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The Goal

Consider k i.i.d. random walks Xi = (Xi(n))n∈N0 (i = 1, . . . , k) on R.

Questions:

� What is the conditional version given that the walkers stay in strict order for ever?

� What is the asymptotic probability that they stay in strict order until a late time?

� What is the large-time behaviour of the k walkers given that they stay in strict order until a

late time or for ever?
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The Goal

Consider k i.i.d. random walks Xi = (Xi(n))n∈N0 (i = 1, . . . , k) on R.

Questions:

� What is the conditional version given that the walkers stay in strict order for ever?

� What is the asymptotic probability that they stay in strict order until a late time?

� What is the large-time behaviour of the k walkers given that they stay in strict order until a

late time or for ever?

Denote X = (X1, . . . , Xk), starting from x ∈ R
k

under Px, and

W = {x ∈ R
k : x1 < x2 < · · · < xk} Weyl chamber

τ = inf{n ∈ N : X(n) /∈ W} exit time from W,
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The Goal

Consider k i.i.d. random walks Xi = (Xi(n))n∈N0 (i = 1, . . . , k) on R.

Questions:

� What is the conditional version given that the walkers stay in strict order for ever?

� What is the asymptotic probability that they stay in strict order until a late time?

� What is the large-time behaviour of the k walkers given that they stay in strict order until a

late time or for ever?

Denote X = (X1, . . . , Xk), starting from x ∈ R
k

under Px, and

W = {x ∈ R
k : x1 < x2 < · · · < xk} Weyl chamber

τ = inf{n ∈ N : X(n) /∈ W} exit time from W,

then our questions may be reformulated as follows.

� What is the conditional distribution of X given {τ = ∞}?

� What are the asymptotics of Px(τ > n) as n → ∞?

� Does the distribution of X(n)/
√

n converge under Px(· | τ > n) or Px(· | τ = ∞)?
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Motivation A: Non-colliding random walks

� Appeared in JOHANSSON’S beautiful analysis of the corner-growth model (2002).

� Have remarkable connections to tandem queues (survey article [O’CONNELL ’03]).

� Discrete version of Dyson’s Brownian motion (see below).
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Motivation A: Non-colliding random walks

� Appeared in JOHANSSON’S beautiful analysis of the corner-growth model (2002).

� Have remarkable connections to tandem queues (survey article [O’CONNELL ’03]).

� Discrete version of Dyson’s Brownian motion (see below).

Only rather special cases handled yet: nearest-neighbor random walks on Z
k

that satisfy the

continuity property: Px(X(τ ) ∈ ∂W ) = 1.

Here, ‘ordered’ is equivalent to ‘non-colliding’.

Examples: simple random walk [KATORI/TANEMURA ’04], binomial walk, multinomial walk,

Poisson walk [K./O’CONNELL/ROCH ’02], Yule process [DOUMERC ’05].

General random walks not considered before 2008.
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Motivation B: Dyson’s Brownian motion

Also called non-colliding Brownian motions: the continuous version of our question [Dyson

1962].

H(t) = (Hi,j(t))i,j=1,...,k Hermitian Brownian motion (GUE at time t = 1)

λ1(t) ≤ λ2(t) ≤ · · · ≤ λk(t) eigenvalues of H(t)

λ = (λ1(t), . . . , λk(t))t∈[0,∞) eigenvalue process in W
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Motivation B: Dyson’s Brownian motion

Also called non-colliding Brownian motions: the continuous version of our question [Dyson

1962].

H(t) = (Hi,j(t))i,j=1,...,k Hermitian Brownian motion (GUE at time t = 1)

λ1(t) ≤ λ2(t) ≤ · · · ≤ λk(t) eigenvalues of H(t)

λ = (λ1(t), . . . , λk(t))t∈[0,∞) eigenvalue process in W

Theorem. [DYSON 1962]

λ satisfies, for β = 2, the SDE

dλi(t) = dBi(t) +
β

2

X

j 6=i

1

λi(t) − λj(t)
dt, i = 1, . . . , k.

