Potential Confinement Property in the Parabolic Anderson Model

Wolfgang König

Universität Leipzig

joint work with Gabriela Grüninger (Hochschule Regensburg)

The Parabolic Anderson Model

We consider the Cauchy problem for the heat equation with random coefficients:

$$\partial_t u(t,z) = \Delta^{\mathsf{d}} u(t,z) + \xi(z)u(t,z), \quad \text{for } (t,z) \in (0,\infty) \times \mathbb{Z}^d, \quad (1)$$
$$u(0,z) = \mathbb{1}_0(z), \quad \text{for } z \in \mathbb{Z}^d. \quad (2)$$

- $\Delta^{\mathsf{d}} f(z) = \sum_{y \sim z} [f(y) f(z)]$ discrete Laplacian
- **9** $\Delta^{d} + \xi$ Anderson Hamiltonian
- \blacksquare $u(t, \cdot)$ is a random time-dependent (not shift-invariant) field
- $U(t) = \sum_{z \in \mathbb{Z}^d} u(t, z) \text{ total mass}$

Interpretations / Motivations:

- Random mass transport through a random field of sinks and sources.
- Expected particle number in a branching random walk model in a field of random branching and killing rates.

Moment assumption: $H(t) = \log \langle e^{t\xi(0)} \rangle < \infty$ for any t > 0.

The universality classes

According to [VAN DER HOFSTAD/K./MÖRTERS 2006], there are, under some regularity assumption, precisely four universality classes:

- (i) double-exponential case: $\log \operatorname{Prob}(\xi(0) > r) \approx -e^{r/\rho}$ as $r \to \infty$ with $\rho \in (0, \infty)$, see [GÄRTNER/MOLCHANOV 1998].
- (ii) double-exponential case with $\rho = \infty$, see [Gärtner/Molchanov 1998].
- (iii) almost bounded potentials (see below)
- (iv) bounded potentials: $\log \operatorname{Prob}(\xi(0) > -x) \approx -x^{\gamma/(1-\gamma)}$ as $x \downarrow 0$, with $\gamma \in [0, 1)$, see [BISKUP/K. 2001].

In this talk, we consider almost bounded potentials:

Assumption: For some $\rho \in (0, \infty)$ and some scale function $\kappa(t) = o(t)$,

$$\lim_{t \to \infty} \frac{H(ty) - yH(t)}{\kappa(t)} = -\rho y \log y, \qquad y > 0.$$

Introduce another scale function $1 \ll \alpha(t) = t^{o(1)}$ by

$$\kappa\left(\frac{t}{\alpha(t)^d}\right) = \frac{1}{\alpha(t)^{d+2}}, \qquad t \gg 1.$$

Characteristic variational problem

Informally, $\alpha(t)$ is the order of the diameter of the area from which the main contribution to the total expected mass stems, i.e.,

$$\langle U(t) \rangle \approx \Big\langle \sum_{|z| \le R\alpha(t)} u(t,z) \Big\rangle, \quad t \gg 1 \text{ and then } R \to \infty.$$

Our goal: Describe the shapes of ξ that give the biggest contribution to $\langle U(t) \rangle$.

The moment asymptotics are given as follows [VAN DER HOFSTAD/K./MÖRTERS 2006]:

$$\frac{1}{t}\log\langle U(t)\rangle = \frac{H(t\alpha(t)^{-d})}{t\alpha(t)^{-d}} - \frac{\chi + o(1)}{\alpha(t)^2}, \quad \text{where} \quad \chi = \min_{\psi \in \mathcal{C}(\mathbb{R}^d)} \Big[\mathcal{L}(\psi) - \lambda(\psi)\Big].$$

Here $\lambda(\psi)$ is the top of the spectrum of $\Delta + \psi$ in $L^2(\mathbb{R}^d)$, and $\mathcal{L}(\psi) = \frac{\rho}{e} \int_{\mathbb{R}^d} e^{\psi(x)/\rho} dx$.

The minimiser is the parabola $\psi_{\rho}(x) = \rho + \rho \frac{d}{2} \log \frac{\rho}{\pi} - \rho^2 |x|^2$ (\implies logarithmic Sobolev inequality).

The principal eigenfunction of $\Delta + \psi_{\rho}$ is g_{ρ} , where g_{ρ}^2 is the Gaussian density $g_{\rho}^2(x) = (\frac{\rho}{\pi})^{d/2} e^{-\rho|x|^2} = \frac{1}{e} e^{\frac{1}{\rho}\psi_{\rho}(x)}$.

