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The Goal

Consider £ i.i.d. random walks X; = (Xi(n))nen, ¢ =1,...,k)onR.

B What is the conditional version given that the walkers stay in strict order for ever?
B What is the asymptotic probability that they stay in strict order until a late time?

B What is the large-time behaviour of the k& walkers given that they stay in strict order until a
late time or for ever?
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The Goal
Consider £ i.i.d. random walks X; = (Xi(n))nen, ¢ =1,...,k)onR.

B What is the conditional version given that the walkers stay in strict order for ever?
B What is the asymptotic probability that they stay in strict order until a late time?

B What is the large-time behaviour of the k& walkers given that they stay in strict order until a
late time or for ever?

Denote X = (X1,..., Xy), starting from z € R* under PP, and

W:{meRk:x1<m2<~~~<mk} Weyl chamber

7=inf{n € N: X(n) ¢ W}  exittime from W,
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The Goal

Consider £ i.i.d. random walks X; = (Xi(n))nen, ¢ =1,...,k)onR.

B What is the conditional version given that the walkers stay in strict order for ever?
B What is the asymptotic probability that they stay in strict order until a late time?

B What is the large-time behaviour of the k& walkers given that they stay in strict order until a
late time or for ever?

Denote X = (X1,..., Xy), starting from z € R* under PP, and

W:{meRk:x1<m2<~~~<mk} Weyl chamber

7=inf{n € N: X(n) ¢ W}  exittime from W,
then our questions may be reformulated as follows.
B What is the conditional distribution of X given {7 = c0}?
B What are the asymptotics of P, (7 > n) asn — c0?
B Does the distribution of X (n)/+/n converge under P, (- | 7 > n) or P, (- | 7 = 00)?
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Motivation A: Non-colliding random walks

B Appeared in JOHANSSON’S beautiful analysis of the corner-growth model (2002).

B Have remarkable connections to tandem queues (survey article [O’CONNELL '03]).

W Discrete version of Dyson’s Brownian motion (see below).
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Motivation A: Non-colliding random walks

B Appeared in JOHANSSON’S beautiful analysis of the corner-growth model (2002).
B Have remarkable connections to tandem queues (survey article [O’CONNELL ’'03]).

B Discrete version of Dyson’s Brownian motion (see below).
Only rather special cases handled yet: nearest-neighbor random walks on ZF that satisfy the
continuity property:  Po(X(7) € OW) = 1.
Here, ‘ordered’ is equivalent to ‘non-colliding’.

Examples: simple random walk [KATORI/TANEMURA *04], binomial walk, multinomial walk,
Poisson walk [K./O’CONNELL/ROCH’02], Yule process [DOUMERC ’05].

General random walks not considered before 2008.
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Motivation B: Dyson’s Brownian motion

Also called non-colliding Brownian motions: the continuous version of our question [Dyson
1962].

H(t) = (Hi,j(t))s,j=1,...,k Hermitian Brownian motion (GUE at time ¢t = 1)
A1(t) < A2(t) < -+ < Ag(t) eigenvalues of H (t)
A= (A1(t),. .., Ae(t))te(o,00) eigenvalue process in W
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Motivation B: Dyson’s Brownian motion

Also called non-colliding Brownian motions: the continuous version of our question [Dyson
1962].

H(t) = (Hi,;(t))s,j=1,...,k Hermitian Brownian motion (GUE at time ¢t = 1)
A1(t) < A2(t) < -+ < Ag(t) eigenvalues of H (t)
A= (A1(t),. .., Ae(t))te(o,00) eigenvalue process in W

Theorem. [DYSON 1962]

) satisfies, for 3 = 2, the SDE

di(t) = 52/\ )dt, i=1,...,k
JFi

Furthermore, \ is a Brownian motion in R¥, conditioned on being non-colliding for ever.
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Motivation B: Dyson’s Brownian motion

Also called non-colliding Brownian motions: the continuous version of our question [Dyson
1962].