Furthermore, λ is a Brownian motion in R
k

, conditioned on being non-colliding for ever.
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Motivation B: Dyson’s Brownian motion

Also called non-colliding Brownian motions: the continuous version of our question [Dyson

1962].

H(t) = (Hi,j(t))i,j=1,...,k Hermitian Brownian motion (GUE at time t = 1)

λ1(t) ≤ λ2(t) ≤ · · · ≤ λk(t) eigenvalues of H(t)

λ = (λ1(t), . . . , λk(t))t∈[0,∞) eigenvalue process in W

Theorem. [DYSON 1962]

λ satisfies, for β = 2, the SDE

dλi(t) = dBi(t) +
β

2

X

j 6=i

1

λi(t) − λj(t)
dt, i = 1, . . . , k.

Furthermore, λ is a Brownian motion in R
k

, conditioned on being non-colliding for ever.

Hence, if T = inf{t > 0: B(t) /∈ W} is the exit time of a BM B in R
k

from the Weyl

chamber W , then, formally,

L(λ) = L(B | T = ∞).

(More about that later)
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Motivation C: Fluctuation Theory

The special case k = 2 is equivalent to conditioning a random walk S on R to stay positive at

all times. Fluctuation theory studies conditioning on being nonnegative. The answer is given in

terms of a Doob h-transform. If the walker’s steps have finite mean, then

V (x) =
x − Ex[Sσ]

−E0[Sσ]
, where σ = inf{n ∈ N : Sn < 0},

turns out to be a positive regular function for the restriction to [0,∞), i.e., V > 0 and

Ex[V (S1)1l{σ>1}] = V (x), x ∈ [0,∞).
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Motivation C: Fluctuation Theory

The special case k = 2 is equivalent to conditioning a random walk S on R to stay positive at

all times. Fluctuation theory studies conditioning on being nonnegative. The answer is given in

terms of a Doob h-transform. If the walker’s steps have finite mean, then

V (x) =
x − Ex[Sσ]

−E0[Sσ]
, where σ = inf{n ∈ N : Sn < 0},

turns out to be a positive regular function for the restriction to [0,∞), i.e., V > 0 and

Ex[V (S1)1l{σ>1}] = V (x), x ∈ [0,∞).

Hence, the Doob transform

bPx

`
(S0, . . . , Sn) ∈ A

´
= Px

`
(S0, . . . , Sn) ∈ A,σ > n

´V (Sn)

V (S0)
, A ⊂ [0,∞)n+1,

defines a consistent family of path measures; it is even a Markov chain.
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The special case k = 2 is equivalent to conditioning a random walk S on R to stay positive at

all times. Fluctuation theory studies conditioning on being nonnegative. The answer is given in

terms of a Doob h-transform. If the walker’s steps have finite mean, then

V (x) =
x − Ex[Sσ]

−E0[Sσ]
, where σ = inf{n ∈ N : Sn < 0},

turns out to be a positive regular function for the restriction to [0,∞), i.e., V > 0 and

Ex[V (S1)1l{σ>1}] = V (x), x ∈ [0,∞).

Hence, the Doob transform

bPx

`
(S0, . . . , Sn) ∈ A

´
= Px

`
(S0, . . . , Sn) ∈ A,σ > n

´V (Sn)

V (S0)
, A ⊂ [0,∞)n+1,

defines a consistent family of path measures; it is even a Markov chain.

Moreover, it is equal to the limiting process S, given that {σ > n} as n → ∞. Furthermore,

lim
n→∞

√
n Px(σ > n) = V (x), x ∈ [0,∞).

