Matrix-Valued Diffusions and Non-Colliding Random Processes

Wolfgang König

Universität Leipzig

Random Matrix Day, Müunster, 5 May, 2006 – p.1/17

Goal

- In the ten ensembles, replace the normal variables by Brownian motions.
- Derive the SDE for the eigenvalue processes
- \blacksquare Identify these processes in terms of Doob *h*-transforms (if possible)
- Interpret them as systems of non-colliding random processes

The main matrix diffusions:

 $S = (S(t))_{t \in [0,\infty)} \in \mathbb{R}^{N \times N}_{sym}$ symmetric Brownian motion (GOE at time 1) $A = (A(t))_{t \in [0,\infty)} \in \mathbb{R}^{N \times N}_{antisym}$ antisymmetric Brownian motion S + i A Hermitian Brownian motion (GUE at time 1)

Random Matrix Day, Müunster, 5 May, 2006 - p.2/17

Dyson's Brownian motions

 $\lambda_1(t) \leq \lambda_2(t) \leq \cdots \leq \lambda_N(t) \text{ eigenvalues of } (S + i A)(t)$ $\lambda = (\lambda_1(t), \dots, \lambda_N(t))_{t \in [0,\infty)} \text{ eigenvalue process in } \overline{W}$ $W = \{x \in \mathbb{R}^N : x_1 < x_2 < \cdots < x_N\} \text{ Weyl chamber (of type A)}$

Theorem. [Dyson 1962] λ satisfies, for $\beta=2$, the SDE

$$d\lambda_i(t) = dB_i(t) + \frac{\beta}{2} \sum_{j \neq i} \frac{1}{\lambda_i(t) - \lambda_j(t)} dt, \qquad i = 1, \dots, N.$$
(1)

Furthermore, λ is a BM in \mathbb{R}^N , conditioned on being non-colliding for ever.

Hence, if $T = \inf\{t > 0 \colon B(t) \notin W\}$ is the exit time of a BM B in \mathbb{R}^N from W, then, formally,

$$\mathcal{L}(\lambda) = \mathcal{L}(B \mid T = \infty).$$

Random Matrix Day, M⁻unster, 5 May, 2006 – p.3/17

Non-colliding BM

Proper definition in terms of Doob *h*-transform with $h = \Delta$, where

$$\Delta(x) = \prod_{1 \le i < j \le N} (x_j - x_i) = \det\left[\left(x_i^{j-1} \right)_{i,j=1,\dots,N} \right) \right] \text{Vandermonde determinant}$$

 Δ is harmonic for $\frac{1}{2}\sum_{i=1}^N\partial_i^2$, and $\Delta>0$ in W.

transition probability density of the h-transform:

$$\widehat{p}_t(x,y) \, \mathrm{d}y = \mathbb{P}_x(B(t) \in \mathrm{d}y; T > t) \frac{\Delta(y)}{\Delta(x)}, \qquad x, y \in W.$$

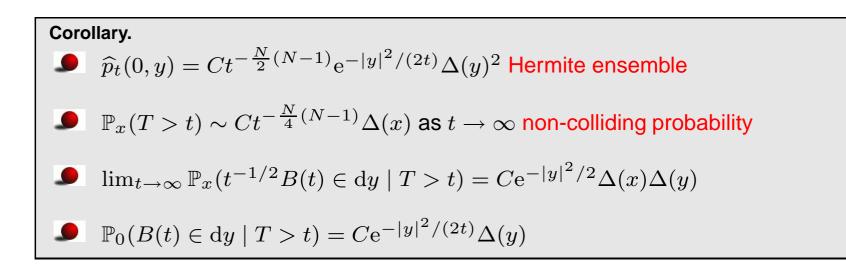
Lemma. [KARLIN/MCGREGOR 1958]

$$\mathbb{P}_x(B(t) \in \mathrm{d}y; T > t) = \mathrm{det}\left[\left(p_t(x_i, y_j)\right)_{i,j=1,\ldots,N}\right)\right]\mathrm{d}y.$$

(This is true for all diffusions with i.i.d. components in place of *B*, if $p_t(x, y)$ denotes their transition probability function.)