H(t) = (Hi,;(t))s,j=1,...,k Hermitian Brownian motion (GUE at time ¢t = 1)
A1(t) < A2(t) < -+ < Ag(t) eigenvalues of H (t)
A= (A1(t),. .., Ae(t))te(o,00) eigenvalue process in W

Theorem. [DYSON 1962]

) satisfies, for 3 = 2, the SDE
di(t) = 52 dt, i=1,...,k
Ai( 3(t)
J#i
Furthermore, \ is a Brownian motion in R¥, conditioned on being non-colliding for ever.
Hence, if T = inf{t > 0: B(t) ¢ W} is the exit time of a BM B in R¥ from the Wey/
chamber W, then, formally,
LA)=L(B|T = ).

(More about that later)
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Motivation C: Fluctuation Theory

The special case k = 2 is equivalent to conditioning a random walk .S on R to stay positive at
all times. Fluctuation theory studies conditioning on being nonnegative. The answer is given in
terms of a Doob h-transform. If the walker’s steps have finite mean, then

x — Ez[Ss]

mATARR where o = inf{n € N: S, < 0},

Viz) =
turns out to be a positive regular function for the restriction to [0, c0), i.e., V' > 0 and

Em[V(Sl)]l{g>1}] = V(x), T € [0, OO)
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Motivation C: Fluctuation Theory

The special case k = 2 is equivalent to conditioning a random walk .S on R to stay positive at
all times. Fluctuation theory studies conditioning on being nonnegative. The answer is given in
terms of a Doob h-transform. If the walker’s steps have finite mean, then

x — Ez[Ss]

“FoS,] where o = inf{n € N: S, < 0},

V(z) =
turns out to be a positive regular function for the restriction to [0, c0), i.e., V' > 0 and

]EI[V(Sl)]l{o>l}] = V(‘r)v S [03 OO)
Hence, the Doob transform

V(Sn)

n+1
Vay  Achoeot

Po((So,...,80) € A) =Pu((So,...,Sn) € A,0 > n)

defines a consistent family of path measures; it is even a Markov chain.
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Motivation C: Fluctuation Theory

The special case k = 2 is equivalent to conditioning a random walk .S on R to stay positive at
all times. Fluctuation theory studies conditioning on being nonnegative. The answer is given in
terms of a Doob h-transform. If the walker’s steps have finite mean, then

x — Ez[Ss]

V(z) = “RoS.]

where o = inf{n € N: S, < 0},

turns out to be a positive regular function for the restriction to [0, c0), i.e., V' > 0 and

]EI[V(Sl)]l{o>l}] = V(x)v S [03 OO)
Hence, the Doob transform

V(Sn)

@z((SO,,Sn) GA) :Pz((S(),,Sn) c A,O’>n)m,

AC[0,00)" ",

defines a consistent family of path measures; it is even a Markov chain.
Moreover, it is equal to the limiting process S, given that {c > n} as n — oo. Furthermore,

lim vnP.(oc >n)=V(z), x€]0,00).

n— oo

Main tools: duality and Sparre-Andersen identity (see [FELLER71], e.g.).
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More on non-colliding BMs

Proper definition in terms of Doob h-transform with h = A, where

Az) = H (z; —xs) = det [(:cgfl)i,j:h..,k)], Vandermonde determinant
1<i<j<k

Main properties: A is harmonic for % Ele 02,and A > 0in .
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More on non-colliding BMs

Proper definition in terms of Doob h-transform with h = A, where

Az) = H (z; —xs) = det [(xzil)i,jzl,...,k)], Vandermonde determinant
1<i<j<k

Main properties: A is harmonic for % Ele 02,and A > 0in .
Transition probability density of the h-transform:

A
zﬁt(ﬂﬁ,y)dy=1P)z(B(t)Gdy;T>t)M z,y € W.

(z)’

Is this formula helpful?
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More on non-colliding BMs

Proper definition in terms of Doob h-transform with h = A, where

Az) = H (z; —xs) = det [(xzil)tj:l"”’k)], Vandermonde determinant
1<i<j<k

Main properties: A is harmonic for % Ele 02,and A > 0in .
Transition probability density of the h-transform:

~ A
Di(z,y)dy = Po(B(t) € dy; T > t)%, z,y e W.

Is this formula helpful? Yes!

Lemma. [KARLIN/MCGREGOR 1958]

P (B(t) € dy; T > t) = det [(pt(xi,yj))i,jzlw,c)] dy.

Main tools of the proof: reflection principle and a clever enumeration.
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Some properties

Corollary.

