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Abstract We study the long-time asymptotics of the total mass of the solution to
the parabolic Anderson model (PAM) on a supercritical Galton-Watson random tree
with bounded degrees. We identify the second-order contribution to this asymptotics
in terms of a variational formula that gives information about the local structure
of the region where the solution is concentrated. The analysis behind this formula
suggests that, under mild conditions on the model parameters, concentration takes
place on a tree with minimal degree. Our approach can be applied to locally tree-
like finite random graphs, in a coupled limit where both time and graph size tend to
infinity. As an example, we consider the configuration model, i.e., uniform simple
random graphs with a prescribed degree sequence.
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1 Introduction and main results

In Section 1.1 we give a brief introduction to the parabolic Anderson model. In
Section 1.2 we give the basic notation. In Sections 1.3 and 1.4 we present our results
for Galton-Watson trees and for the configuration model, respectively. In Section 1.5
we discuss these results.

1.1 The PAM and intermittency

The parabolic Anderson model (PAM) concerns the Cauchy problem for the heat
equation with a random potential, i.e., solutions u to the equation

∂tu(t,x) = ∆u(t,x)+ξ (x)u(t,x), t > 0, x ∈X , (1)

where X is a space equipped with a Laplacian ∆ , and ξ is a random potential
on X . The operator ∆ + ξ is called the Anderson operator. Although Zd and Rd

are the most common choices for X , other spaces are interesting as well, such as
Riemannian manifolds or discrete graphs. In the present paper we study the PAM on
random graphs. For surveys on the mathematical literature on the PAM until 2016,
we refer the reader to [A16, K16].

The main question of interest in the PAM is a detailed description of the concen-
tration effect called intermittency: in the limit of large time the solution u concen-
trates on small and well-separated regions in space, called intermittent islands. This
concentration effect can be studied particularly well in the PAM because efficient
mathematical tools are available, such as eigenvalue expansions and the Feynman-
Kac formula. In particular, these lead to a detailed description of the locations of
the intermittent islands, as well as the profiles of the potential ξ and the solution u
inside these islands.

The analysis of intermittency usually starts with a computation of the logarith-
mic large-time asymptotics of the total mass, encapsulated in Lyapunov exponents.
There is an important distinction between the annealed setting (i.e., averaged over
the random potential) and the quenched setting (i.e., almost surely with respect to
the random potential). Often both types of Lyapunov exponents admit explicit de-
scriptions in terms of characteristic variational formulas that contain information
about how the mass concentrates in space, and serve as starting points for deeper
investigations. The ‘annealed’ and the ‘quenched’ variational formula are typically
connected, but take two different points of view. They contain two parts: a rate func-
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tion term that identifies which profiles of the potential are most favourable for mass
concentration, and a spectral term that identifies which profiles the solution takes
inside the intermittent islands.

From now on, we restrict to discrete spaces and to random potentials that con-
sist of i.i.d. variables. For Zd , the above intermittent picture was verified for several
classes of marginal distributions. It turned out that the double-exponential distribu-
tion with parameter ρ ∈ (0,∞), given by

P(ξ (0)> u) = e−eu/ρ

, u ∈ R, (2)

is particularly interesting, because it leads to non-trivial intermittent islands and to
interesting profiles of both potential and solution inside. There are four different
classes of potentials, distinguished by the type of variational formula that emerges
and the scale of the diameter of the intermittent island (cf. [HKM06]). The double-
exponential distribution is critical in the sense that the intermittent islands neither
grow nor shrink with time, and therefore represents a class of its own.

The setup of the present paper contains two features that are novel in the study
of the PAM: (1) we consider a random discrete space, thereby introducing another
layer of randomness into the model; (2) this space has a non-Euclidean topology,
in the form of an exponential growth of the volume of balls as a function of their
radius. As far as we are aware, the discrete-space PAM has so far been studied only
on Zd and on two examples of finite deterministic graphs: the complete graph with
n vertices [FM90] and the N-dimensional hypercube with n = 2N vertices [AGH20].
These graphs have unbounded degrees as n→∞, and therefore the Laplace operator
was equipped with a prefactor that is equal to the inverse of the degree, unlike the
Laplace operator considered here.

Our main target is the PAM on a Galton-Watson tree with bounded degrees.
However, our approach also applies to large finite graphs that are sparse (e.g.
bounded degrees) and locally tree-like (rare loops). As an illustration, we consider
here the configuration model or, more precisely, the uniform simple random graph
with prescribed degree sequence. We choose to work in the almost-sure (or large-
probability) setting with respect to the randomnesses of both graph and potential,
and we take as initial condition a unit mass at the root of the graph. We identify
the leading order large-time asymptotics of the total mass, and derive a variational
formula for the correction term. This formula contains a spatial part (identifying the
subgraph on which the concentration takes place) and a profile part (identifying the
shape on that subgraph of both the potential and the solution). Both parts are new.
In some cases we can identify the minimiser of the variational formula. As in the
case of Zd , the structure of the islands does not depend on time: no spatial scaling
is necessary.
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1.2 The PAM on a graph

We begin with some definitions and notations, and refer the reader to [A16, K16]
for more background on the PAM in the case of Zd .

Let G = (V,E) be a simple undirected graph, either finite or countably infinite.
Let ∆G be the Laplacian on G, i.e.,

(∆G f )(x) := ∑
y∈V :
{x,y}∈E

[ f (y)− f (x)], x ∈V, f : V → R. (3)

Our object of interest is the non-negative solution of the Cauchy problem for the
heat equation with potential ξ : V → R and localised initial condition,

∂tu(x, t) = (∆Gu)(x, t)+ξ (x)u(x, t), x ∈V, t > 0,
u(x,0) = δO(x), x ∈V, (4)

where O ∈V is referred to as the origin or root of G. We say that G is rooted at O
and call G = (V,E,O) a rooted graph. The quantity u(t,x) can be interpreted as the
amount of mass present at time t at site x when initially there is unit mass at O.

Criteria for existence and uniqueness of the non-negative solution to (4) are well-
known for the case G = Zd (see [GM90]), and rely on the Feynman-Kac formula

u(x, t) = EO

[
exp
{∫ t

0
ξ (Xs)ds

}
1l{Xt = x}

]
, (5)

where X = (Xt)t≥0 is the continuous-time random walk on the vertices V with jump
rate 1 along the edges E, and PO denotes the law of X given X0 = O. We will be
interested in the total mass of the solution,

U(t) := ∑
x∈V

u(x, t) = EO

[
exp
{∫ t

0
ξ (Xs)ds

}]
. (6)

Often we suppress the dependence on G,ξ from the notation. Note that, by time
reversal and the linearity of (4), U(t) = û(O, t) with û the solution with a different
initial condition, namely, constant and equal to 1.

Throughout the paper, we assume that the random potential ξ = (ξ (x))x∈V con-
sists of i.i.d. random variables satisfying:

Assumption (DE). For some ρ ∈ (0,∞),

P(ξ (0)≥ 0) = 1, P(ξ (0)> u) = e−eu/ρ

for u large enough. (7)

Under Assumption (DE), ξ (0) ≥ 0 almost surely and ξ (x) has an eventually exact
double-exponential upper tail. The latter restrictions are helpful to avoid certain
technicalities that are unrelated to the main message of the paper and that require
no new ideas. In particular, (7) is enough to guarantee existence and uniqueness
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of the non-negative solution to (4) on any discrete graph with at most exponential
growth, as can be inferred from the proof of the Zd-case in [GM98]. All our results
remain valid under (2) or even milder conditions, e.g. [GM98, Assumption (F)] plus
an integrability condition on the lower tail of ξ (0).

The following characteristic variational problem will turn out to be important
for the description of the asymptotics of U(t) when ξ has a double-exponential tail.
Denote by P(V ) the set of probability measures on V . For p ∈ P(V ), define

IE(p) := ∑
{x,y}∈E

(√
p(x)−

√
p(y)

)2
, JV (p) :=−∑

x∈V
p(x) log p(x), (8)

and set
χG(ρ) := inf

p∈P(V )
[IE(p)+ρJV (p)], ρ ∈ (0,∞). (9)

The first term in (9) is the quadratic form associated with the Laplacian, describing
the solution u(·, t) in the intermittent islands, while the second term in (9) is the
Legendre transform of the rate function for the potential, describing the highest
peaks of ξ (·) inside the intermittent islands. See Section 1.5 for its relevance and
interpretation, and Section 2.3 for alternate representations.

1.3 Results: Galton-Watson Trees

In this section we focus on our first example of a random graph.
Let D0, Dg be random variables taking values in N = {1,2,3, . . .}. The Galton-

Watson tree with initial degree distribution D0 and general degree distribution Dg
is constructed as follows. Start with a root vertex O, and attach edges from O to
D0 first-generation vertices. Proceed recursively: after having attached the n-th gen-
eration of vertices, attach to each one of them an independent (Dg− 1)-distributed
number of new vertices, whose union gives the (n+ 1)-th generation of vertices.
Denote by GW = (V,E) the graph obtained, by P its probability law, and by E the
corresponding expectation. The law of Dg− 1 is the offspring distribution of GW ,
and the law of Dg is the degree distribution. Write supp(Dg) to denote the set of
degrees that are taken by Dg with positive probability.

We will work under the following bounded-degree assumption:

Assumption (BD).

dmin := minsupp(Dg)≥ 2, E[Dg]> 2, (10)

and, for some dmax ∈ N with dmax ≥ dmin,

maxsupp(Dg)≤ dmax. (11)

Under Assumption (BD), GW is almost surely an infinite tree. Moreover,
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lim
r→∞

log |Br(O)|
r

= logE[Dg−1] =: ϑ > 0 P−a.s., (12)

where Br(O) is the ball of radius r around O in the graph distance (see e.g. [LP16,
pp.134–135]). Note that Assumption (BD) allows deterministic trees with constant
offspring dmin−1 (provided dmin ≥ 3).

To state our main result, we define the constant

χ̃(ρ) := inf
{

χT (ρ): T infinite tree with degrees in supp(Dg)
}

(13)

with χG(ρ) defined in (9).

Theorem 1.1. [Quenched Lyapunov exponent for the PAM on GW] Let G =
GW = (V,E,O) be the rooted Galton-Watson random tree satisfying Assumption
(BD), and let ϑ be as in (12). Let ξ = (ξ (x))x∈V be an i.i.d. potential satisfying
Assumption (DE). Let U(t) denote the total mass at time t of the solution u to the
PAM on GW . Then, as t→ ∞,

1
t

logU(t) = ρ log
(

ρtϑ
log log t

)
−ρ− χ̃(ρ)+o(1), (P×P)-a.s. (14)

The proof of Theorem 1.1 is given in Section 4.
For ρ sufficiently large we can identify the infimum in (13). For d ≥ 2, denote

by Td the infinite homogeneous tree with degree equal to d at every node.

Theorem 1.2. [Identification of the minimiser]
If ρ ≥ 1/ log(dmin +1), then χ̃(ρ) = χTdmin

(ρ).

The proof of Theorem 1.2 is given in Section 6 with the help of a comparison argu-
ment that appends copies of the infinite dmin-tree to itself. We believe Tdmin to be the
unique minimiser of (13) under the same assumptions, but proving so would require
more work.

1.4 Results: Configuration Model

In this section we focus on our second example of a random graph.
For n ∈ N, let d(n) = (d(n)

i )n
i=1 be a collection of positive integers. The configura-

tion model with degree sequence d(n) is a random multigraph (i.e., a graph that may
have self-loops and multiple edges) on the vertex set Vn := {1, . . . ,n} defined as
follows. To each i ∈ Vn, attach d(n)

i ‘half-edges’. After that, construct edges by suc-
cessively attaching each half-edge uniformly at random to a remaining half-edge.
For this procedure to be successful, we must require that

d(n)
1 + · · ·+d(n)

n is even for every n ∈ N. (15)
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Draw a root On uniformly at random from Vn. Denote by CMn = (Vn,En,On) the
rooted multigraph thus obtained, and by Pn its probability law. For further details,
we refer the reader to [vdH17a, Chapter 7].

We will work under the following assumption on d(n):

Assumption (CM): The degree sequences d(n) =(d(n)
i )n

i=1, n∈N, satisfy (15). More-
over,

1. There exists an N-valued random variable D such that d(n)
On
⇒ D as n→ ∞.

2. dmin := minsupp(D)≥ 3.
3. There exists a dmax ∈ N such that 2≤ d(n)

i ≤ dmax for all n ∈ N and 1≤ i≤ n.