Random Matrix Day, Müunster, 5 May, 2006 – p.4/17

Some properties



Sketch of proof of the first assertion for t = 1: Observe that

$$\widehat{p}_t(x,y) = Ct^{-\frac{N}{4}(N-1)} e^{-|x|^2/(2t)} e^{-|y|^2/(2t)} \det\left[\left(e^{x_i y_j/t}\right)_{i,j}\right] \frac{\Delta(y)}{\Delta(x)}.$$
as $x \to 0$

For t = 1, as $x \to 0$,

$$\det\left[\left(\mathbf{e}^{x_{i}y_{j}}\right)_{i,j}\right] \sim \det\left[\left(\sum_{k=1}^{N} \frac{x_{i}^{k-1}}{(k-1)!} y_{j}^{k-1}\right)_{i,j}\right]$$
$$= \det\left[\left(\frac{x_{i}^{k-1}}{(k-1)!}\right)_{i,k}\right] \det\left[\left(y_{j}^{k-1}\right)_{j,k}\right)\right] = C\Delta(x)\Delta(y).$$

Random Matrix Day, Müunster, 5 May, 2006 – p.5/17

Other values of β

- Real variant of Dyson's theorem: the eigenvalue process of S (GOE diffusion) satisfies the Dyson SDE (1) with $\beta = 1$. This is not an *h*-transform of BM.
- The diffusion defined by Dyson's SDE in (1) is well-defined and non-colliding for any $\beta > 0$. Identification in terms of eigenvalue processes known only for $\beta = 1, 2$ (see above) and $\beta = 4$ (see later).

Transition from GUE to GOE

Lemma. [Katori/Tanemura 2003] Fix t > 0. Let $\widetilde{A} = (\widetilde{A}(s))_{s \in [0,t]} \in \mathbb{R}^{N \times N}_{antisym}$ be an antisymmetric Brownian bridge matrix diffusion. Then the eigenvalue process of $S + i \widetilde{A}$ is in distribution equal to $(B(s))_{s \in [0,t]}$, conditioned on $\{T > t\}$.

Explanation: Decompose the components of S as

$$B_{i,j}(s) = \left(B_{i,j}(s) - \frac{s}{t}B_{i,j}(t)\right) + \frac{s}{t}B_{i,j}(t)$$

and summarize the bridge part and the remainder, then

$$S + i \widetilde{A} =$$
 Hermitian bridge diffusion $+ \left(\frac{s}{t}S(t)\right)_{s \in [0,t]}$,

which interpolates between GUE and GOE as s varies.

 $S + i \widetilde{A}$ is called a two-matrix model.

More general matrix diffusions

Theorem. [Bru 1991], [Katori/Tanemura 2004] Let ξ be a complex continuous Hermitian matrix-valued semimartingale, and let U(t) be unitary with

 $U(t)^* \xi(t) U(t) = \operatorname{diag}[\lambda(t)], \quad \text{ with } \lambda(t) \in W.$

Then, for $i=1,\ldots,N$,

$$d\lambda_i(t) = dM_i(t) + \sum_{j=1}^N \frac{\Gamma_{i,j}(t) dt}{\lambda_i(t) - \lambda_j(t)} \mathbb{1}_{\{\lambda_i(t) \neq \lambda_j(t)\}} + d\Theta_i(t),$$

where M_i is a martingale,

 $\Gamma_{i,j}(t) \,\mathrm{d}t = \left(U(t)^* \mathrm{d}\xi(t) U(t) \right)_{i,j} \left(U(t)^* \mathrm{d}\xi(t) U(t) \right)_{j,i} \quad \text{and} \quad \langle M_i \rangle_t = \int_0^t \Gamma_{i,j}(s) \,\mathrm{d}s,$

and $d\Theta_i(t)$ is the finite-variation part of $(U(t)^* d\xi(t)U(t))_{i,i}$.

