2 \left(rac{1 + \mathrm{SINR}_{xy}}{1 + \mathrm{SINR}_{xe}}
ight).$$

Andreas Preiß Percolation of the SINR Secrecy Graph (SSG)

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	
000 ● ○	0000 000000 0	0000 00 0	

Definition of the SSG

- For $\theta \ge 0$ we define the SINR secrecy graph $SSG(\theta) := \{\Phi, \mathcal{E}\}, \text{ where } \mathcal{E} := \{(x, y) : R_{xy}^{SINR} > \theta\}.$
- We call $x \in \Phi$ connected to $y \in \Phi$ if $(x, y) \in \mathcal{E}$.
- If there is a sequence of edges from $x \in \Phi$ to $z \in \Phi$ we speak of a path from x to z and write $x \to z$.

References

• The connected component, also called cluster, of $x \in \Phi$ is given by $C_x := \{z \in \Phi : x \to z\}.$

In the following, we will only consider SSG := SSG(0) with edge set $\mathcal{E} := \{(x, y) : SINR_{xy} > SINR_{xe} \ \forall e \in \Phi_E\}.$

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
0000 •	0000 000000 0	0000 00 0	
Main Theorem: Existence of Distinct Re	gimes with and without Percolation	n	

Theorem

Let P^0 be the palm distribution of Φ and Φ_E with respect to $0 \in \Phi$. Let l be a signal attenuation function fulfilling standard assumptions. For all $\lambda_E \in (0, \infty)$ and $\gamma_E \in [0, 1]$,

- 1 there is $\lambda_1 \in (0,\infty), \gamma_1 \in (0,1)$ such that $\forall \lambda > \lambda_1, \gamma < \gamma_1 : P^0(|C_0| = \infty) > 0$ (supercritical regime, *i.e.* percolation occurs),
- 2 if l satisfies the additional decay condition, there is λ₂ ∈ (0,∞) such that ∀λ < λ₂, γ ∈ [0,1] : P⁰(|C₀| = ∞) = 0 (subcritical regime, i.e. percolation does not occur).

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
0000 0	• 000 000000	0000	
Connecting SSG Percolation to Percolati	on on a Square Lattice		

For the proof of the first part, it is sufficient to consider the case of $\gamma_E = 0$, as percolation in this case implies percolation for arbitrary $\gamma_E \in [0, 1]$. The edge set then reduces to $\mathcal{E} = \{(x, y) : \text{SINR}_{xy} > l(d_{xe}) \ \forall \ e \in \Phi_E\}.$

Definitions and Main Theorem 0000 0	Proof of Part 1 0●00 000000	Proof of Part 2 0000 00	References 00
Connecting SSC Percelation to Percelati			

- Let S be the square lattice with side s > 0 with a vertex at the origin and $\mathbf{S}' := \mathbf{S} + (s/2, s/2)$ be the dual lattice. For an edge \mathbf{a} of S let \mathbf{a}' be the edge of S' which crosses \mathbf{a} .
- Choose $\alpha(s) > 0$ such that $l(3s) < \frac{l(\sqrt{5}s)}{1+\alpha(s)}$. For an edge **a** of **S** let $S_1(\mathbf{a})$ and $S_2(\mathbf{a})$ be its two adjent squares and $Y(\mathbf{a})$ the $7s \times 8s$ rectangle of **S** which contains a 3s surrounding of $S_1(\mathbf{a}) \cup S_2(\mathbf{a})$.