In particular, 3≤ dmin ≤ dmax < ∞ and D≤ dmax almost surely. It is possible to take
d(n) random. In that case Assumption (CM) must be required almost surely or in
probability with respect to the law of d(n), and our results below must be interpreted
accordingly.

Proposition 1.3. [Connectivity and simplicity of CMn] Under Assumption (CM),

lim
n→∞

Pn(CMn is a simple graph) = e−
ν
2−

v2
4 , (16)

where

ν :=
E[D(D−1)]

E[D]
∈ [2,∞). (17)

Moreover,
lim
n→∞

Pn
(
CMn is connected | CMn is simple

)
= 1. (18)

Proof. See [vdH17a, Theorem 7.12] and [FvdH17, Theorem 2.3]. ut

Item (16) in Proposition 1.3 tells us that for large n the set

Un(d
(n)) :=

{
simple graphs on {1, . . . ,n} with degrees d(n)

1 , . . . ,d(n)
n

}
(19)

is non-empty. Hence, we may consider the uniform simple random graph UGn that
is drawn uniformly at random from Un(d

(n)).

Proposition 1.4. [Conditional law of CMn given simplicity] Under the condi-
tional law Pn( · | CMn is simple), CMn has the same law as UGn.

Proof. See [vdH17a, Proposition 7.15]. ut

As usual, for a sequence of events (An)n∈N, we say that An occurs with high
probability (whp) as n→∞ if the probability of An tends to 1 as n→∞. This notion
does not require the events to be defined on the same probability space. We denote
by distTV(X ,Y ) the total variation distance between two random variables X and Y
(i.e., between their laws). Let
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Φn :=
(1

n
∨distTV(d

(n)
On

,D)
)−1

, (20)

and note that, by Assumption (CM), Φn→ ∞ as n→ ∞.

Theorem 1.5. [Quenched Lyapunov exponent for the PAM on UGn] For any
n ∈ N, let G = UGn be the uniform simple random graph with degree sequence
d(n) satisfying Assumption (CM). For any n ∈ N, let ξ be an i.i.d. potential on Vn
satisfying Assumption (DE). Let Un(t) denote the total mass of the solution to the
PAM on G = UGn as defined in Section 1.2. Fix a sequence of times (tn)n∈N with
tn → ∞ and tn log tn = o(logΦn) as n→ ∞. Then, with high P×Pn-probability as
n→ ∞,

1
tn

logUn(tn) = ρ log
(

ρtnϑ

log log tn

)
−ρ− χ̃(ρ)+o(1), (21)

where ϑ := logν > 0 with ν as in (17), and χ̃(ρ) is as in (13).

The proof of Theorem 1.5 is given in Section 5. The main ingredients in the proof
are Theorem 1.1 and a well-known comparison between the configuration model
and an associated Galton-Watson tree inside a slowly-growing ball, from which the
condition on tn originates.

Condition (1) in Assumption (CM) is a standard regularity condition. Conditions
(2) and (3) provide easy access to results such as Propositions 1.3–1.4 above. As
examples of degree sequences satisfying Assumption (CM) we mention:

• Constant degrees. In the case where di = d ≥ 3 for a deterministic d ∈ N and
all 1≤ i≤ n, we have dOn = D = d almost surely, and UGn is a uniform regular
random graph. To respect (15), it is enough to restrict to n such that nd is even.
In this case distTV(dOn ,D) = 0, and so Φn = n in (20).

• Random degrees. In the case where (di)i∈N forms an i.i.d. sequence taking values
in {3, . . . ,dmax}, classical concentration bounds (e.g. Azuma’s inequality) can be
used to show that, for any γ ∈ (0, 1

2 ),

dTV(dOn ,D) = o(n−γ) almost surely as n→ ∞, (22)

and so Φn � nγ . The condition in (15) can be easily satisfied after replacing
dn by dn + 1 when d1 + · · ·+ dn is odd, which does not affect (22). With this
change, Assumption (CM) is satisfied. For more information about CMn with
i.i.d. degrees, see [vdH17a, Chapter 7].

1.5 Discussion

Our main results, Theorems 1.1 and 1.5, identify the quenched logarithmic asymp-
totics of the total mass of the PAM. Our proofs show that the first term in the asymp-
totics comes from the height of the potential in an intermittent island, the second
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term−ρ from the probability of a quick sprint by the random walk in the Feynman-
Kac formula from O to the island, and the third term χ̃(ρ) from the structure of the
island and the profile of the potential inside. Below we explain how each of these
three terms comes about. Much of what follows is well-known from the study of
the PAM on Zd (see also [K16]), but certain aspects are new and derive from the
randomness of the ambient space and its exponential growth.

I Galton-Watson tree.

• First and second terms.

The large-t asymptotics of the Feynman-Kac formula (33) for U(t) comes from
those random walk paths (Xs)s∈[0,t] that run within st time units to some favorable
local region of the graph (the intermittent island) and subsequently stay in that re-
gion for the rest of the time. In order to find the scale rt of the distance to the region
and the time st of the sprint, we have to balance and optimise a number of crucial
quantities: the number of sites in the ball Brt (O) around O with radius rt , the scale
of the maximal value of the potential within that ball, the probability to reach that
ball within time st , and the gain from the Feynman-Kac formula from staying in
that ball during t − st time units. One key ingredient is the well-known fact that
the maximum of m independent random variables satisfying Assumption (DE) is
asymptotically equal to hm ≈ ρ log logm for large m. Another key ingredient is that
Brt (O) has approximately ert ϑ vertices (see (12)). Hence, this ball contains values
of the potential of height≈ hert ϑ ≈ ρ log(rtϑ), not just at one vertex but on a cluster
of vertices of arbitrary finite size. The contribution from staying in such as cluster
during ≈ t time units yields the first term of the asymptotics, where we still need
to identify rt . A slightly more precise calculation, involving the probabilistic cost
to run within st time units over rt space units and to afterwards gain a mass of size
(t− st)ρ log(rtϑ), reveals that the optimal time is st ≈ rt/ρ logrt . Optimising this
together with the first term ρ log(rtϑ) over rt , we see that the optimal distance is
rt = ρt/ log log t. The term−ρ comes from the probability of making rt steps within
st = rt/ρ logrt time units.

• Third term.

The variational formula χ̃G(ρ) describes the second-order asymptotics of the gain
of the random walk from staying ≈ t time units in an optimal local region (the
first-order term has already been identified as ρ log(rtϑ)). Indeed, pick some finite
tree T that is admissible, i.e., has positive probability to occur locally in the graph
G= GW . Many copies of T occur disjointly with positive density in G. In particular,
they appear within the ball Brt (O) a number of times that is proportional to the
volume of the ball. By standard extreme-value analysis, on one of these many copies
of T the random potential achieves an approximately optimal height (≈ ρ log(rtϑ))
and shape. The optimality of the shape is measured in terms of the negative local
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Dirichlet eigenvalue −λT (ξ ) of ∆G + ξ inside T . The shapes q that ξ can assume
locally are those that have a large-deviation rate value L(q) = ∑x eq(x)/ρ at most
1 (note that L(q) measures the probabilistic cost of the shape q on an exponential
scale). All allowed shapes q are present locally at some location inside the ball
Brt (O) for large t. Each of these locations can be used by the random walk as an
intermittent island. Optimising over all allowed shapes q, we see that the second-
order term of the long stay in that island must indeed be expressed by the term

sup
q:L(q)≤1

[−λT (q)]. (23)

When T is appropriately chosen, this number is close to the number χ̃(ρ) defined
in (13) (cf. Proposition 2.3). This completes the heuristic explanation of the asymp-
totics in (14).

I Configuration Model.
The analogous assertion for the configuration model in (21 is understood in the
same way, ignoring the fact that the graph is now finite, and that size and time
are coupled. As to the additional growth constraint on tn log tn in Theorem 1.5: its
role is to guarantee that the ball Brtn (O) is small enough to contain no loop with
high probability. In fact, this ball is very close in distribution to the same ball in an
associated Galton-Watson tree (cf. Proposition 5.1), which allows us to carry over
our result.

Minimal degree tree is optimal.

What is a heuristic explanation for our result in Theorem 1.2 that the optimal tree
is an infinitely large homogeneous tree of minimal degree dmin at every vertex? The
first term in (9), the quadratic form associated with the Laplacian, has a spread-out
effect. Apparently, the self-attractive effect of the second term is not strong enough
to cope with this, as the super-linear function p 7→ p log p in the definition of JV
in (8) is ‘weakly superlinear’. This suggests that the optimal structure should be
infinitely large (also on Zd the optimal profile is positive anywhere in the ambient
space Zd). The first term is obviously monotone in the degree, which explains why
the infinite tree with minimal degree optimises the formula.

Hurdles.

The exponential growth of the graph poses a number of technical difficulties that are
not present for the PAM on Zd or Rd . Indeed, one of the crucial points in the proof
of the upper bound for the large-time asymptotics is to restrict the infinite graph G
to some finite but time-dependent subgraph (in our case the ball Brt (O)). On Zd , a
reflection technique that folds Zd into a box of an appropriate size gives an upper
bound at the cost of a negligible boundary term. For exponentially growing graphs,
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however, this technique can no longer be used because the boundary of a large ball is
comparable in size to the volume of the ball. Therefore we need to employ and adapt
an intricate method developed on Zd for deriving deeper properties of the PAM,
namely, Poisson point process convergence of all the top eigenvalue-eigenvector
pairs and asymptotic concentration in a single island. This method relies on certain
path expansions which are developed in Section 3 and rely on ideas from [BKS18,
MP16].

1.6 Open questions

We discuss next a few natural questions for future investigation.

Unbounded degrees.

A central assumption used virtually throughout in the paper is that of a uniformly
bounded degree for the vertices of the graph. While this assumption can certainly
be weakened, doing so would require a careful analysis of many interconnected
technical arguments involving both the geometry of the graph and the behaviour the
random walk. An inspection of our proofs will reveal that some mild growth of the
maximal degree with the volume is allowed, although this would not address the real
issues at hand and would therefore be far from optimal. For this reason we prefer to
leave unbounded degrees for future work.

Small ρ .

The question of whether Theorem 1.2 is still true when ρ < 1/ log(dmin +1) seems
to us not clear at all, and in fact interesting. Indeed, the analogous variational prob-
lem in Zd was analysed in [GdH99] and was shown to be highly non-trivial for small
ρ .

Different time scales.

In a fixed finite graph, the PAM can be shown to localise for large times on the site
that maximises the potential. It is reasonable to expect the same when the graph is
allowed to grow but only very slowly in comparison to the time window considered,
leading to a behaviour very different from that shown in Theorem 1.5. A more ex-
citing and still widely open question is whether there could be other growth regimes
between graph size and time that would lead to new asymptotic behaviours. We ex-
pect that Theorem 1.5 would still hold for times well above the time cutoff given.
For investigations of a similar flavour we direct the reader to [AGH20, FM90].
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Annealing.

In the present paper we only consider the quenched setting, i.e., statements that hold
almost-surely or with high probability with respect to the law of both the random
graph and the random potential. There are three possible annealed settings, where
we would average over one or both of these laws. Such settings would certainly lead
to different growth scales for the total mass, corresponding to new probabilities to
observe local structures in the graph and/or the potential. The variational problems
could be potentially different, but for double-exponential tails comparison with the
Zd case suggests that they would coincide.

1.7 Outline

The remainder of the paper is organised as follows. In Section 2 we collect some
basic notations and facts about graphs, spectral objects, alternate representations
of the characteristic formula χG(ρ), and the potential landscape. In Section 3 we
employ a path expansion technique to estimate the contribution to the Feynman-
Kac formula coming from certain specific classes of paths. In Section 4 we prove
Theorem 1.1. In Section 5 we prove Theorem 1.5. In Section 6 we analyse the
behaviour of the variational formula χT for trees T under certain glueing operations,
and prove Theorem 1.2.

2 Preliminaries

In this section we gather some facts that will be useful in the remainder of the paper.
In particular, we transfer some basic properties of the potential landscape derived in
[BK16] and [BKS18] for the Euclidean-lattice setting to the sparse-random-graph
setting. In Section 2.1 we describe the classes of graphs we will work with. In Sec-
tion 2.2 we derive spectral bounds on the Feynman-Kac formula. In Section 2.3 we
provide alternative representations for the constant χ in (9). In Section 2.4 we obtain
estimates on the maximal height of the potential in large balls as well as on the sizes
and local eigenvalues of the islands where the potential is close to maximal. In Sec-
tion 2.5 we obtain estimates on the heights of the potential seen along self-avoiding
paths and on the number of islands where the potential is close to maximal.