Main tools: duality and Sparre-Andersen identity (see [FELLER ’71], e.g.).
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More on non-colliding BMs

Proper definition in terms of Doob h-transform with h = ∆, where

∆(x) =
Y

1≤i<j≤k

(xj − xi) = det
h`

xj−1
i )i,j=1,...,k

´i
, Vandermonde determinant

Main properties: ∆ is harmonic for 1
2

Pk
i=1 ∂2

i , and ∆ > 0 in W .
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More on non-colliding BMs

Proper definition in terms of Doob h-transform with h = ∆, where

∆(x) =
Y

1≤i<j≤k

(xj − xi) = det
h`

xj−1
i )i,j=1,...,k

´i
, Vandermonde determinant

Main properties: ∆ is harmonic for 1
2

Pk
i=1 ∂2

i , and ∆ > 0 in W .

Transition probability density of the h-transform:

bpt(x, y) dy = Px(B(t) ∈ dy; T > t)
∆(y)

∆(x)
, x, y ∈ W.

Is this formula helpful?
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More on non-colliding BMs

Proper definition in terms of Doob h-transform with h = ∆, where

∆(x) =
Y

1≤i<j≤k

(xj − xi) = det
h`

xj−1
i )i,j=1,...,k

´i
, Vandermonde determinant

Main properties: ∆ is harmonic for 1
2

Pk
i=1 ∂2

i , and ∆ > 0 in W .

Transition probability density of the h-transform:

bpt(x, y) dy = Px(B(t) ∈ dy; T > t)
∆(y)

∆(x)
, x, y ∈ W.

Is this formula helpful? Yes!

Lemma. [KARLIN/MCGREGOR 1958]

Px(B(t) ∈ dy; T > t) = det
h`

pt(xi, yj)
´

i,j=1,...,k

´i
dy.

Main tools of the proof: reflection principle and a clever enumeration.
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Some properties

Corollary.

(i) bpt(0, y) = Ct−
k
4
(k−1)(2πt)−k/2e−|y|2/(2t)∆(y)2 Hermite ensemble

(ii) Px(T > t) ∼ Ct−
k
4
(k−1)∆(x) as t → ∞ non-colliding probability

(iii) limt→∞ Px

`
B(t)/

√
t ∈ dy | T > t

´
= Ce−|y|2/2∆(y)

(iv) P0(B(t) ∈ dy | T > t) = Cte
−|y|2/(2t)∆(y)
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Corollary.

(i) bpt(0, y) = Ct−
k
4
(k−1)(2πt)−k/2e−|y|2/(2t)∆(y)2 Hermite ensemble

(ii) Px(T > t) ∼ Ct−
k
4
(k−1)∆(x) as t → ∞ non-colliding probability

(iii) limt→∞ Px

`
B(t)/

√
t ∈ dy | T > t

´
= Ce−|y|2/2∆(y)

(iv) P0(B(t) ∈ dy | T > t) = Cte
−|y|2/(2t)∆(y)

Sketch of proof of (i) and (ii): The KMCG-formula gives

bpt(x, y) = C(2πt)−k/2e−|x|2/(2t)e−|y|2/(2t) det
h`

exiyj/t
´

i,j

i ∆(y)

∆(x)
.
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´
= Ce−|y|2/2∆(y)

(iv) P0(B(t) ∈ dy | T > t) = Cte
−|y|2/(2t)∆(y)

Sketch of proof of (i) and (ii): The KMCG-formula gives

bpt(x, y) = C(2πt)−k/2e−|x|2/(2t)e−|y|2/(2t) det
h`

exiyj/t
´

i,j

i ∆(y)

∆(x)
.

As x → 0 or t → ∞,

det
h`

exiyj/t
´

i,j

i
∼ det

h“ kX

l=1

xl−1
i

(l − 1)!tl−1
yl−1

j

”
i,j

i

= det
h“ xl−1

i

(l − 1)!tl−1

”
i,l

i
det

h`
yl−1

j

´
l,j

´i
= Ct−

k
4
(k−1)∆(x)∆(y).
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Brownian motion in a truncated Weyl chamber

The non-exit probability from the Weyl chamber W is polynomial, but the one from the

truncated chamber W ∩ Ik
with I = (−π

2
, π

2
) is exponential:

Px

`
B[0,t] ⊂ W ∩ Ik

´
∼ e−tλ(W∩Ik)

f (W∩Ik)(x)〈f (W∩Ik), 1l〉, t → ∞, for x ∈ W,

where λ(U)
denotes the principal eigenvalue and f (U)

the corresponding positive

L2
-normalised eigenfunction of − 1

2

Pk
i=1 ∂2

i in U ⊂ R
k

with zero boundary condition.
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Brownian motion in a truncated Weyl chamber

The non-exit probability from the Weyl chamber W is polynomial, but the one from the

truncated chamber W ∩ Ik
with I = (−π

2
, π

2
) is exponential:

Px

`
B[0,t] ⊂ W ∩ Ik

´
∼ e−tλ(W∩Ik)

f (W∩Ik)(x)〈f (W∩Ik), 1l〉, t → ∞, for x ∈ W,

where λ(U)
denotes the principal eigenvalue and f (U)

the corresponding positive

L2
-normalised eigenfunction of − 1

2

Pk
i=1 ∂2

i in U ⊂ R
k

with zero boundary condition.

How can we interpolate between these regimes?

Theorem [K./SCHMID 2011]

For any x ∈ W and any r ∈ (0,∞), as t → ∞,

Px

`
B[0,t] ⊂ W∩r(t)Ik

´
∼ ∆(x)

8
>><
>>:

K0r(t)
− k

2
(k−1)e

− t

r(t)2
λ(W∩Ik)

, if 1 ≪ r(t) ≪
√

t,

Krt
− k

4
(k−1), if r(t) ∼ r

√
t,

K∞t−
k
4
(k−1), if

√
t ≪ r(t).

Here Kr ∈ (0,∞) are constants for r ∈ [0,∞] such that

lim
r→∞

Kr = K∞ and Kr ∼ K0r
− k

2
(k−1)e−r−2λ(W∩Ik)

as r ↓ 0.
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Back to the question

Hence, we are looking for a positive regular function V : W → (0,∞) for the restriction of the

kernel of the walk X on R
k

. (Recall: W is the Weyl chamber, and τ its exit time.)

Under the above-mentioned continuity property, the Vandermonde determinant ∆ is a positive

regular function for the restriction to W , and the solution is similar to the Brownian case.

What is a suitable positive regular function in the general case?
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Hence, we are looking for a positive regular function V : W → (0,∞) for the restriction of the

kernel of the walk X on R
k

. (Recall: W is the Weyl chamber, and τ its exit time.)

Under the above-mentioned continuity property, the Vandermonde determinant ∆ is a positive

regular function for the restriction to W , and the solution is similar to the Brownian case.

What is a suitable positive regular function in the general case?

Here it is:

V (x) = ∆(x) − Ex

ˆ
∆(X(τ ))

˜
, x ∈ W.
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Back to the question

Hence, we are looking for a positive regular function V : W → (0,∞) for the restriction of the

kernel of the walk X on R
k

. (Recall: W is the Weyl chamber, and τ its exit time.)

Under the above-mentioned continuity property, the Vandermonde determinant ∆ is a positive

regular function for the restriction to W , and the solution is similar to the Brownian case.

What is a suitable positive regular function in the general case?

Here it is:

V (x) = ∆(x) − Ex

ˆ
∆(X(τ ))

˜
, x ∈ W.

Quite easily seen to be regular, i.e.,

Ex

ˆ
1l{τ>1}V (X(1))

˜
= V (x), x ∈ W.

Not easy to see: V ≥ 0 on W .

more difficult to see: V > 0 on W .

very difficult to see: V is well-defined, i.e., ∆(X(τ )) is integrable!
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Difficulties

Why so delicate:

Consider

Ex

ˆ
|∆(X(τ ))|

˜
=

X

n∈N

Ex

h Y

i<j

|Xj(n) − Xi(n)|1l{τ=n}

i
.

