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The mean-field polaron model

W = (Wt)t≥0 Brownian motion in R3

Transformed path measure dP̂t = 1
Zt

etHt dP, with partition function Zt = E[etHt ] and

energy Ht =
1

t2

∫ t

0

∫ t

0

dσds
1∣∣Wσ −Ws

∣∣ .
This is a function of the

normalized occupation measure Lt =
1

t

∫ t

0

ds δWs .

Indeed, introducing

Coulomb potential energy H(µ) =

∫
R3

∫
R3

µ(dx)µ(dy)

|x− y| ,

Coulomb potential functional
(
Λµ
)
(x) =

(
µ ?

1

| · |

)
(x) =

∫
R3

µ(dy)

|x− y| ,

then

Ht = H(Lt) = 〈Lt,Λ(Lt)〉.
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Background: the polaron model

What one is really interested in is the model

dP̂λ,t =
1

Zλ,t
exp

{
λ

∫ t

0

∫ t

0

dσds
e−λ|σ−s|

|Wσ −Ws|

}
dP.

Physically relevant: strong coupling limit λ→ 0 (after t→∞).

Intuition: Then all times s, σ interact equally, and the mean-field model should be approached.

Both models are self-attractive, as they should enforce that |Wσ −Ws| � 1 for all s, σ.

Challenges:

� Prove behaviour of partition functions (=⇒ [DONSKER/VARADHAN 1983])

� Prove localisation of mean-field model (=⇒ this talk)

� Prove convergence of the mean-field model to the Pekar process (=⇒ this talk)

� Understand path behaviour in the limit t→∞, followed by λ→ 0, in particular

convergence to the Pekar process (=⇒ future; heuristics in [SPOHN (1987)])
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Earlier results

Behaviour of partition functions [Donsker/Varadhan 1983]

lim
λ→0

lim
t→∞

1

t
logZλ,t = lim

t→∞

1

t
logZt = sup

µ∈M1(R3)

(
H(µ)− I(µ)

)
= sup
ψ∈H1(R3) : ‖ψ‖2=1

(∫
R3

∫
R3

dxdy
ψ2(x)ψ2(y)

|x− y| − 1

2

∥∥∇ψ∥∥2
2

)
.

Note that H and I are shift-invariant.

[LIEB 1976]: Up to shifts, there is precisely one minimiser µ0(dx) = ψ0(x)2 dx, i.e., the set

m of minimizers is equal to

m =
{
µ0 ? δx =: µx : x ∈ R3}.

ψ0 is smooth, rotationally symmetric and centered.

[BOLTHAUSEN/SCHMOCK (1997)]: spatially discrete version of P̂t; full understanding of partition

function, localisation, convergence to Pekar-like process.
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Lt approaches m

First substantial step for the mean-field polaron model after 1983: Lt converges to m.

Tube property [Mukherjee/Varadhan 2014]

For any neighbourhood U(m) of m, lim supt→∞
1
t

log P̂t
{
Lt /∈ U(m)

}
< 0.

Important idea: a true compactification of the quotient space M̃1(Rd) of orbits

µ̃ = {µ ? δx : x ∈ Rd} of µ ∈M1(Rd).

Here is the idea.

Let a sequence (µn)n∈N inM1(Rd) be given.

How can we extract a converging subsequence?

Problem: Mass may escape and leak out (e.g., µn = 1
2
(δnx + δ−nx)) or spread too flat (e.g.,

µn = N (0, n)) or many mixtures of these.

Here is the procedure: Along a subsequence,

sup
x∈Rd

µn(BR + x)
n→∞−→ p(R)

R→∞−→ p1 ∈ [0, 1]

Peel off the corresponding mass distribution. Work with the leftover. Iterate. Collect all partial

masses in a sequence.
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Compactification

In other words, decompose

µn = µn
∣∣
BR(xn)︸ ︷︷ ︸
γn

+ rest︸︷︷︸
βn

so that γn?δ−xn
n→∞,R→∞

=⇒ p1α1 (along some subsequence)

Peel off γn from µn and apply the first step to the leftover βn in place of µn. Repetition yields

an element in

X̃ =
{

(pn, α̃n)n∈N ∈ ([0, 1]× M̃1(Rd))N :
∑
n∈N

pn ≤ 1
}
.

� This is the compactification of M̃1(Rd).

� There is a metric on X̃ that makes it a compact Polish space.

� Any µ ∈M1(Rd) can be seen as ((1, µ̃), (0, 0), . . . ) ∈ X̃ .
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Compact large deviations for the occupation measures

With the help of this compactification, we can lift the famous weak large-deviation principle

(LDP)

P(Lt ≈ µ) ≈ e−tI(µ), t→∞,

to the compact space X̃ :

LDP for L̃t [Mukherjee/Varadhan (2014)]

The family of distributions L̃t satisfies a (strong) LDP in X̃ with rate function

(pn, α̃n)n∈N 7→
∑
j

pjI(αj).