2.1 Graphs

All graphs considered in Section 2 are simple, connected and undirected, and are
either finite or countably infinite. For a graph G = (V,E), we denote by dist(x,y) =
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distG(x,y) the graph distance between x,y ∈V , and by

deg(x) = degG(x) := #{y ∈V : {y,x} ∈ E}, (24)

the degree of the vertex x ∈V . The ball of radius ` > 0 around x is defined as

B`(x) = BG
` (x) := {y ∈V : distG(y,x)≤ `}. (25)

For a rooted graph G = (V,E,O), the distance to the root is defined as

|x| := distG(x,O), x ∈V, (26)

and we set B` := B`(O), L` := |B`|.
The classes of graphs that we will consider are as follows. Fix a parameter dmax ∈

N. For r ∈ N0 = N∪{0}, define

Gr :=
{

simple connected undirected rooted graphs G = (V,E,O) with
V finite or countable, |V | ≥ r+1 and maxx∈V degG(x)≤ dmax

}
. (27)

Note that if G ∈Gr, then Lr = |Br| ≥ r+1. Also define

G∞ =
⋂

r∈N0
Gr

=
{ simple connected undirected rooted graphs G=(V,E,O) with

V countable, |V |=∞ and maxx∈V degG(x)≤dmax

}
.

(28)

When dealing with infinite graphs, we will be interested in those that have an
exponential growth. Thus we define, for ϑ > 0,

G(ϑ)
∞ =

{
G ∈G∞: lim

r→∞

logLr

r
= ϑ

}
. (29)

Note that GW ∈G
(ϑ)
∞ almost surely, with ϑ as in (12).

2.2 Spectral bounds

Let G = (V,E) be a simple connected graph with maximal degree dmax ∈ N, where
the vertex set V may be finite or countably infinite.

We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Ander-
son Hamiltonian. For Λ ⊂ V and q: V → [−∞,∞), let λ

(1)
Λ
(q;G) denote the largest

eigenvalue of the operator ∆G +q in Λ with Dirichlet boundary conditions on V\Λ .
More precisely,

λ
(1)
Λ
(q;G) := sup

{
〈(∆G +q)φ ,φ〉`2(V ): φ ∈ RV , suppφ ⊂Λ , ‖φ‖`2(V ) = 1

}
. (30)
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We will often omit the superscript “(1)”, i.e., write λΛ (q;G)= λ
(1)
Λ
(q;G), and abbre-

viate λG(q) := λV (q;G). When there is no risk of confusion, we may also suppress
G from the notation, and omit q when q = ξ .

Here are some straightforward consequences of the Rayleigh-Ritz formula:

1. For any Γ ⊂Λ ,

max
z∈Γ

q(z)−dmax ≤ λ
(1)
Γ
(q;G)≤ λ

(1)
Λ
(q;G)≤max

z∈Λ

q(z). (31)

2. The eigenfunction corresponding to λ
(1)
Λ
(q;G) can be taken to be non-negative.

3. If q is real-valued and Γ ( Λ are finite and connected in G, then the middle
inequality in (31) is strict and the non-negative eigenfunction corresponding to
λ

(1)
Λ
(q;G) is strictly positive.

In what follows we state some spectral bounds for the Feynman-Kac formula. These
bounds are deterministic, i.e., they hold for any fixed realisation of the potential
ξ ∈ RV .

Inside G, fix a finite connected subset Λ ⊂ V , and let HΛ denote the Anderson
Hamiltonian in Λ with zero Dirichlet boundary conditions on Λ c = V\Λ (i.e., the
restriction of the operator HG = ∆G + ξ to the class of functions supported on Λ ).
For y ∈Λ , let uy

Λ
be the solution of

∂tu(x, t) = (HΛ u)(x, t), x ∈Λ , t > 0,
u(x,0) = 1ly(x), x ∈Λ ,

(32)

and set Uy
Λ
(t) := ∑x∈Λ uy

Λ
(x, t). The solution admits the Feynman-Kac representa-

tion

uy
Λ
(x, t) = Ey

[
exp
{∫ t

0
ξ (Xs)ds

}
1l{τΛ c > t,Xt = x}

]
, (33)

where τΛ c is the hitting time of Λ c. It also admits the spectral representation

uy
Λ
(x, t) =

|Λ |

∑
k=1

etλ (k)
Λ φ

(k)
Λ
(y)φ (k)

Λ
(x), (34)

where λ
(1)
Λ
≥ λ

(2)
Λ
≥ ·· · ≥ λ

(|Λ |)
Λ

and φ
(1)
Λ
,φ (2)

Λ
, . . . ,φ (|Λ |)

Λ
are, respectively, the eigen-

values and the corresponding orthonormal eigenfunctions of HΛ . These two repre-
sentations may be exploited to obtain bounds for one in terms of the other, as shown
by the following lemma.

Lemma 2.1. [Bounds on the solution] For any y ∈Λ and any t > 0,

etλ (1)
Λ φ

(1)
Λ
(y)2 ≤ Ey

[
e
∫ t

0 ξ (Xs)ds1l{τΛc>t,Xt=y}

]
≤ Ey

[
e
∫ t

0 ξ (Xs)ds1l{τΛc>t}

]
≤ etλ (1)

Λ |Λ |1/2.
(35)

Proof. The first and third inequalities follow from (33)–(34) after a suitable appli-
cation of Parseval’s identity. The second inequality is elementary. ut
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The next lemma bounds the Feynman-Kac formula integrated up to an exit time.

Lemma 2.2. [Mass up to an exit time] For any y ∈Λ and γ > λ
(1)
Λ

,

Ey

[
exp
{∫

τΛc

0
(ξ (Xs)− γ)ds

}]
≤ 1+

dmax|Λ |
γ−λ

(1)
Λ

. (36)

Proof. See [GKM07, Lemma 4.2]. ut

2.3 About the constant χ

We next introduce alternative representations for χ in (9) in terms of a ‘dual’ varia-
tional formula. Fix ρ ∈ (0,∞) and a graph G = (V,E). The functional

LV (q;ρ) := ∑
x∈V

eq(x)/ρ ∈ [0,∞], q: V → [−∞,∞), (37)

plays the role of a large deviation rate function for the potential ξ in V (compare
with (7)). Henceforth we suppress the superscript “(1)” from the notation for the
principal eigenvalue (30), i.e., we write

λΛ (q;G) = λ
(1)
Λ
(q;G), Λ ⊂V, (38)

and abbreviate λG(q) = λV (q;G). We also define

χ̂Λ (ρ;G) :=− sup
q:V→[−∞,∞),
LV (q;ρ)≤1

λΛ (q;G) ∈ [0,∞), χ̂G(ρ) := χ̂V (ρ;G). (39)

The condition LV (q;ρ) ≤ 1 on the supremum above ensures that the potentials q
have a fair probability under the i.i.d. double-exponential distribution. Finally, for
an infinite rooted graph G = (V,E,O), we define

χ
(0)
G (ρ) := inf

r>0
χ̂Br(ρ;G). (40)

Both χ (0) and χ̂ give different representations for χ .

Proposition 2.3. [Alternative representations for χ] For any graph G = (V,E)
and any Λ ⊂V ,

χ̂Λ (ρ;G)≥ χ̂V (ρ;G) = χ̂G(ρ) = χG(ρ). (41)

If G = (V,E,O) ∈G∞, then

χ
(0)
G (ρ) = lim

r→∞
χ̂Br(ρ;G) = χG(ρ). (42)

Proposition 2.3 will be proved in Section 6.1.
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2.4 Potentials and islands

We next consider properties of the potential landscape. Recall that (ξ (x))x∈V are
i.i.d. double-exponential random variables. Set

aL := ρ log log(L∨ ee). (43)

The next lemma shows that aLr is the leading order of the maximum of ξ in Br.

Lemma 2.4. [Maximum of the potential] Fix r 7→ gr > 0 with limr→∞ gr =∞. Then

sup
G∈Gr

P
(∣∣∣∣max

x∈Br
ξ (x)−aLr

∣∣∣∣≥ gr

logLr

)
≤max

{
1
r2 ,e

− gr
ρ

}
∀r > 2e2. (44)

Moreover, for any ϑ > 0 and any G ∈G
(ϑ)
∞ , P-almost surely eventually as r→ ∞,∣∣∣∣max

x∈Br
ξ (x)−aLr

∣∣∣∣≤ 2ρ logr
ϑr

. (45)

Proof. Without loss of generality, we may assume that gr ≤ 2ρ logr. Fix G ∈ Gr
and estimate

P
(

max
x∈Bn

ξ (x)≤ aLr −
gr

logLr

)
= e−

1
ρ

Lr(logLr)e
− gr

ρ logLr ≤ e
− r logr

e2ρ ≤ e−
gr
ρ , (46)

provided r > 2e2. On the other hand, using ex ≥ 1+ x, x ∈ R, we estimate

P
(

max
x∈Bn

ξ (x)≥ aLr +
gr

logr

)
= 1−

(
1− e−e

log logLr+
gr

ρ logr
)Lr

≤ e−
gr
ρ . (47)

Since the bounds above do not depend on G ∈Gr, (44) follows.
For the case G ∈G

(ϑ)
∞ , let gr := 3

2 ρ logr. Note that the right-hand side of (44) is
summable over r ∈ N, so that, by the Borel-Cantelli lemma,∣∣∣∣max

x∈Br
ξ (x)−aLr

∣∣∣∣< gr

logLr
<

2ρ logr
ϑr

(48)

P-almost surely eventually as r→ ∞, proving (45). ut

For a fixed rooted graph G = (V,E,O) ∈ Gr, we define sets of high excedances
of the potential in Br as follows. Given A > 0, let

Πr,A = Πr,A(ξ ) := {z ∈ Br: ξ (z)> aLr −2A} (49)

be the set vertices in Br where the potential is close to maximal. For a fixed α ∈
(0,1), define

Sr := (logr)α (50)
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and set
Dr,A = Dr,A(ξ ) := {z ∈ Br: distG(z,Πr,A)≤ Sr} ⊃Πr,A, (51)

i.e., Dr,A is the Sr-neighbourhood of Πr,A. Let Cr,A denote the set of all connected
components of Dr,A in G, which we call islands. For C ∈ Cr,A, let

zC := argmax{ξ (z): z ∈ C} (52)

be the point with highest potential within C. Since ξ (0) has a continuous law, zC is
P-a.s. well defined for all C ∈ Cr,A.

The next lemma gathers some useful properties of Cr,A.

Lemma 2.5. [Maximum size of the islands] For every A > 0, there exists MA ∈ N
such that the following holds. For a graph G ∈Gr, define the event

Br :=
{
∃C ∈ Cr,A with |C ∩Πr,A|> MA

}
. (53)

Then ∑r∈N0
supG∈Gr

P(Br)< ∞. In particular,

lim
r→∞

sup
G∈Gr

P(Br) = 0, (54)

and, for any fixed G ∈G∞, P-almost surely eventually as r→ ∞, Br does not occur.
Note that

on Bc
r , ∀C ∈ Cr,A, |C ∩Πr,A| ≤MA, diamG(C)≤ 2MASr, |C| ≤MAdSr

max. (55)

Proof. The claim follows from a straightforward estimate based on (7) (see [BK16,
Lemma 6.6]). ut

Apart from the dimensions, it will be also important to control the principal
eigenvalues of islands in Cr,A. For this we restrict to graphs in G

(ϑ)
∞ .