(i) p+(0,y) = C’t_%(k_l)(27rt)_k/2e_'ylz/m)A(y)2 Hermite ensemble
(i) Po(T > t) ~ Ct_%(k_l)A(x) as t — oo non-colliding probability
(iii) lim—o Py (B(t)/VE € dy | T > t) = Ce™ W’ /2A(y)

(iv) Po(B(t) € dy | T > t) = Cre W /COA(y)
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Some properties

Corollary.

(i) p+(0,y) = C’t_%(k_l)(27rt)_k/2e_'ylz/m)A(y)2 Hermite ensemble
(i) Po(T > t) ~ Ct_%(k_l)A(x) as t — oo non-colliding probability
(iii) lim—o Py (B(t)/VE € dy | T > t) = Ce™ W’ /2A(y)

(iv) Po(B(t) € dy | T > t) = Cre W /@D A(y)

Sketch of proof of (i) and (ii): The KMcG-formula gives

. N
Bul,y) = C(2mt) 2120 =W/ 20) goy [(ew]/t)i,g} ()
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Some properties

Corollary.

(i) p+(0,y) = C’t_%(k_l)(27rt)_k/2e_'ylz/m)A(y)2 Hermite ensemble
(i) Po(T > t) ~ ~ Ot 0= Y A(z) as t — oo non-colliding probability
(iii) lim—o Py (B(t)/VE € dy | T > t) = Ce™ W’ /2A(y)
(iv) Po(B(t) € dy | T > t) = Cre W /@D A(y)
Sketch of proof of (i) and (ii): The KMcG-formula gives
Bi(z,y) = C(2mt)~H/2e 117/ =%/ 20) o [(emiyj/t)i’j} Aly)

Asxz — Qort — oo,

det [( ’yf/t) } ~ det [(

Mw

i),
— D=1 )

wl

:det[(W) ]det [( L 1)w)] = ot i VA () A(y).

=1
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Brownian motion in a truncated Weyl chamber

The non-exit probability from the Weyl chamber W is polynomial, but the one from the
truncated chamber W N I* with I = (—Z, Z) is exponential:

_ea(wnrk)

Po(Boyg CWNIF) ~e

where A\Y) denotes the principal eigenvalue and Y the corresponding positive
L?-normalised eigenfunction of —% le 8? inU C R* with zero boundary condition.

FEID @ FTI DY 0, fora € W,
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Brownian motion in a truncated Weyl chamber

The non-exit probability from the Weyl chamber W is polynomial, but the one from the
truncated chamber W N I* with [ = (=%, %) is exponential:

_ea(wnrk)

P, (B CWNI¥) ~e FEOI @O Yt o0, fora € W,

where A\Y) denotes the principal eigenvalue and Y the corresponding positive
L?-normalised eigenfunction of —% Zle 92 in U C R* with zero boundary condition.
How can we interpolate between these regimes?

Theorem [K./SCHMID 2011]

Forany z € W and any r € (0,00),as t — oo,

¢ _\(wnrk)

Kor(t)"2k=De™ r? L it < r(t) < VA,
Po(Bpo,y C WNr($)I®) ~ A(w) § K451, it r(t) ~ v/,
Koot™ 31, it I < r(t).

Here K. € (0, c0) are constants for € [0, co] such that

—2y(wnIk
im K, = Koo and K, ~ Kor~ 3G De—r 00 o L0,

T—00
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Back to the question

Hence, we are looking for a positive regular function V': W — (0, oo) for the restriction of the
kernel of the walk X on R¥. (Recall: W is the Weyl chamber, and 7 its exit time.)

Under the above-mentioned continuity property, the Vandermonde determinant A is a positive
regular function for the restriction to 1/, and the solution is similar to the Brownian case.

What is a suitable positive regular function in the general case?
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Hence, we are looking for a positive regular function V': W — (0, oo) for the restriction of the
kernel of the walk X on R¥. (Recall: W is the Weyl chamber, and 7 its exit time.)

Under the above-mentioned continuity property, the Vandermonde determinant A is a positive
regular function for the restriction to W, and the solution is similar to the Brownian case.

What is a suitable positive regular function in the general case?

Here it is:
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Back to the question

Hence, we are looking for a positive regular function V': W — (0, oo) for the restriction of the
kernel of the walk X on R¥. (Recall: W is the Weyl chamber, and 7 its exit time.)