Random Matrix Day, Müunster, 5 May, 2006 – p.8/17

Wishart Processes

[Bru 1991], [K./O'Connell 2001], [Katori/Tanemura 2004]

Consider $\xi = D^*D$, where, with $\nu \in \mathbb{N}$ a parameter,

$$D(t) = \left(B_{i,j}(t) + \mathrm{i} \widetilde{B}_{i,j}(t)\right)_{\substack{i=1,\ldots,N+\nu\\j=1,\ldots,N}}.$$

Every component of ξ is a BESQ^{2 ν +2}. ξ is called the Wishart process and has nonnegative eigenvalues $0 \le \lambda_1 \le \cdots \le \lambda_N$. One calculates

$$\mathrm{d}\Theta_i(t) = 2(N+\nu)\,\mathrm{d}t, \quad \Gamma_{i,j}(t) = 2(\lambda_i(t) + \lambda_j(t)), \qquad \langle M_i \rangle_t = 4\int_0^t \lambda_i(s)\,\mathrm{d}s.$$

Hence:

The eigenvalue process, λ , of ξ satisfies, for any i = 1, ..., N, the SDE $d\lambda_i(t) = 2\sqrt{\lambda_i(t)} dB_i(t) + \beta \left(N + \nu + \sum_{j \neq i} \frac{\lambda_i(t) + \lambda_j(t)}{\lambda_i(t) - \lambda_j(t)}\right) dt,$ (2) with $\beta = 2$.

Random Matrix Day, Müunster, 5 May, 2006 - p.9/17

Remarks

The squareroot
$$\kappa_i=\sqrt{\lambda_i}$$
 satisfies, for $eta=2$ and $\gamma=
u+rac{1}{2}$, the SDE

$$d\kappa_i(t) = dB_i(t) + \frac{\beta}{2} \left(\frac{\gamma}{\kappa_i(t)} + \sum_{j \neq i} \left(\frac{1}{\kappa_i(t) - \kappa_j(t)} + \frac{1}{\kappa_i(t) + \kappa_j(t)} \right) \right) dt$$
(3)

The distribution of $\lambda(t)$ is the Laguerre ensemble with density

$$y \mapsto Ct^{-N(N+\nu)} \Delta(y)^2 \prod_{i=1}^{N} \left(e^{-y_i/(2t)} y_i^{\nu} \right).$$

Hence, $\lambda(1)$ is the eigenvalue distribution of the chiral GUE, the class AIII.

Real version: if the complex part of D is dropped, then λ satisfies (2) with $\beta = 1$. Then $\kappa_i = \sqrt{\lambda_i}$ satisfies (3) with $\beta = 1$ and $\gamma = \nu$, and $\kappa(t)$ has density

$$z \mapsto Ct^{-\frac{N}{2}(N+\nu)} \Delta(z^2) \prod_{i=1}^{N} \left(e^{-z_i^2/(2t)} z_i^{\nu} \right).$$

In particular, $\lambda(1)$ is the eigenvalue distribution of the chiral GOE, the class BDI.

Random Matrix Day, Müunster, 5 May, 2006 – p.10/17

Laguerre process and non-colliding BESQ

The Wishart analogon to Dyson's theorem:

Lemma For $\beta = 2$ and $\gamma = \nu + \frac{1}{2} \in \mathbb{N} + \frac{1}{2}$, the process λ is distributed as the Doob h-transform of N independent $\text{BESQ}^{2\nu+2}$ with $h = \Delta$; i.e., λ is non-colliding $\text{BESQ}^{2\nu+2}$.

Hence, Δ is also a positive harmonic function for the generator of N independent BESQ^{2 ν +2}-processes,

$$Gf(x) = 2\sum_{i=1}^{N} x_i \partial_i^2 f(x) + \nu \sum_{i=1}^{N} \partial_i f(x).$$

The transition probability function of λ may be expressed as

$$\widehat{p}_t(x,y) \, \mathrm{d}y = \mathbb{P}_x(Y(t) \in \mathrm{d}y; T > t) \frac{\Delta(y)}{\Delta(x)},$$

where T is the exit time of $BESQ^{2\nu+2}(\mathbb{R}^N)$, Y, from W. The Karlin-McGregor formula applies, and analogs of the above corollary hold.