Lemma 2.6. [Principal eigenvalues of the islands] For any ϑ > 0 and any G ∈
G

(ϑ)
∞ , P-almost surely eventually as r→ ∞,

all C ∈ Cr,A satisfy: λ
(1)
C (ξ ;G)≤ aLr − χ̂C(ρ;G)+ ε. (56)

Proof. We follow [GM98, Lemma 2.11]. Let ε > 0, G = (V,E,O) ∈ G
(ϑ)
∞ , and

define the event

Br :=
{

there exists a connected subset Λ ⊂V with Λ ∩Br 6= /0,
|Λ | ≤MAdSr

max and λ
(1)
Λ
(ξ ;G)> aLr − χ̂Λ (ρ;G)+ ε

}
(57)

with MA as in Lemma 2.5. Note that, by (7), eξ (x)/ρ is stochastically dominated by
C∨E, where E is an Exp(1) random variable and C > 0 is a constant. Thus, for any
Λ ⊂ V , using (39), taking γ :=

√
eε/ρ > 1 and applying Markov’s inequality, we

may estimate
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P
(

λ
(1)
Λ
(ξ ;G)> aLr − χ̂Λ (ρ;G)+ ε

)
≤ P(LΛ (ξ −aLr − ε)> 1)

= P
(
γ−1LΛ (ξ )> γ logLr

)
≤ e−γ logLr E[eγ−1LΛ (ξ )]≤ e−γ logLr K|Λ |γ

(58)

for some constant Kγ ∈ (1,∞). Next note that, for any x ∈ Br, n ∈ N, the number
of connected subsets Λ ⊂ V with x ∈ Λ and |Λ | = n is at most ec◦n for some c◦ =
c◦(dmax) > 0 (see e.g. [Gr99, Proof of Theorem (4.20)]). Using a union bound and
applying logLr ∼ ϑr, we estimate, for some constants c1,c2,c3 > 0,

P(Br)≤ e−(γ−1) logLr
bMAdSr

maxc

∑
n=1

ec◦nKn
γ ≤ c1 exp

{
−c2r+ c3d(logr)α

max

}
≤ e−

1
2 c2r (59)

when r is large. Now the Borel-Cantelli lemma implies that, P-a.s. eventually as
r→ ∞, Br does not occur. The proof is completed by invoking Lemma 2.5. ut

For later use, we state the consequence for GW in terms of χ̃(ρ) in (13).

Corollary 2.7. [Uniform bound on principal eigenvalue of the islands] For G =
GW as in Section 1.3, ϑ > as in (12), and any ε > 0, P×P-almost surely eventually
as r→ ∞,

max
C∈Cr,A

λ
(1)
C (ξ ;G)≤ aLr − χ̃(ρ)+ ε. (60)

Proof. Note that GW ∈G
(ϑ)
∞ almost surely, so Lemma 2.6 applies. By Lemma 2.4,

for any constant C > 0, the maximum of ξ in a ball of radius CSr aroundO is of order
O(log logr). This means that O is distant from Πr,A, in particular, dist(O,Dr,A)≥ 2
almost surely eventually as r→ ∞. For C ∈ Cr,A, let TC be the infinite tree obtained
by attaching to each x ∈ ∂C := {y /∈ C: ∃z ∈ C with z∼ y} 63 O an infinite tree with
constant offspring dmin−1. Then TC is an infinite tree with degrees in supp(Dg) and,
by Proposition 2.3,

χ̂C(ρ;GW) = χ̂C(ρ;TC)≥ χTC (ρ)≥ χ̃(ρ), (61)

so the claim follows by Lemma 2.6. ut

2.5 Connectivity

We again work in the setting of Section 2.1. We recall the following Chernoff bound
for a Binomial random variable Bin(n, p) with parameters n, p (see e.g. [BKS18,
Lemma 5.9]):

P(Bin(n, p)≥ u)≤ exp
{
−u
(

log
u

np
−1
)}

∀u > 0. (62)

Lemma 2.8. [Number of intermediate peaks of the potential] For any β ∈ (0,1)
and any ε ∈ (0,β/2), the following holds. For G ∈Gr and a self-avoiding path π in
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G, set
Nπ = Nπ(ξ ) := |{z ∈ supp(π): ξ (z)> (1− ε)aLr}|. (63)

Define the event

Br :=

{
there exists a self-avoiding path π in G with

supp(π)∩Br 6= /0, |supp(π)| ≥ (logLr)β and Nπ > |supp(π)|
(logLr)ε

}
. (64)

Then ∑r∈N0
supG∈Gr

P(Br)< ∞. In particular,

lim
r→∞

sup
G∈Gr

P(Br) = 0 (65)

and, for any fixed G ∈ G∞, P-almost surely eventually as r→ ∞, all self-avoiding
paths π in G with supp(π)∩Br 6= /0 and |supp(π)| ≥ (logLr)

β satisfy Nπ ≤ |supp(π)|
(logLr)ε .

Proof. Fix β ∈ (0,1) and ε ∈ (0,β/2). For any G ∈Gr, (7 implies

pr := P(ξ (0)> (1− ε)aLr) = exp
{
−(logLr)

1−ε
}
. (66)

Fix x ∈ Bn and k ∈N. The number of self-avoiding paths π in Br with |supp(π)|= k
and π0 = x is at most dk

max. For such a π , the random variable Nπ has a Bin(pr,
k)-distribution. Using (62) and a union bound, we obtain

P
(
∃ self-avoiding π with |supp(π)|= k,π0 = x and Nπ > k/(logLr)

ε

)
≤ exp

{
−k
(
(logLr)

1−2ε − logdmax− 1+ε log logLr
(logLr)ε

)}
.

(67)

Note that, since Lr > r and the function x 7→ log logx/(logx)ε is eventually decreas-
ing, for r large enough and uniformly over G ∈ Gr, the expression in parentheses
above is at least 1

2 (logLr)
1−2ε . Summing over k ≥ (logLr)

β and x ∈ Br, we get

P
(
∃ self-avoiding π such that |supp(π)| ≥ (logLr)

β and (63 does not hold
)

≤ 2Lr exp
{
− 1

2 (logLr)
1+β−2ε

}
≤ c1 exp

{
−c2(logLr)

1+δ
}

(68)
for some positive constants c1,c2,δ , uniformly over G ∈ Gr. Since Lr > r, (68) is
summable in r (uniformly over G∈Gr). The proof is concluded invoking the Borel-
Cantelli lemma. ut

A similar computation bounds the number of high exceedances of the potential.

Lemma 2.9. [Number of high exceedances of the potential] For any A > 0 there
is a C ≥ 1 such that, for all δ ∈ (0,1), the following holds. For G ∈ Gr and a self-
avoiding path π in G, let

Nπ := |{x ∈ supp(π): ξ (x)> aLr −2A}|. (69)

Define the event
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Br :=

 there exists a self-avoiding path π in G with

supp(π)∩Br 6= /0, |supp(π)| ≥C(logLr)δ and Nπ > |supp(π)|
(logLr)δ

 . (70)

Then ∑r∈N0
supG∈Gr

P(Br)< ∞. In particular,

lim
r→∞

sup
G∈Gr

P(Br) = 0 (71)

and, for any fixed G ∈ G∞, P-almost surely eventually as r→ ∞, all self-avoiding
paths π in G with supp(π)∩Br 6= /0 and |supp(π)| ≥C(logLr)

δ satisfy

Nπ = |{x ∈ supp(π): ξ (x)> aLr −2A}| ≤ |supp(π)|
(logLr)δ

. (72)

Proof. Proceed as for Lemma 2.8, noting that this time

pr := P
(
ξ (0)> aLr −2A

)
= L−ε

r (73)

where ε = e−
2A
ρ , and taking C > 2/ε . ut

3 Path expansions

We again work in the setting of Section 2.1. In the following, we develop a way
to bound the contribution of certain specific classes of paths to the Feynman-Kac
formula, similar to what is done in [BKS18] in the Zd-case. In Section 3.1 we state
a key proposition reducing the entropy of paths. This proposition is proved in Sec-
tion 3.4 with the help of a lemma bounding the mass of an equivalence class of
paths, which is stated and proved in Section 3.3 and is based on ideas from [MP16].
The proof of this lemma requires two further lemmas controlling the mass of the
solution along excursions, which are stated and proved in Section 3.2.

3.1 Key proposition

Fix a graph G = (V,E,O) ∈ Gr. We define various sets of nearest-neighbour paths
in G as follows. For ` ∈ N0 and subsets Λ ,Λ ′ ⊂V , put

P`(Λ ,Λ ′) :=
{
(π0, . . . ,π`) ∈V `+1:

π0 ∈Λ ,π` ∈Λ ′,
{πi,πi−1} ∈ E ∀1≤ i≤ `

}
,

P(Λ ,Λ ′) :=
⋃

`∈N0
P`(Λ ,Λ ′),

(74)

and set
P` := P`(V,V ), P := P(V,V ). (75)
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When Λ or Λ ′ consists of a single point, we write x instead of {x}. For π ∈P`, we
set |π| := `. We write supp(π) := {π0, . . . ,π|π|} to denote the set of points visited
by π .

Let X = (Xt)t≥0 be the continuous-time random walk on G that jumps from x∈V
to any neighbour y ∼ x with rate 1. We denote by (Tk)k∈N0 the sequence of jump
times (with T0 := 0). For ` ∈ N0, let

π
(`)(X) := (X0, . . . ,XT`) (76)

be the path in P` consisting of the first ` steps of X and, for t ≥ 0, let

π(X[0,t]) = π
(`t )(X), where `t ∈ N0 satisfies T`t ≤ t < T`t+1, (77)

denote the path in P consisting of all the steps taken by X between times 0 and t.
Recall the definitions from Section 2.4. For G ∈Gr, π ∈P and A > 0, define

λr,A(π) := sup
{

λ
(1)
C (ξ ;G): C ∈ Cr,A, supp(π)∩C ∩Πr,A 6= /0

}
, (78)

with the convention sup /0 =−∞. This is the largest principal eigenvalue among the
components of Cr,A in G that have a point of high exceedance visited by the path π .

The main result of this section is the following proposition. Hereafter we abbre-
viate log(3) x := log loglogx.

Proposition 3.1. [Entropy reduction] For every fixed dmax ∈ N, there exists an
A0 = A0(dmax) > 0 such that the following holds. Let α ∈ (0,1) be as in (50) and
let κ ∈ (α,1). For all A > A0, there exists a constant cA = cA(dmax) > 0 such that,
with probability tending to one as r → ∞ uniformly over G ∈ Gr, the following
statement is true: For each x ∈ Br, each N ⊂P(x,Br) satisfying supp(π) ⊂ Br
and max1≤`≤|π| distG(π`,x) ≥ (logLr)

κ for all π ∈ N , and each assignment π 7→
(γπ ,zπ) ∈ R×V satisfying

γπ ≥
(
λr,A(π)+ e−Sr

)
∨ (aLr −A) for all π ∈N (79)

and
zπ ∈ supp(π)∪

⋃
C∈Cr,A :

supp(π)∩C∩Πr,A 6= /0

C for all π ∈N , (80)

the following inequality holds for all t ≥ 0:

logEx

[
e
∫ t

0 ξ (Xs)ds1l{π(X[0,t])∈N}

]
≤ sup

π∈N

{
tγπ −

(
log(3) Lr− cA

)
distG(x,zπ)

}
. (81)

Moreover, for any G∈G∞, P-almost surely eventually as r→∞, the same statement
is true.

The key to the proof of Proposition 3.1 in Section 3.4 is Lemma 3.5 in Section
3.3, whose proof depends on Lemmas 3.2–3.3 in Section 3.2. We note that all these
results are deterministic, i.e., they hold for any realisation of the potential ξ .
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3.2 Mass of the solution along excursions

Fix G = (V,E,O) ∈ Gr. The first step to control the contribution of a path to the
total mass is to control the contribution of excursions outside Πr,A (recall (49)).

Lemma 3.2. [Path evaluation] For ` ∈ N0, π ∈P` and γ > max0≤i<|π|{ξ (πi)−
deg(πi)},

Eπ0

[
exp
{∫ T`

0
(ξ (Xs)− γ)ds

}∣∣∣∣π (`)(X) = π

]
=

`−1

∏
i=0

deg(πi)

γ− [ξ (πi)−deg(πi)]
. (82)

Proof. The left-hand side of (82) can be evaluated using the fact that T` is the sum of
` independent Exp(deg(πi)) random variables that are independent of π (`)(X). The
condition on γ ensures that all integrals are finite. ut

For a path π ∈P and ε ∈ (0,1), we write

Mr,ε
π :=

∣∣{0≤ i < |π|: ξ (πi)≤ (1− ε)aLr

}∣∣, (83)

with the interpretation that Mr,ε
π = 0 if |π|= 0.

Lemma 3.3. [Mass of excursions] For every A,ε > 0 there exist c > 0 and n0 ∈ N
such that, for all r ≥ n0, all γ > aLr −A and all π ∈P satisfying πi /∈ Πr,A for all
0≤ i < ` := |π|,

Eπ0

[
exp
{∫ T`

0
(ξ (Xt)− γ)ds

}∣∣∣∣π (`)(X) = π

]
≤ q`Ae(c−log(3) Lr)Mr,ε

π , (84)

where qA := (1+A/dmax)
−1. Note that π` ∈Πr,A is allowed.