Important improvement of DONSKER-GÄRTNER-VARADHAN LDP theory!

Can generally be applied to shift-invariant exponential functionals of the Brownian occupation

measures.
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Tube property of Λ(Lt)

We proceed with the analysis of the mean-field polaron model. First a translation of the tube

property from Lt to Λ(Lt), i.e., the convergence of Λ(Lt) towards Λ(m):

Tube property for Λ(Lt) in the uniform metric [König/Mukherjee (2016)]

For any ε > 0,

lim sup
t→∞

1

t
log P̂t

{
inf
x∈R3

∥∥Λ(Lt)− Λψ2
x

∥∥
∞ > ε

}
< 0.

In particular, H(Lt) converges weakly under P̂t to

H(ψ2
0) = 〈ψ2

0 ,Λ(ψ2
0)〉 =

∫ ∫
R3×R3

ψ2
0(x)ψ2

0(y)

|x− y| dxdy.

� Note that infx∈R3

∥∥Λ(Lt)− Λψ2
x

∥∥
∞ = dist∞(Λ(Lt),Λ(m)).

� Greatest obstacle: singularity of Coulomb kernel x 7→ |x|−1.

� Important step: for every b > 0,

lim
δ→0

lim sup
t→∞

1

t
log P

{
sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b} = −∞.

� Corollary: lim supt→∞
1
t

log P(‖Λ(Lt)‖∞ ≥ a) < 0 for every a > 0.
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On the proof of regularity of Λ(Lt)

Important step in the proof: There are constants ρ > 1, a ∈ (0, 1) and β ∈ (0,∞) such that

sup
x1,x2∈R3
|x1−x2|≤1

sup
x∈R3

Ex
[

exp

{
β

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}]
<∞.

For proving this, we write Λ1(x1)− Λ1(x2) =
∫ 1

0
Vx1,x2(Ws) ds, where

Vx1,x2(y) =
1

|y − x1|
− 1

|y − x2|
,

use KHAS’MINSKI’S lemma

sup
x

Ex
[ ∫ 1

0

V (Ws) ds
]
≤ η < 1 ⇒ sup

x
Ex
[

exp
{∫ 1

0

V (Ws) ds
}]
≤ η

1− η ,

and the GARSIA-RODEMICH-RUMSEY estimate (a variant of the KOLOMOGOROV-CHENTSOV

criterion).
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Convergence of Lt

Hence, Lt approaches under P̂t shifts of µ0. Which ones? – Here is our main result:

Convergence of Lt [Bolthausen/König/Mukherjee (2016)]

The distribution of Lt under P̂t converges towards the random shift µX = µ0 ? δX of µ0,

where X has the distribution with density ψ0/
∫
ψ0.

Furthermore, the distribution of the endpoint Wt under P̂t converges towards the one of

X +X ′, where X and X ′ are two independent copies of X .

Explanation in terms of the Pekar process: For 1� t0 � t, split

Lt =
t0
t
Lt0 +

t− t0
t

Lt0,t,

and accordingly the energy

tH(Lt) =
t20
t
H(Lt0) + 2

t0(t− t0)

t
〈Lt0 ,Λ(Lt0,t)〉+

(t− t0)2

t
H(Lt0,t)

≈ 2t0〈Lt0 ,Λ(Lt0,t)〉+ tH(Lt0,t) as t→∞.
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Explanation (continued)

On the event {Lt ≈ µx}, we have {Lt0,t ≈ µx}. By the tube property for Λ(Lt), we then

have Λ(Lt0,t) ≈ Λ(µx). Hence, on this event

tH(Lt) ≈ 2t0〈Lt0 ,Λ(µx))〉+ tH(Lt0,t) = 2

∫ t0

0

Λ(ψ2
x)(Ws) ds+ tH(Lt0,t).

Now note that the density

1

Z(ψx)

t

exp
{∫ t0

0

Λ(ψ2
x)(Ws) ds

}
defines a Girsanov transformation from Brownian motion to the Pekar process with parameter

x, which is driven by the SDE

dY (x)

t = dWt +
(∇ψx
ψx

)
(Wt) dt.

This process is ergodic with invariant distribution µx(dy) = ψx(y)2 dy. From here, it is not

far to conclude that our main result should hold. Furthermore, it is also not really difficult to

extend it to

Process convergence

The distribution of the process (Ws)s∈[0,t] under P̂t as t→∞ is the mixture Y (X) of the

Pekar process, where X is a random vector with density ψ0/
∫
ψ0.
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Glückwünsche

Herzlichen Glückwunsch zum Geburtstag, lieber Erwin!

Hier ist mein Geburtstagsgeschenk: Unser erster Artikel!

[BKM16] E. BOLTHAUSEN, W. KÖNIG and C. MUKHERJEE,

Mean-field interaction of Brownian occupation measures, II: Rigorous
construction of the Pekar process,
Comm. Pure Appl. Math, to appear (2016).
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