Random Matrix Day, M⁻⁻unster, 5 May, 2006 – p.11/17

AII and Dyson's model with $\beta=4$

Let S_1, S_2, S_3 be three independent copies of the symmetric Brownian $N \times N$ -matrix diffusion S (GOE-diffusion), and consider the $(2N \times 2N)$ -dimensional matrix diffusion

$$\xi = \begin{pmatrix} S_1 + i A & S_2 + i S_3 \\ S_2 - i S_3 & S_1 - i A \end{pmatrix}$$

Then $\xi(t)$ is in the class All and possesses the eigenvalues $\lambda_1(t) \leq \lambda_2(t) \leq \cdots \leq \lambda_N(t)$, each one precisely twice. Put $\lambda = (\lambda_1, \dots, \lambda_N)$.

Lemma [Katori/Tanemura 2004] λ solves Dyson's SDE in (1) with $\beta=4.$

Remark. The same is true for the eigenvalue process of

$$\xi = \begin{pmatrix} S - A_1 & i A_2 - A_3 \\ i A_2 + A_3 & S + A_1 \end{pmatrix},$$

where A_1, A_2, A_3 are three independent copies of the antisymmetric Brownian matrix diffusion A.

Random Matrix Day, M⁻unster, 5 May, 2006 – p.12/17

Class C and non-colliding BM with wall at 0

Let S_1, S_2, S_3 be three independent copies of the symmetric Brownian matrix diffusion S (GOE-diffusion), and consider the $(2N \times 2N)$ -dimensional matrix diffusion

$$\xi = \begin{pmatrix} S_1 + iA & S_2 - iS_3 \\ S_2 + iS_3 & -S_1 + iA \end{pmatrix}$$

Then $\xi(t)$ is in the class C and possesses the eigenvalues

$$-\lambda_N(t) \leq \cdots \leq -\lambda_1(t) \leq 0 \leq \lambda_1(t) \leq \cdots \leq \lambda_N(t).$$

Lemma [Katori/Tanemura 2004] λ solves the SDE in (3) with $\beta = 2$ and $\gamma = 1$ (i.e., $\nu = \frac{1}{2}$). Hence, it is in distribution equal to N BMs, conditioned on never leaving $W^{C} = \{x \in \mathbb{R}^{N} : 0 < x_{1} < x_{2} < \cdots < x_{n}\}.$

- \blacksquare W^C is the Weyl chamber of type C.
- λ is the Doob h-transform of a tuple of a BM in \mathbb{R}^N with $h(x) = \Delta(x^2) \prod_{i=1}^N x_i$.
- $\ \, {\bf I} \lambda(t) \text{ has the density}$

$$y \mapsto Ct^{-\frac{N}{2}(2N+1)} \Delta(y^2)^2 \Big(\prod_{i=1}^N y_i^2\Big) e^{-|y|^2/(2t)} = Ct^{-\frac{N}{2}(2N+1)} h(y)^2 e^{-|y|^2/(2t)}.$$

Random Matrix Day, M[°]unster, 5 May, 2006 – p.13/17

Class D and non-colliding reflected BMs

Let A_1, A_2, A_3 be three independent copies of the antisymmetric Brownian matrix diffusion A, and consider the $(2N \times 2N)$ -dimensional matrix diffusion

$$\xi = \begin{pmatrix} S + i A_1 & i A_2 - A_3 \\ i A_2 + A_3 & -S + i A_1 \end{pmatrix}$$

Then $\xi(t)$ is in the class D and possesses the eigenvalues

$$-\lambda_N(t) \leq \cdots \leq -\lambda_1(t) \leq 0 \leq \lambda_1(t) \leq \cdots \leq \lambda_N(t).$$

Lemma [Katori/Tanemura 2004] λ solves the SDE in (3) with $\beta = 2$ and $\gamma = 0$ (i.e., $\nu = -\frac{1}{2}$).

Hence, it is in distribution equal to N reflected BMs, conditioned on non-collision.