Proof. By our assumptions on π and γ , we can use Lemma 3.2. Splitting the product
in the right-hand side of (82) according to whether ξ (πi) ≥ (1− ε)aLr or not, and
using that ξ (πi)≤ aLr −2A for 0≤ i < |π|, we bound the left-hand side of (84) by

q`A

[
qA

εaLr −A
dmax

]−|{0≤i<`:ξ (πi)≤(1−ε)aLr }|
. (85)

Since aLr = ρ log logLr ≥ ρ log logr, for large r the number within square brackets
in (85) is at least qAερ(log logLr)/2dmax > 1. Hence (84) holds with c := log(1∨
2dmax(qAερ)−1). ut

3.3 Equivalence classes of paths

We follow [BKS18, Section 6.2]. Note that the distance between Πr,A and Dc
r,A in G

is at least Sr = (logLr)
α .
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Definition 3.4. [Concatenation of paths] (a) When π and π ′ are two paths in P
with π|π| = π ′0, we define their concatenation as

π ◦π
′ := (π0, . . . ,π|π|,π

′
1, . . . ,π

′
|π ′|) ∈P. (86)

Note that |π ◦π ′|= |π|+ |π ′|.

(b) When π|π| 6= π ′0, we can still define the shifted concatenation of π and π ′ as π ◦
π̂ ′, where π̂ ′ := (π|π|,π|π|+π ′1−π ′0, . . . ,π|π|+π ′|π ′|−π ′0). The shifted concatenation
of multiple paths is defined inductively via associativity.

Now, if a path π ∈P intersects Πr,A, then it can be decomposed into an initial
path, a sequence of excursions between Πr,A and Dc

r,A, and a terminal path. More
precisely, there exists mπ ∈ N such that

π = π̌
(1) ◦ π̂

(1) ◦ · · · ◦ π̌
(mπ ) ◦ π̂

(mπ ) ◦ π̄, (87)

where the paths in (87) satisfy

π̌ (1) ∈P(V,Πr,A) with π̌
(1)
i /∈Πr,A, 0≤ i < |π̌ (1)|,

π̂ (k) ∈P(Πr,A,Dc
r,A) with π̂

(k)
i ∈ Dr,A, 0≤ i < |π̂ (k)|, 1≤ k ≤ mπ −1,

π̌ (k) ∈P(Dc
r,A,Πr,A) with π̌

(k)
i /∈Πr,A, 0≤ i < |π̌ (k)|, 2≤ k ≤ mπ ,

π̂ (mπ ) ∈P(Πr,A,V ) with π̂
(mπ )

i ∈ Dr,A, 0≤ i < |π̂ (mπ )|,
(88)

while

π̄ ∈P(Dc
r,A,V ) and π̄i /∈Πr,A ∀ i≥ 0 if π̂ (mπ ) ∈P(Πr,A,Dc

r,A),

π̄0 ∈ Dr,A, |π̄|= 0 otherwise.
(89)

Note that the decomposition in (87)–(89) is unique, and that the paths π̌ (1), π̂ (mπ )

and π̄ can have zero length. If π is contained in Br, then so are all the paths in the
decomposition.

Whenever supp(π)∩Πr,A 6= /0 and ε > 0, we define

sπ :=
mπ

∑
i=1
|π̌ (i)|+ |π̄|, kr,ε

π :=
mπ

∑
i=1

Mr,ε
π̌(i) +Mr,ε

π̄
(90)

to be the total time spent in exterior excursions, respectively, on moderately low
points of the potential visited by exterior excursions (without their last point).

In case supp(π)∩Πr,A = /0, we set mπ := 0, sπ := |π| and kr,ε
π := Mr,ε

π . Recall
from (78) that, in this case, λr,A(π) =−∞.

We say that π,π ′ ∈P are equivalent, written π ′ ∼ π , if mπ = mπ ′ , π̌ ′(i) = π̌ (i) for
all i = 1, . . . ,mπ , and π̄ ′ = π̄ . If π ′ ∼ π , then sπ ′ , kr,ε

π ′ and λr,A(π
′) are all equal to the

counterparts for π .
To state our key lemma, we define, for m,s ∈ N0,

P(m,s) = {π ∈P: mπ = m,sπ = s} , (91)
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and denote by
Cr,A := max{|C|: C ∈ Cr,A} (92)

the maximal size of the islands in Cr,A.

Lemma 3.5. [Mass of an equivalence class] For every A,ε > 0 there exist c > 0
and r0 ∈N such that, for all r≥ r0, all m,s ∈N0, all π ∈P(m,s) with supp(π)⊂ Br,
all γ > λr,A(π)∨ (aLr −A) and all t ≥ 0,

Eπ0

[
e
∫ t

0(ξ (Xu)−γ)du 1l{π(X[0,t])∼π}

]
≤
(

C1/2
r,A

)1l{m>0}
(

1+ dmax Cr,A
γ−λr,A(π)

)m( qA
dmax

)s
e(c−log(3) Lr)kr,ε

π .
(93)

Proof. Fix A,ε > 0 and let c > 0, n0 ∈ N be as given by Lemma 3.3. Set

Ib
a := e

∫ b
a (ξ (Xu)−γ)du, 0≤ a≤ b < ∞. (94)

We use induction on m. Suppose that m = 1, let ` := |π̌ (1)|. There are two possibil-
ities: either π̄0 belongs to Dr,A or not. First we consider the case π̄0 ∈ Dr,A, which
implies that |π̄|= 0. By the strong Markov property,

Eπ0

[
It
0 1l{π(X[0,t])∼π}

]
≤ Eπ0

[
IT`
0 It

T`
1l{π(`)(X)=π̌(1)}1l{T`<t}1l{Xu+T`∈Dr,A ∀u∈[0,t−T`]}

]
= Eπ0

[
IT`
0 1l{π(`)(X)=π̌(1)}1l{T`<t}

(
E

π̌
(1)
`

[
It−u
0 1l{τDc

r,A
>t−u}

])
u=T`

]
.

(95)
Put z = π̌

(1)
` . Since z ∈Πr,A, we may write Cz to denote the island in Cr,A containing

z. Since τDc
r,A

= τCc
z Pz-a.s., Lemma 2.1 and the hypothesis on γ allow us to bound

the inner expectation in (95) by |Cz|1/2. Applying Lemma 3.3, we further bound (95)
by

|Cz|1/2Eπ0

[
IT`
0 1l{π(`)(X)=π̌(1)}

]
≤C1/2

r,A

(
qA

dmax

)`

e(
c−log(3) Lr)Mr,ε

π̌(1) , (96)

which proves (93) for m = 1 and π̄0 ∈ Dr,A.
Next consider the case π̄0 ∈Dc

r,A. Abbreviating σ := inf{u> T`: Xu /∈Dr,A}, write

Eπ0

[
It
01l{π(X[0,t])∼π}

]
≤ Eπ0

[
Iσ
0 1l{π(`)(X)=π̌(1),σ<t}

(
Eπ̄0

[
It−u
0 1l{π(X[0,t−u])=π̄}

])
u=σ

]
.

(97)
Let `∗ := |π̄| and note that, since π̄`∗ /∈Πr,A, by the hypothesis on γ we have

Eπ̄0

[
It−u
0 1l{π(X[0,t−u])=π̄}

]
≤ Eπ̄0

[
IT`∗
0 1l{π(`∗)(X)=π̄}

]
≤
(

qA

dmax

)`∗

e(c−log(3) Lr)Mr,ε
π̄

(98)
where the second inequality holds by Lemma 3.3. On the other hand, by Lemmas 2.2
and 3.3,
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Eπ0

[
Iσ
0 1l{π(`)(X)=π̌(1)}

]
= Eπ0

[
IT`
0 1l{π(`)(X)=π̌(1)}

]
Ez

[
I

τCc
z

0

]
≤
(

1+ dmax Cr,A
γ−λr,A(π)

)(
qA

dmax

)`
e(

c−log(3) Lr)Mr,ε

π̌(1) .
(99)

Putting together (97)–(99), we complete the proof of the case m = 1. The case m = 0
follows from (98) after we replace π̄ by π and t−u by t.

Suppose now that the claim is proved for some m ≥ 1, and let π ∈P(m+1,s).
Define π ′ := π̌ (2) ◦ π̂ (2) ◦ · · · ◦ π̌ (m+1) ◦ π̂ (m+1) ◦ π̄ . Then π ′ ∈P(m,s′), where s = s′+
|π̌ (1)| and kr,ε

π = Mr,ε
π̌(1) + kr,ε

π ′ . Setting ` := |π̌ (1)|, σ := inf{u > T`: Xu /∈ Dr,A} and

x := π̌
(2)
0 , we get

Eπ0

[
It
01l{π(X0,t )∼π}

]
≤ Eπ0

[
Iσ
0 1l{π(`)(X)=π̌(1),σ<t}

(
Ex

[
It−u
0 1l{π(X0,t−u)∼π ′}

])
s=σ

]
,

(100)
from which (93) follows via the induction hypothesis and (99). ut

3.4 Proof of Proposition 3.1

Proof. The proof is based on Lemma 3.5. First define

c0 := 1+3loglogdmax, A0 := dmax
(
e3c0 −1

)
. (101)

Fix A > A0, β < α and ε ∈ (0,β/2) as in Lemma 2.8. Let r0 ∈ N be as given
by Lemma 3.5, and take r ≥ r0 so large that the conclusions of Lemmas 2.5–2.8
hold, i.e., assume that the events Br from both lemmas do not occur with either
G = (V,E,O)∈Gr or G∈G∞ accordingly. Fix x ∈ Br. Recall the definitions of Cr,A

and P(m,s). Noting that the relation ∼ defined below (90) is an equivalence relation
in P(m,s), we define

P̃
(m,s)
x :=

{
equivalence classes of the paths in P(x,V )∩P(m,s)}. (102)

Lemma 3.6. [Bound equivalence classes]
|P̃(m,s)

x | ≤ [2dmaxCr,A]
mds

max for all m,s ∈ N0.

Proof. The estimate is clear when m = 0. To prove that it holds for m ≥ 1, write
∂Λ := {z /∈ Λ : distG(z,Λ) = 1} for Λ ⊂ V . Then |∂C ∪ C| ≤ (dmax + 1)|C| ≤
2dmaxCr,A. We define a map Φ :P̃(m,s)

x →Ps(x,V )×{1, . . . ,2dmaxCr,A}m as fol-
lows. For each Λ ⊂ V with 1 ≤ |Λ | ≤ 2dmaxCr,A, fix an injective function fΛ :Λ →
{1, . . . ,2dmaxCr,A}. Given a path π ∈P(m,s)∩P(x,V ), decompose π as in (87), and
denote by π̃ ∈Ps(x,V ) the shifted concatenation (cf. Definition 3.4) of π̌ (1), . . . , π̌ (m),
π̄ . Note that, for 2 ≤ k ≤ m, the point π̌

(k)
0 lies in ∂Ck for some Ck ∈ Cr,A, while

π̄0 ∈ ∂C ∪C for some C ∈ Cr,A. Thus, we may set

Φ(π) :=
(
π̃, f∂C2(π̌

(2)
0 ), . . . , f∂Cm(π̌

(m)

0 ), f∂ C̄∪C̄(π̄0)
)
. (103)
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As is readily checked, Φ(π) depends only on the equivalence class of π and, when
restricted to equivalence classes, Φ is injective. Hence the claim follows. ut

Now take N ⊂P(x,V ) as in the statement, and set

Ñ (m,s) :=
{

equivalence classes of paths in N ∩P(m,s)}⊂ P̃
(m,s)
x . (104)

For each M ∈ Ñ (m,s), choose a representative πM ∈M, and use Lemma 3.6 to
write

Ex

[
e
∫ t

0 ξ (Xu)du1l{π(X[0,t])∈N}

]
= ∑m,s∈N0 ∑M∈Ñ (m,s) Ex

[
e
∫ t

0 ξ (Xu)du1l{π(X[0,t])∼πM}

]
≤ ∑m,s∈N0

(2dmaxCr,A)
mds

max sup
π∈N (m,s) Ex

[
e
∫ t

0 ξ (Xu)du1l{π(X[0,t])∼π}

]
,

(105)
where we use the convention sup /0 = 0. For fixed π ∈N (m,s), by (79), we may apply
(93) and Lemma 2.5 to obtain, for all r large enough and with c0 as in (101),

(2dmax)
mds

maxEx

[
e
∫ t

0 ξ (Xu)du1l{π(X[0,t])∼π}

]
≤ etγπ ec0mSr qs

Ae(c−log(3) Lr)kr,ε
π . (106)

We next claim that, for r large enough and π ∈N (m,s),

s≥ [(m−1)∨1]Sr. (107)

Indeed, when m ≥ 2, |supp(π̌ (i))| ≥ Sr for all 2 ≤ i ≤ m. When m = 0, |supp(π)| ≥
max1≤`≤|π| |π` − x| ≥ (logLr)

κ � Sr by assumption. When m = 1, the latter as-
sumption and Lemma 2.5 together imply that supp(π)∩Dc

r,A 6= /0, and so either
|supp(π̌ (1))| ≥ Sr or |supp(π̌ (1))| ≥ Sr. Thus, (107) holds by (90) and (50).