Under the above-mentioned continuity property, the Vandermonde determinant A is a positive
regular function for the restriction to W, and the solution is similar to the Brownian case.

What is a suitable positive regular function in the general case?

Here it is:

Quite easily seen to be regular, i.e.,
Eo 1>y V(X)) =V(e), zeW

Not easy tosee: V' > 0on W.
more difficult to see: V"> 0 on W.
very difficult to see: V' is well-defined, i.e., A(X (7)) is integrable!
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Difficulties

Why so delicate:
Consider

E. [|A(X =Y E. [H|X ()= n}]

neN 1<g

Al the factors | X;(n) — X;(n)| are O(y/m) with the exception of one of them.
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Difficulties

Why so delicate:
Consider

E.[IAGX ()] = DB [T 1X5(m) = Xi () reny |-

neN 1<J

Al the factors | X;(n) — X;(n)| are O(y/m) with the exception of one of them.

We expect (and later prove) that P, (7 > n) =~ n —ik(k-1),

Hence, we should have (and do not prove) that P, (7 = n) =~ poakkE=D-1

Hence, we should have

Wl

B[ TT1X5() = Xa()[1rmy] m 072,

1<j

which is enough.
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The main result

Assume that the steps have mean zero and variance one, and that the local central limit
theorem holds.

Theorem. [EICHELSBACHER/K. 08]
If sufficiently high step moments are finite, the following hold.
(i) A(X(7)) is integrable under P for any x € W.
(i) V is a positive regular function for the restriction of the transition kernel to .
(iii) The Doob h-transform with h = V is equal to X, given {7 > n} as n — oc.
(iv)
. _1 1 “Lliy2
lim P,(n 2X(n) € A|7>n) = 7 | ¢ YWA(y)dy  weakly.
A

n— oo 1

and, for some K € (0, 00),

lim ni* DP,(r >n)=KV(z), z€W

n—00

(v) Uniformly on compacts, lim, — o n_g(k_l)V(\/ﬁ z) = A(z).

(vi) Forany x € W, the distribution of the process (n’%X( [nt]))te(0,00) under @\/ﬁz
converges towards Dyson’s Brownian motions started at .
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Comments

B Main tools of our proof: generalisation of the Karlin-McGregor formula, local central limit
theorem and Hélder’s inequality.

B Therefore loss of optimal moment condition.
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Comments
B Main tools of our proof: generalisation of the Karlin-McGregor formula, local central limit
theorem and Hélder’s inequality.
B Therefore loss of optimal moment condition.

B DENISOV/WACHTEL (2009) prove the theorem under almost optimal moment condition:
finite (k — 1)-st moments of the steps. The main tools are martingale arguments, a clever
stopping time 7" = inf{n € N: A(X(n)) < 0} and an embedding of the walks on a
Brownian space.
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Comments
B Main tools of our proof: generalisation of the Karlin-McGregor formula, local central limit
theorem and Hélder’s inequality.
B Therefore loss of optimal moment condition.

B DENISOV/WACHTEL (2009) prove the theorem under almost optimal moment condition:
finite (k — 1)-st moments of the steps. The main tools are martingale arguments, a clever
stopping time 7" = inf{n € N: A(X(n)) < 0} and an embedding of the walks on a
Brownian space.

B K. AND SCHMID (2009) extend Denisov/Wachtel’s proof to the Weyl chambers of Type C'
and D,

We = {(xl,...,l’k) ERk: O<ar < - <1’k}7
Wn {(@1,...,21) €RY: |z1] < 2 < -+ <z}

The relevant positive regular functions are
k
Ve(z) = Vp(x) H z; and Vp(z) = H (af — ).
i=1 1<i<j<k

B DENISOV/WACHTEL (2011) extend the theorem to less integrable steps.
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Open questions

Relation to the eigenvalue processes of some matrix-valued random walks?
Relation to general corner-growth process?
How to construct ordered random walks under infinite variance of the steps?

Is there a useful duality principle?

Behaviour of the k ordered random walks if & — oo? Convergence of the empirical
measure of some marginal distribution (version of WIGNER’s semicircle law)? (See
[BAIK/SUIDAN 06] for some partial answer.)
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