Definitions and Main Theorem 0000 0	Proof of Part 1 00●0 000000 0	Proof of Part 2 0000 00 0	References 00
Connecting SSG Percolation to Percolati	on on a Square Lattice		

For any edge ${\bf a}$ of ${\bf S}$ consider indicator variables $A({\bf a}), B({\bf a}), C({\bf a})$ given by

1
$$A(\mathbf{a}) = 1$$
 iff $S_1(\mathbf{a}) \cap \Phi \neq \emptyset$ and $S_2(\mathbf{a}) \cap \Phi \neq \emptyset$,

2
$$B(\mathbf{a}) = 1$$
 iff $Y(\mathbf{a}) \cap \Phi_E = \emptyset$,

3
$$C(\mathbf{a}) = 1$$
 iff for all $x, y \in (S_1(\mathbf{a}) \cup S_2(\mathbf{a})) \cap \Phi$ we have
 $I_{xy} := \sum_{z \in \Phi, z \neq x} l(d_{zy}) \leq \frac{\alpha(s)}{\gamma}.$

Then a and a' are defined to be open edges if $D(\mathbf{a}) := A(\mathbf{a})B(\mathbf{a})C(\mathbf{a}) = 1$ and closed edges otherwise.

Andreas Preiß

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
0000	0000	0000	
	000000	0	
Connecting SSG Percolation to Percolatio	on on a Square Lattice		

If an edge
$$\mathbf{a}$$
 of \mathbf{S} is open, then $(x, y) \in \mathcal{E}$ for all $x, y \in (S_1(\mathbf{a}) \cup S_2(\mathbf{a})) \cap \Phi$.

Proof.

Let $x, y \in (S_1(\mathbf{a}) \cup S_2(\mathbf{a})) \cap \Phi$ be arbitrary. Then, $d_{xy} \leq \sqrt{5}s$ and $I_{xy} \leq \frac{\alpha(s)}{\gamma}$ by property $C(\mathbf{a}) = 1$, hence $\operatorname{SINR}_{xy} \geq \frac{l(\sqrt{5}s)}{1+\alpha(s)}$. For all $e \in \Phi_E$, by property $B(\mathbf{a}) = 1$ we have $d_{xe} > 3s$ and via $l(3s) < \frac{l(\sqrt{5}s)}{1+\alpha(s)}$ we get $\operatorname{SINR}_{xy} > \operatorname{SINR}_{xe}$.

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 ○○○○ ●○○○○○○	Proof of Part 2 0000 00	References 00
Showing Percolation on the Square Lattic	<u> </u>		

Theorem

Any finite open cluster of S is surrounded by a closed circuit of S' [Grimmett 1999, page 284][Kesten 1982, page 386].

Definitions and Main Theorem 0000 0	Proof of Part 1 ○○○○ ○●○○○○ ○	Proof of Part 2 0000 00 0	References 00
Showing Percolation on the Square Lattic	ce		

Let $\{\mathbf{a}_i\}_{1 \le i \le n}$ be a collection of distinct edges in \mathbf{S} . Then, 1 $P^0(A(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le p_1^n$ where $p_1 := \sqrt[6]{1 - (1 - \exp(-\lambda s^2))^2}$, 2 $P^0(B(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le p_2^n$ where $p_2 := \sqrt[449]{1 - \exp(-56s^2\lambda_E)}$, 3 [Dousse et al. 2006] $P^0(C(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le p_3^n$ where $p_3 := \exp\left(\frac{2\lambda}{K}\int_0^\infty xl(x) \ dx + \frac{l(0)}{K} - \frac{\alpha(s)}{\gamma K}\right)$ and K > 0 only depends on l and s.

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 0000 00●000 0	Proof of Part 2 0000 00 0	References 00
Showing Percolation on the Square Latti	ce		

Let $\{\mathbf{a}_i\}_{1 \leq i \leq n}$ be a collection of distinct edges in \mathbf{S} . Then, $P^0(A(\mathbf{a}_i) = 0 \ \forall 1 \leq i \leq n) \leq p_1^n$ where $p_1 := \sqrt[7]{1 - (1 - \exp(-\lambda s^2))^2}.$

Proof.