Note that qA < e−3c0 , so

∑
m≥0

∑
s≥[(m−1)∨1]Sr

ec0mSr qs
A =

qSr
A + ec0Sr qSr

A +∑m≥2 ec0Srmq(m−1)Sr
A

1−qA
≤ 4e−c0Sr

1−qA
< 1

(108)
for r large enough. Inserting this back into (105), we obtain

logEx

[
e
∫ t

0 ξ (Xs)ds1l{π(X0,t )∈N}

]
≤ sup

π∈N

{
tγπ +

(
c− log(3) Lr

)
kr,ε

π

}
. (109)

Thus the proof will be finished once we show that, for some ε ′ > 0, whp (respec-
tively, almost surely eventually) as n→ ∞, all π ∈N satisfy

kr,ε
π ≥ distG(x,zπ)(1−2(logLr)

−ε ′). (110)

To that end, we define for each π ∈ N an auxiliary path π? as follows. First note
that by using our assumptions we can find points z′,z′′ ∈ supp(π) (not necessarily
distinct) such that
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distG(x,z′)≥ (logLr)
κ , distG(z′′,zπ)≤ 2MASr, (111)

where the latter holds by Lemma 2.5. Write {z1,z2} = {z′,z′′} with z1, z2 ordered
according to their hitting times by π , i.e., inf{`:π` = z1}≤ inf{`:π` = z2}. Define πe
as the concatenation of the loop erasure of π between x and z1 and the loop erasure
of π between z1 and z2. Since πe is the concatenation of two self-avoiding paths, it
visits each point at most twice. Finally, define π? ∼ πe by substituting the excursions
of πe from Πr,A to Dc

r,A by direct paths between the corresponding endpoints, i.e.,
substitute each π̂

(i)
e with |π̂ (i)

e | = `i, (π̂
(i)
e )0 = xi ∈ Πr,A and (π̂ (i)

e )`i = yi ∈ Dc
r,A by a

shortest-distance path π̃
(i)
? with the same endpoints and |π̃ (i)

? | = distG(xi,yi). Since
π? visits each x ∈Πr,A at most 2 times,

kr,ε
π ≥ kr,ε

π? ≥Mr,ε
π? −2|supp(π?)∩Πr,A|(Sr+1)≥Mr,ε

π? −4|supp(π?)∩Πr,A|Sr. (112)

Note that Mr,ε
π? ≥ |{x ∈ supp(π?): ξ (x)≤ (1− ε)aLr}|−1 and, by (111), |supp(π?)|

≥ distG(x,z′) ≥ (logLr)
κ � (logLr)

α+2ε ′ for some 0 < ε ′ < ε . Applying Lem-
mas 2.8–2.9 and using (50) and Lr > r, we obtain, for r large enough,

kr,ε
π ≥ |supp(π?)|

(
1− 2

(logLr)ε − 4Sr
(logLr)α+2ε ′

)
≥ |supp(π?)|

(
1− 1

(logLr)ε ′

)
. (113)

On the other hand, since |supp(π?)| ≥ (logLr)
κ and by (111) again,

|supp(π?)| =
(
|supp(π?)|+2MASr

)
−2MASr

≥ (distG(x,z′′)+2MASr)
(

1− 2MASr
(logLr)κ

)
≥ distG(x,zπ)

(
1− 1

(logLr)ε ′

)
.

(114)

Now (110) follows from (113)–(114). ut

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We note that, after replacing
dmax by dmax∨D0 if necessary, we may assume without loss of generality that

GW ∈G(ϑ)
∞ . (115)

4.1 Lower bound

In this section we give the proof of the lower bound for the large-t asymptotics of
the total mass. This proof already explains the random mechanism that produces the
main contribution to the total mass. This mechanism comes from an optimisation
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of the behaviour of the random path in the Feynman-Kac formula, which in turn
comes from the existence of a favorite region in the random graph, both in terms
of the local graph structure and the high values of the potential in this local graph
structure. The optimality is expressed in terms of a distance to the starting point
O that can be reached in a time o(t) with a sufficiently high probability, such that
time t− o(t) is left for staying inside the favorite region, thus yielding a maximal
contribution to the Feynman-Kac formula. The latter is measured in terms of the
local eigenvalue of the Anderson operator ∆ + ξ , which in turn comes from high
values and optimal shape of the potential ξ in the local region.

We write the total mass of the solution of (32) in terms of the Feynman-Kac
formula as

U(t) = EO

[
exp
{∫ t

0
ξ (Xs)ds

}]
, (116)

where (Xs)s≥0 is the continuous-time random walk on GW , i.e., the Markov chain
with generator ∆GW = ∆ , the Laplacian on GW , starting from the origin O. As
usual in the literature of the PAM, this formula is the main point of departure for our
proof.

Fix ε > 0. By the definition of χ̃ , there exists an infinite rooted tree T =
(V ′,E ′,Y) with degrees in supp(Dg) such that χT (ρ)< χ̃(ρ)+ 1

4 ε . Let Qr = BT
r (Y)

be the ball of radius r aroundY in T . By Proposition 2.3 and (39), there exist a radius
R ∈ N and a potential profile q:BT

R → R with LQR(q;ρ) < 1 (in particular, q ≤ 0)
such that

λQR(q;T )≥−χ̂QR(ρ;T )− 1
2

ε >−χ̃(ρ)− ε. (117)

For ` ∈ N, let B` = B`(O) denote the ball of radius ` around O in GW . We will
show next that, almost surely eventually as `→∞, B` contains a copy of the ball QR
where ξ is lower bounded by ρ log log |B`|+q.

Proposition 4.1. [Balls with high exceedances] P×P-almost surely eventually as
` → ∞, there exists a vertex z ∈ B` with BR+1(z) ⊂ B` and an isomorphism ϕ :
BR+1(z)→ QR+1 such that ξ ≥ ρ log log |B`|+q◦ϕ in BR(z). In particular,

λBR(z)(ξ ;GW)> ρ log log |B`|− χ̃(ρ)− ε. (118)

Any such z necessarily satisfies |z| ≥ c`P×P-almost surely eventually as `→∞ for
some constant c = c(ρ,ϑ , χ̃(ρ),ε)> 0.

Proof. First note that, as a consequence of the definition of GW , it may be shown
straightforwardly that, for some p = p(T,R) ∈ (0,1) and P-almost surely eventu-
ally as `→ ∞, there exist N ∈ N, N ≥ p|B`| and distinct z1, . . . ,zN ∈ B` such that
BR+1(zi)∩BR+1(z j) = /0 for 1 ≤ i 6= j ≤ N and, for each 1 ≤ i ≤ N, BR+1(zi) ⊂ B`

and BR+1(zi) is isomorphic to QR+1. Now, by (7), for each i ∈ {1, . . . ,N},

P
(
ξ ≥ ρ log log |B`|+q in BR(zi)

)
= |B`|−LQR (q). (119)

Using additionally that |B`| ≥ ` and 1− x≤ e−x, x ∈ R, we obtain
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P(6 ∃i ∈ {1, . . . ,N}:ξ ≥ ρ log log |B`|+q in BR(zi))

=
(

1−|B`|−LQR (q)
)N
≤ e−p`

1−LQR
(q)
,

(120)

which is summable in ` ∈ N, so the proof of the first statement is completed using
the Borel-Cantelli lemma. As for the last statement, note that, by (31), Lemma 2.4
and Lr ∼ ϑr,

λBc`(ξ ;GW)≤ max
x∈Bc`

ξ (x)< aLc` +o(1)< aL` +ρ logcϑ +o(1)< aL` − χ̃(ρ)− ε

(121)
provided c > 0 is small enough. ut

Proof (Proof of the lower bound in (14)). Let z be as in Proposition 4.1. Write τz
for the hitting time of z by the random walk X . For any s ∈ (0, t), we obtain a lower
bound for U(t) as follows:

U(t) ≥ EO

[
exp
{∫ t

0 ξ (Xu)du
}

1l{τz≤s} 1l{Xu∈BR(z)∀u∈[τz,t]}

]
= EO

[
e
∫ τz

0 ξ (Xu)du 1l{τz≤s}Ez

[
e
∫ v

0 ξ (Xu)du 1l{Xu∈T ∀u∈[0,v]}

]∣∣∣
v=t−τz

]
,

(122)

where we use the strong Markov property at time τz. We first bound the last term in
the integrand in (122). Since ξ ≥ ρ log log |B`|+q in BR(z),

Ez

[
e
∫ v

0 ξ (Xu)du1l{Xu∈BR(z)∀u∈[0,v]}

]
≥ evρ log log |B`|EY

[
e
∫ v

0 q(Xu)du1l{Xu∈QR ∀u∈[0,v]}

]
≥ evρ log log |B`|evλQR (q;T )

φ
(1)
QR

(Y)2

> exp
{

v(ρ log log |B`|− χ̃(ρ)− ε)
}
,

(123)
for large v, where we used that BR+1(z) is isomorphic to QR+1 and we applied
Lemma 2.1 and (117). On the other hand, since ξ ≥ 0,

EO

[
exp
{∫ τz

0
ξ (Xu)du

}
1l{τz ≤ s}

]
≥ PO(τz ≤ s), (124)

and we can bound the latter probability from below by the probability that the ran-
dom walk runs along a shortest path from the root O to z within a time at most s.
Such a path (yi)

|z|
i=0 has y0 =O, y|z| = z, yi ∼ yi−1 for i = 1, . . . , |z|, has at each step

from yi precisely deg(yi) choices for the next step with equal probability, and the
step is carried out after an exponential time Ei with parameter deg(yi). This gives

PO(τz ≤ s)≥
( |z|
∏
i=1

1
deg(yi)

)
P
( |z|

∑
i=1

Ei ≤ s
)
≥ d−|z|maxPoidmins([|z|,∞)), (125)

where Poiγ is the Poisson distribution with parameter γ , and P is the generic symbol
for probability. Summarising, we obtain
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U(t) ≥ d−|z|maxe−dmins (dmins)|z|

|z|! e(t−s)[ρ log log |B`|−χ̃(ρ)−ε]

≥ exp
{
−dmins+(t− s) [ρ log log |B`|− χ̃(ρ)− ε]−|z| log

(
dmax
dmin

|z|
s

)}
≥ exp

{
−dmins+(t− s) [ρ log log |B`|− χ̃(ρ)− ε]− ` log

(
dmax
dmin

`
s

)}
,

(126)
where for the last inequality we assume s ≤ |z| and use ` ≥ |z|. Further assuming
that `= o(t), we see that the optimum over s is obtained at

s =
`

dmin +ρ log log |B`|− χ̃(ρ)− ε
= o(t). (127)

Note that, by Proposition 4.1, this s indeed satisfies s ≤ |z|. Applying (12) we get,
after a straightforward computation, almost surely eventually as t→ ∞,

1
t

logU(t)≥ ρ log log |B`|−
`

t
log log`− χ̃(ρ)− ε +O

(
`

t

)
. (128)

Analysing the main terms above and using log |B`| ∼ ϑ`, we find that the optimal `
satisfies ` log log`− `

log` ∼ tρ , i.e., `∼ ρt/ log log t = rt . For this choice we obtain

1
t

logU(t)≥ ρ log log |Brt |− rt log logrt − χ̃(ρ)− ε +O
(

1
loglog t

)
. (129)

Substituting log |Br| ∼ ϑr and the definition of rt , we obtain, P×P-almost surely,

liminf
t→∞

{
1
t

logU(t)−ρ log
(

ρϑ t
log log t

)}
≥−ρ− χ̃(ρ)− ε. (130)

Since ε > 0 is arbitrary, the proof of the lower bound in (14) is complete. ut

4.2 Upper bound

In this section we prove the upper bound in (14). A first step is to reduce the problem
to a ball of radius t log t. Here we include more general graphs.