Explanation of the moment asymptotics

In terms of the shifted and rescaled potential

$$\overline{\xi}_t(x) = \alpha(t)^2 \Big[\xi \big(\lfloor \alpha(t)x \rfloor \big) - \frac{H\big(t\alpha(t)^{-d}\big)}{t\alpha(t)^{-d}} \Big],$$

the total mass may be written

$$U(t) e^{-H(t/\alpha(t)^d)\alpha(t)^d} \approx \exp\left\{\frac{t}{\alpha(t)^2}\lambda(\overline{\xi}_t)\right\},\,$$

using an eigenvalue expansion and scaling properties of the eigenvalue. The shifted and rescaled potential satisfies the large-deviation principle

$$\operatorname{Prob}(\overline{\xi}_t \approx \psi) \approx \exp\Big\{-\frac{t}{\alpha(t)^2}\mathcal{L}(\psi)\Big\}.$$

Combining this with Varadhan's lemma, suggests the moment asymptotics.

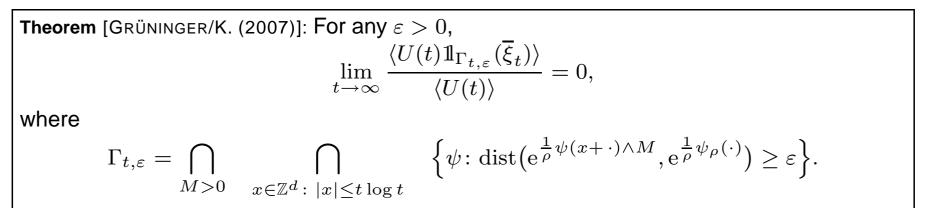
Interpretation: The main contribution to the expectation of the total mass U(t) comes from

- those ξ which make $\overline{\xi}_t$ resemble the perfect parabola ψ_{ρ} .
- those solutions $u(t, \cdot)$ that resemble the perfect Gaussian density g_{ρ}^2 , up to spatial rescaling and vertical shifting.

Goal: Give mathematical substance to this.

Potential confinement

Let $dist(\cdot, \cdot)$ be a metric for L^1 -convergence on compact subsets of \mathbb{R}^d . Our main result is a law of large numbers for $\overline{\xi}_t$ towards the parabola ψ_{ρ} :



- In words, the totality of all ξ such that every shift of $e^{\frac{1}{\rho}\overline{\xi}_t \wedge M}$ is, for any M > 0, away from the Gaussian $g_{\rho}^2 = e^{\frac{1}{\rho}\psi_{\rho}}$, gives a negligible contribution.
- An almost sure version of the potential confinement property was proved in [GÄRTNER/K./MOLCHANOV (2007)] for the double-exponential distribution and in [SZNITMAN (1992)] for the related model of Brownian motion among Poisson traps.
- A path confinement property (for the Brownian motion in the Feynman-Kac representation of u(t, z)) was proved in [SZNITMAN (1992)], [BOLTHAUSEN (1992)], [POVEL (1999)] for the trap problem.

Comments on the proof

Functional analytic side: A key step is to prove the strictness of the minimisation in the following strong sense for a variant of the formula for χ :

$$-\chi = \sup_{\psi} \left[\lambda(\psi) - \rho \log \left(\frac{e}{\rho} \mathcal{L}(\psi) \right) \right] > \sup_{\psi \in \Gamma_{t,\varepsilon}} \left[\lambda(\psi) - \rho \log \left(\frac{e}{\rho} \mathcal{L}(\psi) \right) \right] = -\chi_{\varepsilon}.$$

Probabilistic side: Derive effective estimates for the contribution to U(t) from ξ 's such that $\overline{\xi}_t$ is away from ψ_{ρ} in the above sense.

As in the above heuristics, we have

$$(*) := \frac{\langle U(t) \mathbb{1}_{\Gamma_{t,\varepsilon}}(\overline{\xi}_{t}) \rangle}{\langle U(t) \rangle} \approx \Big\langle \exp\Big\{\frac{t}{\alpha(t)^{2}}\lambda(\overline{\xi}_{t})\Big\} \mathbb{1}_{\Gamma_{t,\varepsilon}}(\overline{\xi}_{t}) \Big\rangle \mathrm{e}^{\frac{t}{\alpha(t)^{2}}\chi}.$$

Now add and subtract the term $\frac{t}{\alpha(t)^2} \rho \log(\frac{e}{\rho} \mathcal{L}(\overline{\xi}_t))$ in the exponent. The difference term is estimated against the variational formula $-\chi_{\varepsilon}$. Hence,

$$(*) \leq e^{-\frac{t}{\alpha(t)^2}(\chi_{\varepsilon} - \chi)} \Big\langle \exp\Big\{\frac{t}{\alpha(t)^2} \rho \log\Big(\frac{e}{\rho}\mathcal{L}(\overline{\xi}_t)\Big)\Big\}\Big\rangle.$$

Combinatorial techniques show that the exponential rate of the last term vanishes, i.e., $(*) \rightarrow 0$ exponentially fast.

Remark: The combinatorics only work after cutting the potential at some large level, i.e., after replacing $\overline{\xi}_t$ by $\overline{\xi}_t \wedge M$, which must be incorporated beforehand.