There is $T \subseteq {\mathbf{a}_i}_{1 \le i \le n}$ with $|T| \ge \frac{n}{7}$ such that the interiors of ${S_1(\mathbf{a}) \cup S_2(\mathbf{a})}_{\mathbf{a} \in T}$ do not overlap. Hence, the variables ${A(\mathbf{a})}_{\mathbf{a} \in T}$ are independent and $P^0(A(\mathbf{a}) = 0) \le 1 - (1 - \exp(-\lambda s^2))^2$ for all $\mathbf{a} \in T$.

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 ○○○○ ○○○●○○ ○	Proof of Part 2 0000 00 0	References 00
Showing Percolation on the Square Latti	CP.		

Let $\{\mathbf{a}_i\}_{1 \le i \le n}$ be a collection of distinct edges in \mathbf{S} . Then, $P^0(B(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le p_2^n$ where $p_2 := \sqrt[449]{1 - \exp(-56s^2\lambda_E)}.$

Proof.

There is $Q \subseteq {\mathbf{a}_i}_{1 \le i \le n}$ with $|Q| \ge \frac{n}{449}$ such that the interiors of ${Y(\mathbf{a})}_{\mathbf{a} \in Q}$ do not overlap. Hence, the variables ${B(\mathbf{a})}_{\mathbf{a} \in Q}$ are independent and as all $Y(\mathbf{a})$ consist of 56 squares of \mathbf{S} , we get $P^0(B(\mathbf{a})) = 0 = 1 - \exp(-56s^2\lambda_E)$ for all $\mathbf{a} \in Q$.

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 ○○○○ ○○○●○ ○	Proof of Part 2 0000 00 0	References 00
Showing Percolation on the Square Lattic	ce		

Let $\{\mathbf{a}_i\}_{1 \leq i \leq n}$ be a collection of distinct edges in S. Then, $P^0(D(\mathbf{a}_i) = 0 \ \forall 1 \leq i \leq n) \leq q^n$ where $q := \sqrt{p_1} + \sqrt[4]{p_2} + \sqrt[4]{p_3}$.

Definitions and Main Theorem 0000 0	Proof of Part 1	Proof of Part 2 0000 00	References 00
Chausing Developing on the Course Lattice			

Showing Percolation on the Square Latti

Lemma

For small enough q > 0, the probability of having a closed circuit in S' surrounding the origin is lower than 1.

Proof.

The number of possible circuits of length n around the origin is lower than $n3^{n-2}$. Hence, by the previous lemma, the probability in question is lower than $\sum_{n=1}^{\infty} n3^{n-2}q^n = \frac{1}{3(1-3q)^2}$.

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 0000 000000	Proof of Part 2 0000 00 0	References 00
Conclusion			

As having no closed circuit in \mathbf{S}' surrounding the origin implies percolation in \mathbf{S} implies percolation of SSG , we have $P^0(|C_0|=\infty)>0$ for small enough q>0. Let $\varepsilon>0$ be such that all $q\leq\varepsilon$ are small enough. Choose

•
$$s > 0$$
 small enough such that
 $p_2 = {}^{449}\sqrt{1 - \exp(-56s^2\lambda_E)} \le (\varepsilon/3)^4$,
• $\lambda \in (0, \infty)$ large enough such that
 $p_1 = \sqrt[7]{1 - (1 - \exp(-\lambda s^2))^2} \le (\varepsilon/3)^2$,
• γ small enough such that
 $p_3 = \exp\left(\frac{2\lambda}{K}\int_0^\infty xl(x)\,\mathrm{d}x + \frac{l(0)}{K} - \frac{\alpha(s)}{\gamma K}\right) \le (\varepsilon/3)^2$.
Then we have $q = \sqrt{p_1} + \sqrt[4]{p_2} + \sqrt[4]{p_3} \le \varepsilon$.