Lemma 4.2. [Spatial truncation] For any c > 0 and any `t ∈ N, `t ≥ ct log t,

sup
G∈G`t

EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
`t
<t}

]
≤ e−`t whp as t→ ∞. (131)

Moreover, for any G ∈G
(ϑ)
∞ ,

EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
`t
<t}

]
≤ e−`t P-a.s. eventually as t→ ∞. (132)
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Proof. For r ≥ `t and G ∈G`t , let

Br :=
{

max
x∈Br

ξ (x)≥ aLr +2ρ

}
. (133)

By Lemma 2.4 and a union bound, we see that

sup
G∈G`t

P

(⋃
r≥`t

Br

)
≤ ∑

r≥`t

sup
G∈G`t

P(Br)→ 0, t→ ∞, (134)

while, for G ∈G
(ϑ)
∞ , by the Borel-Cantelli lemma,⋃
r≥`t

Br does not occur P-a.s. eventually as t→ ∞. (135)

We may therefore work on the event
⋂

r≥`t B
c
r . On this event, we may write

EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
`t
<t}

]
= ∑r≥`t EO

[
e
∫ t

0 ξ (Xs)ds1l{sups∈[0,t] |Xs|=r}

]
≤ eCt

∑r≥`t eρt logr PO (Jt ≥ r) ,
(136)

where Jt is the number of jumps of X up to time t, C = ρ(2+ log logdmax), and we
use that |Br| ≤ dr

max. Note that Jt is stochastically dominated by a Poisson random
variable with parameter tdmax. Hence

PO (Jt ≥ r)≤ (tdmax)
r

r!
≤ exp

{
−r log

(
r

etdmax

)}
(137)

for large r. Using `t ≥ ct log t, we can check that, for r ≥ `t and t large enough,

r log
(

r
etdmax

)
−ρt logr > 2r (138)

and thus (136) is at most e−`t e−`t+Ct+2 < e−`t . ut

In order to be able to apply Proposition 3.1 in the following, we need to make
sure that all paths considered exit a ball with a slowly growing radius.

Lemma 4.3. [No short paths] For any γ ∈ (0,1),

sup
G∈Gdtγ e

EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
dtγ e

>t}

]
U(t)

= o(1) whp as t→ ∞. (139)

Moreover, for any G ∈G∞,
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lim
t →∞

EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
dtγ e

>t}

]
U(t)

= 0 P-a.s. almost surely. (140)

Proof. By Lemma 2.4 with gr = 2ρ logr, we may assume that

max
x∈Bdtγ e

ξ (x)≤ ρ log logLdtγ e+2ρ = γρ log t +2ρ +o(1) as t→ ∞. (141)

By (130), for some constant C > 0,

EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
dtγ e

>t}

]
U(t)

≤ eCt log(3) te−(1−γ)ρt log t → 0, t→ ∞. (142)

ut

For the remainder of the proof we fix γ ∈ (α,1) with α as in (50). Let

Kt := dt1−γ log te, r(k)t := kdtγe, 1≤ k ≤ Kt and `t := Ktdtγe ≥ t log t.
(143)

For 1≤ k ≤ Kt and G ∈G
(ϑ)
∞ , define

N (k)
t :=

{
π ∈P(O,V ): supp(π)⊂ B

r(k+1)
t

,supp(π)∩Bc
r(k)t
6= /0
}

(144)

and set

U (k)
t := EO

[
e
∫ t

0 ξ (Xs)ds1l
{π[0,t](X)∈N (k)

t }

]
. (145)

Recall the scale rt = ρt/ log log t.

Lemma 4.4. [Upper bound on U (k)
t ] For any ε > 0 and any G ∈ G

(ϑ)
∞ , P-almost

surely eventually as t→ ∞,

sup
1≤k≤Kt

1
t

logU (k)
t ≤ ρ log(ϑrt)−ρ− χ̃(ρ)+ ε. (146)

Proof. Before we apply Proposition 3.1, we first do a bit of analysis. For c > 0, let

Fc,t(r) := ρ log(ϑr)− r
t
(log logr− c) , r > 0. (147)

Note that Fc,t is maximised at a point rc,t satisfying

ρt = rc,t log logrc,t − crc,t +
rc,t

logrc,t
. (148)

In particular, rc,t ∼ rt , which implies
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sup
r>0

Fc,t(r)≤ ρ log(ϑrt)−ρ +o(1) as t→ ∞. (149)

Next, fix k ∈ {1, . . . ,Kt}. For π ∈N (k)
t , let

γπ := λ
r(k+1)
t ,A

(π)+ exp{−Sdtγ e}, zπ ∈ supp(π), |zπ |> r(k)t . (150)

By Proposition 3.1, almost surely eventually as t→ ∞,

1
t

logU (k)
t ≤ γπ +

|zπ |
t

(
log logr(k+1)

t − cA +o(1)
)
. (151)

Using Corollary 2.7 and logLr ∼ ϑr, we bound

γπ ≤ ρ log(ϑr(k+1)
t )− χ̃(ρ)+

1
2

ε +o(1). (152)

Moreover, |zπ |> r(k+1)
t −dtγe and

dtγe
t

(
log logr(k+1)

t − cA

)
≤ 2

t1−γ
log log(2t log t) = o(1), (153)

which allows us to further bound (151) by

ρ log(ϑr(k+1)
t )− r(k+1)

t

t

(
log logr(k+1)

t −2cA

)
− χ̃(ρ)+

1
2

ε +o(1). (154)

Applying (149) we obtain
1
t

logU (k)
t < ρ log(ϑrt)−ρ− χ̃(ρ)+ ε . ut

Proof (Proof of upper bound in (14)). To avoid repetition, all statements are as-
sumed to be made P×P-almost surely eventually as t→ ∞. Let G = GW and note
that GW ∈G

(ϑ)
∞ almost surely, where ϑ is as in (12). Define

U (0)
t := EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
dtγ e

>t}

]
, U (∞)

t := EO

[
e
∫ t

0 ξ (Xs)ds1l{τBc
dt log te

≤t}

]
.

(155)
Note that

U(t)≤U (0)
t +U (∞)

t +Kt max
1≤k≤Kt

U (k)
t (156)

and, since U (0)
t +U (∞)

t ≤ o(1)U(t) by Lemmas 4.2–4.3 and (129),

U(t)≤ 2Kt max
1≤k≤Kt

U (k)
t and so

1
t

logU(t)≤ log(2Kt)

t
+ max

1≤k≤Kt

1
t

logU (k)
t .

(157)
By Lemma 4.4 and (143), for any ε > 0,

1
t logU(t) ≤ ρ log(ϑrt)−ρ− χ̃(ρ)+ ε +o(1) (158)
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therefore, P×P-almost surely,

limsup
t→∞

{
1
t

logU(t)−ρ log
(

ϑρt
log log t

)}
≤−ρ− χ̃(ρ)+ ε. (159)

Since ε > 0 is arbitrary, this completes the proof of the lower bound in (14). ut

5 Proof of Theorem 1.5

In this section we give the proof of Theorem 1.5. The proof is based on the fact
that, up to a radius growing slower than logΦn (cf. (20)), the configuration model
equals a Galton-Watson tree with high probability. From this the result will follow
via Theorem 1.1 and Lemma 4.2.

To describe the associated Galton-Watson tree, we define a random variable D?

as the size-biased version of D in Assumption (CM)(1), i.e.,

P(D? = k) =
kP(D = k)

E[D]
. (160)

Proposition 5.1. [Coupling of UGn and GW] Let UGn = (Vn,En,On) be the uni-
form simple random graph with degree sequence d(n) satisfying Assumption (CM),
and let GW = (V,E,O) be a Galton-Watson tree with initial degree distribution
D0 = D and general degree distribution Dg = D?. There exists a coupling P̃ of UGn
and GW such that, for any mn ∈ N satisfying 1� mn� logΦn,

lim
n→∞

P̃
(
BUGn

mn (On) = BGW
mn (O)

)
= 1. (161)

Proof. For CMn in place of UGn, this is a consequence of the proof of [vdH17b,
Proposition 5.4]: the statement there only covers coupling |Bmn |, but the proof actu-
ally gives Bmn . The fact that mn may be taken up to o(logΦn) can be inferred from
the proof. In fact, mn could be taken up to c logΦn with some c = c(ν) > 0. The
result is then passed to UGn by (16) (see e.g. [vdH17a, Corollary 7.17]).

Proof (Proof of Theorem 1.5). First note that, by Propositions 1.3–1.4, we may as-
sume that UGn is connected, thus fitting the setup of Section 2. Let Un(t) be the total
mass for UGn and U(t) the total mass for GW as in Proposition 5.1. Define

U◦n (t) := EOn

[
e
∫ t

0 ξ (Xs)ds1l{τBc
t log t>t}

]
, (162)

and analogously U◦(t). By Lemma 4.2 and Proposition 5.1, whp as n→ ∞,

Un(tn) =U◦n (tn)+o(1) =U◦(tn)+o(1) =U(tn)+o(1), (163)
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so (21) follows from Theorem 1.1 after noting that ν in (17) is equal to E[D?−1].
ut

6 Appendix: Analysis of χ(ρ)

In this appendix we study the variational problem in (9). In particular, we prove the
alternative representations in Proposition 2.3, and we prove Theorem 1.2, i.e., we
identify for ρ ≥ 1/ log(dmin + 1) the quantity χ̃(ρ) that appears in Theorems 1.1
and 1.5 as χG with G the infinite tree with homogeneous degree dmin ∈ N\{1}, the
smallest degree that has a positive probability in our random graphs. In other words,
we show that the infimum in (13) is attained on the infinite tree with the smallest
admissible degrees.

It is not hard to understand heuristically why the optimal tree is infinite and has
the smallest degree: the first part in (9) (the quadratic energy term coming from the
Laplace operator) has a spreading effect and is the smaller the less bonds there are.
However, proving this property is not so easy, since the other term (the Legendre
transform from the large-deviation term of the random potential) has an opposite ef-
fect. In the setting where the underlying graph is Zd instead of a tree, this problem is
similar to the question whether or not the minimiser has compact support. However,
our setting is different because of the exponential growth of balls on trees. We must
therefore develop new methods.

Indeed, we will not study the effect on the principal eigenvalue due to the re-
striction of a large graph to a subgraph, but rather due to an opposite manipulation,
namely, the glueing of two graphs obtained by adding one single edge (or possibly
a joining vertex). The effect of such a glueing is examined in Section 6.2. The re-
sult will be used in Section 6.3 to finish the proof of Theorem 1.2. Before that, we
discuss in Section 6.1 alternative representations for χ and prove Proposition 2.3.

In this section, no probability is involved. We drop ρ from the notation at many
places.

6.1 Alternative representations

Fix a graph G = (V,E). Recall that P(V ) denotes the set of probability measures
on V , and recall that the constant χG = χG(ρ) in (9) is defined as infp∈P(V )[IE(p)+
ρJV (p)] with I,J as in (8). As the next lemma shows, the constant χ̂ in (39) can be
also represented in terms of I,J.

Lemma 6.1. [First representation] For any graph G = (V,E) and any Λ ⊂V ,

χ̂V (ρ;G) = inf
p∈P(V ):

supp(p)⊂Λ

[IE(p)+ρJV (p)] . (164)
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In particular,
χ̂Λ (ρ;G)≥ χ̂V (ρ;G) = χG(ρ). (165)

Proof. For the proof of (164), see [GM98, Lemma 2.17]. Moreover, (165) follows
from (164). ut

We next consider the constant χ
(0)
G in (40) for infinite rooted graphs G=(V,E,O).

Note that, by (164), χ̂Br(ρ;G) is non-increasing in r. With (165) this implies

χ
(0)
G (ρ) = lim

r→∞
χ̂Br(ρ;G)≥ χG(ρ). (166)

Lemma 6.2. [Second representation] For any rooted G ∈G∞, χG(ρ) = χ
(0)
G (ρ).