All the factors |Xj(n) − Xi(n)| are O(
√

n) with the exception of one of them.
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Difficulties

Why so delicate:

Consider

Ex

ˆ
|∆(X(τ ))|

˜
=

X

n∈N

Ex

h Y

i<j

|Xj(n) − Xi(n)|1l{τ=n}

i
.

All the factors |Xj(n) − Xi(n)| are O(
√

n) with the exception of one of them.

We expect (and later prove) that Px(τ > n) ≈ n− 1
4

k(k−1)
.

Hence, we should have (and do not prove) that Px(τ = n) ≈ n− 1
4

k(k−1)−1
.

Hence, we should have

Ex

h Y

i<j

|Xj(n) − Xi(n)|1l{τ=n}

i
≈ n− 3

2 ,

which is enough.
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The main result

Assume that the steps have mean zero and variance one, and that the local central limit

theorem holds.

Theorem. [EICHELSBACHER/K. 08]

If sufficiently high step moments are finite, the following hold.

(i) ∆(X(τ )) is integrable under Px for any x ∈ W .

(ii) V is a positive regular function for the restriction of the transition kernel to W .

(iii) The Doob h-transform with h = V is equal to X , given {τ > n} as n → ∞.

(iv)

lim
n→∞

Px

`
n− 1

2 X(n) ∈ A | τ > n
´

=
1

Z1

Z

A

e−
1
2
|y|2∆(y) dy weakly.

and, for some K ∈ (0,∞),

lim
n→∞

n
k
4
(k−1)

Px(τ > n) = KV (x), x ∈ W.

(v) Uniformly on compacts, limn→∞ n− k
4
(k−1)V (

√
n x) = ∆(x).

(vi) For any x ∈ W , the distribution of the process (n− 1
2 X(⌊nt⌋))t∈[0,∞) under bP√

nx

converges towards Dyson’s Brownian motions started at x.
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Comments

� Main tools of our proof: generalisation of the Karlin-McGregor formula, local central limit

theorem and Hölder’s inequality.

� Therefore loss of optimal moment condition.
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Comments

� Main tools of our proof: generalisation of the Karlin-McGregor formula, local central limit

theorem and Hölder’s inequality.

� Therefore loss of optimal moment condition.

� DENISOV/WACHTEL (2009) prove the theorem under almost optimal moment condition:

finite (k − 1)-st moments of the steps. The main tools are martingale arguments, a clever

stopping time T = inf{n ∈ N : ∆(X(n)) < 0} and an embedding of the walks on a

Brownian space.
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Comments

� Main tools of our proof: generalisation of the Karlin-McGregor formula, local central limit

theorem and Hölder’s inequality.

� Therefore loss of optimal moment condition.

� DENISOV/WACHTEL (2009) prove the theorem under almost optimal moment condition:

finite (k − 1)-st moments of the steps. The main tools are martingale arguments, a clever

stopping time T = inf{n ∈ N : ∆(X(n)) < 0} and an embedding of the walks on a

Brownian space.

� K. AND SCHMID (2009) extend Denisov/Wachtel’s proof to the Weyl chambers of Type C

and D,

WC = {(x1, . . . , xk) ∈ R
k : 0 < x1 < · · · < xk},

WD = {(x1, . . . , xk) ∈ R
k : |x1| < x2 < · · · < xk}.

The relevant positive regular functions are

VC(x) = VD(x)

kY

i=1

xi and VD(x) =
Y

1≤i<j≤k

(x2
j − x2

i ).

� DENISOV/WACHTEL (2011) extend the theorem to less integrable steps.
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Open questions

� Relation to the eigenvalue processes of some matrix-valued random walks?

� Relation to general corner-growth process?

� How to construct ordered random walks under infinite variance of the steps?

� Is there a useful duality principle?

� Behaviour of the k ordered random walks if k → ∞? Convergence of the empirical

measure of some marginal distribution (version of WIGNER’s semicircle law)? (See

[BAIK/SUIDAN 06] for some partial answer.)
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