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 0000 000000 0	Proof of Part 2 ●000 ○ ○	References 00
Bounding the SSG by Clusters in anothe	r Square Lattice		

For the proof of the second part, it is sufficient to consider the case of $\gamma = 0$ and $\gamma_E = 1$, as percolation in this case implies percolation for arbitrary $\gamma, \gamma_E \in [0, 1]$. The edge set then reduces to

 $\mathcal{E} = \{(x, y) : l(d_{xy}) > \text{SINR}_{xe} \ \forall \ e \in \Phi_E\}$ where

$$\operatorname{SINR}_{xe} = \frac{l(d_{xe})}{\sum_{z \in \Phi, z \neq x} l(d_{ze}) + 1}.$$

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 0000 0000000 0	Proof of Part 2 o●oo o o	References 00
	C		

- For initially arbitrary m > 0 and c > 0 fix M(m, c) > 9m such that $l(d + \frac{1}{9}M(m, c)) \le \frac{l(d)}{1+c}$ for all $d \ge M(m, c)$.
- Let M be the square lattice with side M(m, c) with a vertex at the origin and M' be the dual lattice.
- For an edge \mathbf{a} of \mathbf{M} let $S_1(\mathbf{a})$ and $S_2(\mathbf{a})$ be its two adjent squares and $T_i(\mathbf{a})$ be the square with side m with the same center as $S_i(\mathbf{a})$.

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
0000	0000	0000	00
Bounding the SSG by Clusters in anothe	r Square Lattice		

For any edge ${\bf a}$ of ${\bf M}$ consider indicator variables $\tilde{A}({\bf a}), \tilde{B}({\bf a}), \tilde{C}({\bf a})$ given by

$$1 \quad \tilde{A}(\mathbf{a}) = 1 \text{ iff } T_1(\mathbf{a}) \cap \Phi_E \neq \emptyset \text{ and } T_2(\mathbf{a}) \cap \Phi_E \neq \emptyset,$$

2
$$\tilde{B}(\mathbf{a}) = 1$$
 iff $(S_1(\mathbf{a}) \cup S_2(\mathbf{a})) \cap \Phi = \emptyset$,

3
$$\tilde{C}(\mathbf{a}) = 1$$
 iff for all $e \in (T_1(\mathbf{a}) \cup T_2(\mathbf{a})) \cap \Phi_E$ we have $I_e := \sum_{z \in \Phi} l(d_{ze}) \leq c.$

Then a and a' are defined to be open edges iff $\tilde{D}(\mathbf{a}) := \tilde{A}(\mathbf{a})\tilde{B}(\mathbf{a})\tilde{C}(\mathbf{a}) = 1.$

Andreas Preiß

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
		0000	
	000000	00	
Bounding the SSG by Clusters in anothe	r Square Lattice		

Edges of SSG cannot cross open edges of M.

Proof.

Assume we have $x, y \in \Phi$ such that the straight line between xand y crosses an open edge \mathbf{a} of \mathbf{M} . By properties $\tilde{A}(\mathbf{a}) = 1$ and $\tilde{B}(\mathbf{a}) = 1$ and M(m, c) > 9m there is an $e \in \Phi_E$ such that we have $d_{xy} > d_{xe} + \frac{1}{9}M(m, c)$. As $l(d_{xe} + \frac{1}{9}M(m, c)) \leq \frac{l(d_{xe})}{1+c}$ and by property $\tilde{C}(\mathbf{a}) = 1$ also $I_e \leq c$, we get $\mathrm{SINR}_{xy} \leq \mathrm{SINR}_{xe}$ and hence $(x, y) \notin \mathcal{E}$.