Proof. Write G = (V,E,O). By (9), Lemma 6.1 and (166), it suffices to show that,
for any p ∈ P(V ) and r ∈ N, there is a pr ∈ P(V ) with support in Br such that

liminf
r→∞

{IE(pr)+ρJV (pr)} ≤ IE(p)+ρJV (p). (167)

Simply take

pr(x) =
p(x)1lBr(x)

p(Br)
, x ∈V, (168)

i.e., the normalised restriction of p to Br. Then we easily see that

JV (pr)− JV (p) =− 1
p(Br)

∑x∈Br p(x) log p(x)+ log p(Br)+∑x∈V p(x) log p(x)

≤ JV (p)
p(Br)

(1− p(Br))→ 0, r→ ∞,

(169)
where we use log p(Br)≤ 0 and p(x) log p(x)≤ 0 for every x. As for the I-term,

IE(pr) =
1

p(Br)
∑{x,y}∈E:x,y∈Br

(√
p(x)−

√
p(y)

)2

+ 1
2 ∑{x,y}∈E:x∈Br ,y∈Bc

r
p(x)

p(Br)
≤ IE (p)

p(Br)
+ dmax

2
p(Bc

r−1)

p(Br)
,

(170)

and therefore

IE(pr)− IE(p)≤ IE(p)
p(Br)

(1− p(Br))+
dmax

2
p(Bc

r−1)

p(Br)
→ 0, r→ ∞. (171)

ut

Proof (Proof of Proposition 2.3). The claim follows from Lemmas 6.1–6.2 and
(166). ut
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6.2 Glueing graphs

Here we analyse the constant χ of a graph obtained by connecting disjoint graphs.
First we show that glueing two graphs together with one additional edge does not
decrease the quantity χ:

Lemma 6.3. [Glue two] Let Gi = (Vi,Ei), i = 1,2, be two disjoint connected simple
graphs, and let xi ∈Vi, i= 1,2. Denote by G the union graph of G1, G2 with one extra
edge between x1 and x2, i.e., G = (V,E) with V :=V1∪V2, E := E1∪E2∪{(x1,x2)}.
Then

χG ≥min{χG1 ,χG2} . (172)

Proof. Given p ∈ P(V ), let ai = p(Vi), i = 1,2, and define pi ∈ P(Vi) by putting

pi(x) :=
{ 1

ai
p(x)1lVi(x) if ai > 0,

1lxi(x) otherwise.
(173)

Straightforward manipulations show that

IE(p) =
2

∑
i=1

aiIEi(pi)+
(√

p(x1)−
√

p(x2)
)2

, JV (p) =
2

∑
i=1

[aiJVi(pi)−ai logai] ,

(174)
and so

IE(p)+ρJV (p)≥
2

∑
i=1

ai

[
IEi(pi)+ρJVi(pi)

]
≥min{χG1 ,χG2}. (175)

The proof is completed by taking the infimum over p ∈ P(V ). ut

Below it will be useful to define, for x ∈V ,

χ
(x,b)
G = inf

p∈P(V ),
p(x)=b

[IE(p)+ρJV (p)], (176)

i.e., a version of χG with “boundary condition” b at x. It is clear that χ
(x,b)
G ≥ χG.

Next we glue several graphs together and derive representations and estimates
for the corresponding χ . For k ∈ N, let Gi = (Vi,Ei), 1 ≤ i ≤ k, be a collection
of disjoint graphs. Let x be a point not belonging to

⋃k
i=1 Vi. For a fixed choice

yi ∈ Vi, 1 ≤ i ≤ k, we denote by Gk = (V k,Ek) the graph obtained by adding an
edge from each y1, . . . ,yk to x, i.e., V k =V1∪·· ·∪Vk∪{x} and Ek = E1∪·· ·∪Ek∪
{(y1,O), . . . ,(yk,x)}.

Lemma 6.4. [Glue many plus vertex] For any ρ > 0, any k ∈ N, and any Gi =
(Vi,Ei), yi ∈Vi, 1≤ i≤ k,
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χGk
= inf 0≤ci≤ai≤1,

a1+···+ak≤1

{
∑

k
i=1 ai

(
χ

(yi ,ci/ai)
Gi

−ρ logai

)
+∑

k
i=1

(√
ci−

√
1−∑

k
i=1 ai

)2
−ρ

(
1−∑

k
i=1 ai

)
log
(

1−∑
k
i=1 ai

)}
.

(177)

Proof. The claim follows from straightforward manipulations with (8). ut

Lemma 6.4 leads to the following comparison lemma. For j ∈ N, let

(G j
i ,y

j
i ) =

{
(Gi,yi) if i < j,
(Gi+1,yi+1) if i≥ j, (178)

i.e., (G j
i )i∈N is the sequence (Gi)i∈N with the j-th graph omitted. Let G j

k be the
analogue of Gk obtained from G j

i , 1≤ i≤ k, i 6= j, instead of Gi, 1≤ i≤ k.

Lemma 6.5. [Comparison] For any ρ > 0 and any k ∈ N,

χGk+1
= inf1≤ j≤k+1 inf0≤c≤u≤ 1

k+1
inf 0≤ci≤ai≤1,

a1+···+ak≤1{
(1−u)

[
∑

k
i=1 ai

(
χ

(y
σ j(i)

,ci/ai)

Gσ j(i)
−ρ logai

)
+∑

k
i=1

(√
ci−

√
1−∑

k
i=1 ai

)2
−ρ

(
1−∑

k
i=1 ai

)
log
(

1−∑
k
i=1 ai

)]
+uχ

(y j ,c/u)

G j
+
(√

c−
√
(1−u)

(
1−∑

k
i=1 ai

))2

−ρ [u logu+(1−u) log(1−u)]

}
.

(179)
Moreover,

χGk+1
≥ inf1≤ j≤k+1 inf0≤u≤ 1

k+1{
(1−u)χ

G j
k
+ infv∈[0,1]

{
uχ

(y j ,v)
G j

+1{u(1+v)≥1}

[√
vu−
√

1−u
]2}

−ρ [u logu+(1−u) log(1−u)]

}
.

(180)

Proof. Note that{
(ci,ai)

k+1
i=1 : 0≤ ci ≤ ai ≤ 1,∑k+1

i=1 ai ≤ 1
}

=
k+1⋃
j=1


(
(1−u)(ci,ai)

j−1
i=1 ,(c,u),(1−u)(ci,ai)

k
i= j

)
:

0≤ c≤ u≤ 1
k+1 ,0≤ ci ≤ ai ≤ 1,∑k

i=1 ai ≤ 1

 ,
(181)
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from which (179) follows by straightforward manipulations on (177). To prove
(180), note that the first term within the square brackets in the first two lines of
(179) equals the term minimised in (177), and is therefore not smaller than χ

G j
k
. ut

Lemma 6.6. [Propagation of lower bounds] If ρ > 0, M ∈ R, C > 0 and k ∈ N
satisfy ρ ≥C/ log(k+1) and

inf
1≤ j≤k+1

χ
G j

k
≥M, inf

1≤ j≤k+1
inf

v∈[0,1]
χ

(y j ,v)

G j
≥M−C, (182)

then χGk+1
≥M.

Proof. Dropping some non-negative terms in (180), we obtain

χGk+1
−M ≥ inf0≤u≤1/(k+1)

{
u
(

χ
(y j ,v)

G j
−M

)
−ρu logu

}
≥ inf0≤u≤1/(k+1) {u(ρ log(k+1)−C)} ≥ 0

(183)

by the assumption on ρ . ut

The above results will be applied in the next section to minimise χ over families of
trees with minimum degrees.

6.3 Trees with minimum degrees

Fix d ∈N. Let T̊d be an infinite tree rooted atO such that the degree ofO equals d−
1 and the degree of every other vertex in T̊d is d. Let T̊ (0)

d = {T̊d} and, recursively,
let T̊ (n+1)

d denote the set of all trees obtained from a tree in T̊ (n)
d and a disjoint copy

of T̊d by adding an edge between a vertex of the former and the root of the latter.
Write T̊d =

⋃
n∈N0

T̊ (n)
d . Assume that all trees in T̊d are rooted at O.

Recall that Td is the infinite regular d-tree. Observe that Td is obtained from
(T̊d ,O) and a disjoint copy (T̊ ′d ,O′) by adding one edge between O and O′. Con-
sider Td to be rooted atO. Let T (0)

d = {Td} and, recursively, let T (n+1)
d denote the set

of all trees obtained from a tree in T (n)
d and a disjoint copy of T̊d by adding an edge

between a vertex of the former and the root of the latter. Write Td =
⋃

n∈N0
T (n)

d ,
and still consider all trees in Td to be rooted at O. Note that T (n)

d contains pre-
cisely those trees of T̊ (n+1)

d that have Td as a subgraph rooted at O. In particular,
T (n)

d ⊂ T̊ (n+1)
d and Td ⊂ T̊d .

Our objective is to prove the following.

Proposition 6.7. [Minimal tree is optimal] If ρ ≥ 1/ log(d +1), then

χTd (ρ) = min
T∈Td

χT (ρ).

For the proof of Proposition 6.7, we will need the following.
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Lemma 6.8. [Minimal half-tree is optimal] For all ρ ∈ (0,∞),

χT̊d
(ρ) = min

T∈T̊d

χT (ρ).

Proof. Fix ρ ∈ (0,∞). It will be enough to show that

χT̊d
= min

T∈T̊ (n)
d

χT , n ∈ N0, (184)

which we will achieve by induction in n. The case n = 0 is obvious. Assume that
(184) holds for some n ∈ N0. Any tree T ∈ T̊ (n+1)

d can be obtained from a tree
T̃ ∈ T̊ (n)

d and a disjoint copy T̊ ′d of T̊d by adding an edge between a point x̃ in the
vertex set of T̃ to the root of T̊ ′d . Applying Lemma 6.3 together with the induction
hypothesis, we obtain

χT ≥min
{

χT̃ ,χT̊ ′d

}
≥ χT̊d

, (185)

which completes the induction step. ut

Lemma 6.9. [A priori bounds] For any d ∈ N and any ρ ∈ (0,∞),

χT̊d
(ρ)≤ χTd (ρ)≤ χT̊d

(ρ)+1. (186)

Proof. The first inequality follows from Lemma 6.8. For the second inequality, note
that Td contains as subgraph a copy of T̊d , and restrict the minimum in (9) to p ∈
P(T̊d). ut

Proof (Proof of Proposition 6.7). Fix ρ ≥ 1/ log(d +1). It will be enough to show
that

χTd = min
T∈T (n)

d

χT , n ∈ N0. (187)

We will prove this by induction in n. The case n = 0 is trivial. Assume that, for some
n0 ≥ 0, (187) holds for all n≤ n0. Let T ∈T

(n0+1)
d . Then there exists a vertex x of T

with degree k+1≥ d +1. Let y1, . . . ,yk+1 be set of neighbours of x in T . When we
remove the edge between y j and x, we obtain two connected trees; call G j the one
containing y j, and G j

k the other one. With this notation, T may be identified with
Gk+1.

Now, for each j, the rooted tree (G j,y j) is isomorphic (in the obvious sense) to a

tree in T̊
(` j)

d , where ` j ∈ N0 satisfy `1 + · · ·+ `k+1 ≤ n0, while G j
k belongs to T

(n j)

d
for some n j ≤ n0. Therefore, by the induction hypothesis,

χ
G j

k
≥ χTd , (188)

while, by (176), Lemma 6.8 and Lemma 6.9,

inf
v∈[0,1]

χ
(y j ,v)
G j

≥ χG j ≥ χT̊d
≥ χTd −1. (189)
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Thus, by Lemma 6.3 applied with M = χTd and C = 1,

χT = χḠk+1
≥ χTd , (190)

which completes the induction step. ut

Proof (Proof of Theorem 1.2). First note that, since Tdmin has degrees in supp(Dg),
χ̃(ρ)≤ χTdmin

(ρ). For the opposite inequality, we proceed as follows. Fix an infinite

tree T with degrees in supp(Dg), and root it at a vertex Y . For r ∈ N, let T̃r be the
tree obtained from Br = BT

r (Y) by attaching to each vertex x ∈ Br with |x| = r a
number dmin− 1 of disjoint copies of (T̊dmin ,O), i.e., adding edges between x and
the corresponding roots. Then T̃r ∈Tdmin and, since Br has more out-going edges in
T than in T̃r, we may check using (164) that

χ̂Br(ρ;T )≥ χ̂Br(ρ; T̃r)≥ χT̃r
(ρ)≥ χTdmin

(ρ). (191)

Taking r→ ∞ and applying Proposition 2.3, we obtain χT (ρ)≥ χTdmin
(ρ). Since T

is arbitrary, the proof is complete. ut
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[GdH99] J. GÄRTNER and F. DEN HOLLANDER, Correlation structure of intermittency in the
parabolic Anderson model, Probab. Theory Relat. Fields 114, 1–54 (1999).
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