- Equivalently, λ is a BM in \mathbb{R}^N , conditioned on never leaving the Weyl chamber of type D, $W^D = \{x \in \mathbb{R}^N : |x_1| < x_2 < \cdots < x_N\}.$
- \checkmark is the Doob *h*-transform of a tuple of N reflected BMs in $[0,\infty)$, with $h(x) = \Delta(x^2)$.
- $\ \, \bullet \ \, \lambda(t) \text{ has the density}$

$$y \mapsto Ct^{-\frac{N}{2}(2N+1)} \Delta(y^2)^2 \mathrm{e}^{-|y|^2/(2t)} = Ct^{-\frac{N}{2}(2N+1)} h(y)^2 \mathrm{e}^{-|y|^2/(2t)}.$$

Remarks on classes C and D

■ The SDE that the eigenvalue process λ satisfies in classes C and D is the one that is satisfied by $\kappa_i = \sqrt{\lambda_i}$ in the complex Wishart case (i.e., $\beta = 2$) for $\nu \in \mathbb{N}$:

$$d\kappa_i(t) = dB_i(T) + \left(\frac{2\nu+1}{2\kappa_i(t)} + \sum_{j\neq i} \left(\frac{1}{\kappa_i(t) - \kappa_j(t)} + \frac{1}{\kappa_i(t) + \kappa_j(t)}\right)\right) dt, \quad (4)$$

but now for $\nu = \frac{1}{2}$ (class C) and $\nu = -\frac{1}{2}$ (class D).

■ The process κ in (4) is well-defined for any $\nu \in (-1, \infty)$. Its transition densities are explicit in terms of Bessel functions and determinants, using the Karlin-McGregor formula. It is a Doob *h*-transform only in the two special cases $\nu = \frac{1}{2}$ and $\nu = -\frac{1}{2}$.

Real versions of classes C and D

Real version of class C: If the complex part of case-C ξ is dropped, i.e.,

$$\boldsymbol{\xi} = \left(\begin{array}{cc} S_1 & S_2 \\ S_2 & -S_1 \end{array} \right),$$

then ξ is in the class CI. Its eigenvalue process λ solves the SDE

$$\mathrm{d}\kappa_i(t) = \mathrm{d}B_i(T) + \frac{\beta}{2} \left(\frac{\gamma}{\kappa_i(t)} + \sum_{j \neq i} \left(\frac{1}{\kappa_i(t) - \kappa_j(t)} + \frac{1}{\kappa_i(t) + \kappa_j(t)} \right) \right) \mathrm{d}t,$$

with $\beta = 1$ and $\gamma = 1$ (i.e., $\nu = \frac{1}{2}$). However, λ is not a Doob *h*-transform. The density of $\lambda(t)$ is

$$y \mapsto Ct^{-\frac{N}{2}(N+1)} \Delta(y^2) \Big(\prod_{i=1}^N y_i\Big) e^{-|y|^2/(2t)} = Ct^{-\frac{N}{2}(N+1)} h(y) e^{-|y|^2/(2t)}.$$

Real version of class D: If the complex part of case-D ξ is dropped, then the eigenvalue process solves the above SDE with $\beta = 1$ and $\gamma = 0$ (i.e., $\nu = -\frac{1}{2}$). The density of $\lambda(t)$ is

$$y \mapsto Ct^{-\frac{N}{2}(N-1)} \Delta(y^2) \mathrm{e}^{-|y|^2/(2t)} = Ct^{-\frac{N}{2}(N-1)} h(y) \mathrm{e}^{-|y|^2/(2t)}.$$

Random Matrix Day, M[°]unster, 5 May, 2006 – p.16/17

Transitions between the classes

[Katori/Tanemura 2004]

- Analogously to the two-matrix model that interpolates from GUE to GOE in the time interval $[0, t] \implies$ BMs non-colliding up to time t), there is a non-colliding family of generalised Brownian meanders (with parameters choosen appropriately) which interpolate between chGUE and chGOE respectively between C and CI in the interval [0, t].
- **Explanation:** A Brownian meander is a one-dimensional BM conditioned to stay positive up to time t. In the limit $t \to \infty$, it converges to a three-dimensional Bessel process, which is in distribution equal to a one-dimensional BM conditioned on staying positive at all times.
- A related transition is observed for non-colliding generalised Brownian meanders if the non-colliding property collapses at time t in the way that all paths collide simultaneously or that only pairwise collisions occur. Here one has transitions from GUE to GSE, from chGUE to chGSE, and from D to DIII, respectively.