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 0000 000000 0	Proof of Part 2 ○○○○ ○	References 00
Existence of Open Circuits in the Square	Lattice		

Let $\{a_i\}_{1 \le i \le n}$ be a collection of distinct edges in M which do not contain the origin. Then,

1
$$P^0(\tilde{A}(\mathbf{a}_i) = 0 \ \forall \ 1 \le i \le n) \le r_1^n$$
 where $r_1 := \sqrt[7]{1 - (1 - \exp(-\lambda_E m^2))^2}$,

2
$$P^0(\tilde{B}(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le r_2^n$$
 where $r_2 := \sqrt[7]{1 - \exp(-2\lambda M^2)}$,

3 [Dousse et al. 2006]
$$P^0(\tilde{C}(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le r_3^n$$
 where $r_3 := \exp\left(\frac{4\lambda\pi}{K}\int_0^\infty x l(x) \, \mathrm{d}x + \frac{l(0)}{K} - \frac{c}{K}\right)$ and $K > 0$ only depends on l and M ,

4
$$P^0(\tilde{D}(\mathbf{a}_i) = 0 \ \forall \ 1 \le i \le n) \le r_s^n$$
 where
 $r_s := \sqrt{r_1} + \sqrt[4]{r_2} + \sqrt[4]{r_3}.$

Andreas Preiß

Definitions and Main Theorem 0000 0	Proof of Part 1 0000 000000 0	Proof of Part 2 ○○○○ ○● ○	References 00
Existence of Open Circuits in the Square	2 Lattice		

For small enough q > 0, the probability of having an open circuit in M surrounding the origin is equal to 1.

Definitions and Main Theorem 0000 0	Proof of Part 1 0000 000000 0	Proof of Part 2 ○○○○ ●	References 00
Conclusion			

As having an open circuit in M surrounding the origin implies that the cluster C_0 is finite, we have $P^0(|C_0| = \infty) = 0$ for small enough $r_s > 0$. Let $\varepsilon > 0$ be such that all $r_s \le \varepsilon$ are small enough. Choose

$$\begin{array}{l} \mathbf{m} \in (0,\infty) \text{ large enough such that} \\ r_1 = \sqrt[7]{1 - (1 - \exp(-\lambda_E \, m^2))^2} \leq (\varepsilon/3)^2 \\ \mathbf{m} \ c \in (0,\infty) \text{ large enough such that} \\ r'_3 := \exp\left(\frac{4\pi}{K}\int_0^\infty x l(x) \,\mathrm{d}x + \frac{l(0)}{K} - \frac{c}{K}\right) \leq (\varepsilon/3)^4, \\ \mathbf{m} \ \lambda \in (0,1) \text{ small enough such that} \\ r_2 := \sqrt[7]{1 - \exp(-2\lambda M(m,c)^2)} \leq (\varepsilon/3)^4. \end{array}$$
 Then we have $r_3 = \exp\left(\frac{4\lambda\pi}{K}\int_0^\infty x l(x) \,\mathrm{d}x - \frac{c}{K}\right) \leq r'_3 \text{ and} \\ r_s = \sqrt{r_1} + \sqrt[4]{r_2} + \sqrt[4]{r_3} \leq \varepsilon. \end{array}$

Andreas Preiß

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
0000 0	0000 000000	0000 00	•0

Olivier Dousse, Massimo Franceschetti, Nicolas Macris, Ronald Mester, and Patrick Thiran. Percolation in the Signal to Interference Ratio Graph. J. Appl. Probab., 43:552-562, 2006.

📎 Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wissenschaften

Springer, Berlin Heidelberg, 2nd edition, 1999.

💊 Harry Kesten.

Percolation Theory for Mathematicians. Birkhäuser, Boston, 1982.

Proof of Part 1 0000 000000 0 Proof of Part 2 0000 00 References ○●

Rahul Vaze and Srikanth lyer.

Percolation on the Information-Theoretically Secure Signal to Interference Ratio Graph.

J. Appl. Probab., 51:910-920, 2014.

The Wire-Tap Channel.

Bell Syst. Tech. J., 54:1355–1387, 1975.

Andreas Preiß Percolation of the SINR Secrecy Graph (SSG)

Definitions and Main Theorem	Proof of Part 1	Proof of Part 2	References
0000 0	0000 000000 0	0000 00 0	

THE END.

Andreas Preiß Percolation of the SINR Secrecy Graph (SSG)