

Weierstrass Institute for Applied Analysis and Stochastics



# **The Mean-Field Polaron Model**

Wolfgang König TU Berlin and WIAS

based on joint work with C. Mukherjee and E. Bolthausen

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de Zurich, Erwin Bolthausen's 70th birthday conference, 15 Sep 2016

#### The mean-field polaron model

 $W = (W_t)_{t \ge 0}$  Brownian motion in  $\mathbb{R}^3$ Transformed path measure  $d\widehat{\mathbb{P}}_t = \frac{1}{Z_t} e^{tH_t} d\mathbb{P}$ , with partition function  $Z_t = \mathbb{E}[e^{tH_t}]$  and

energy 
$$H_t = \frac{1}{t^2} \int_0^t \int_0^t \mathrm{d}\sigma \mathrm{d}s \, \frac{1}{\left|W_\sigma - W_s\right|}.$$

This is a function of the

normalized occupation measure

$$L_t = \frac{1}{t} \int_0^t \mathrm{d}s \,\delta_{W_s}.$$

Indeed, introducing

Coulomb potential energy 
$$H(\mu) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\mu(\mathrm{d}x)\,\mu(\mathrm{d}y)}{|x-y|},$$
  
Coulomb potential functional  $(\Lambda\mu)(x) = \left(\mu \star \frac{1}{|\cdot|}\right)(x) = \int_{\mathbb{R}^3} \frac{\mu(\mathrm{d}y)}{|x-y|},$ 

then

(

$$H_t = H(L_t) = \langle L_t, \Lambda(L_t) \rangle.$$



#### Background: the polaron model

What one is really interested in is the model

$$\mathrm{d}\widehat{\mathbb{P}}_{\lambda,t} = \frac{1}{Z_{\lambda,t}} \exp\left\{\lambda \int_0^t \int_0^t \mathrm{d}\sigma \mathrm{d}s \frac{\mathrm{e}^{-\lambda|\sigma-s|}}{|W_\sigma - W_s|}\right\} \mathrm{d}\mathbb{P}.$$

Physically relevant: strong coupling limit  $\lambda \to 0$  (after  $t \to \infty$ ).

Intuition: Then all times  $s, \sigma$  interact equally, and the mean-field model should be approached.

Both models are self-attractive, as they should enforce that  $|W_{\sigma} - W_s| \simeq 1$  for all  $s, \sigma$ . Challenges:

- Prove behaviour of partition functions (=> [DONSKER/VARADHAN 1983])
- Prove localisation of mean-field model ( this talk)
- Prove convergence of the mean-field model to the Pekar process ( this talk)
- Understand path behaviour in the limit t → ∞, followed by λ → 0, in particular convergence to the Pekar process (⇒ future; heuristics in [SPOHN (1987)])



Behaviour of partition functions [Donsker/Varadhan 1983]

$$\lim_{\lambda \to 0} \lim_{t \to \infty} \frac{1}{t} \log Z_{\lambda,t} = \lim_{t \to \infty} \frac{1}{t} \log Z_t = \sup_{\mu \in \mathcal{M}_1(\mathbb{R}^3)} \left( H(\mu) - I(\mu) \right)$$
$$= \sup_{\psi \in H^1(\mathbb{R}^3): \, \|\psi\|_2 = 1} \left( \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \mathrm{d}x \mathrm{d}y \, \frac{\psi^2(x)\psi^2(y)}{|x-y|} - \frac{1}{2} \|\nabla\psi\|_2^2 \right).$$

Note that H and I are shift-invariant.

[LIEB 1976]: Up to shifts, there is precisely one minimiser  $\mu_0(dx) = \psi_0(x)^2 dx$ , i.e., the set  $\mathfrak{m}$  of minimizers is equal to

$$\mathfrak{m} = \big\{ \mu_0 \star \delta_x =: \mu_x \colon x \in \mathbb{R}^3 \big\}.$$

 $\psi_0$  is smooth, rotationally symmetric and centered.

[BOLTHAUSEN/SCHMOCK (1997)]: spatially discrete version of  $\widehat{\mathbb{P}}_t$ ; full understanding of partition function, localisation, convergence to Pekar-like process.



### $L_t$ approaches $\mathfrak{m}$

First substantial step for the mean-field polaron model after 1983:  $L_t$  converges to m.

### Tube property [Mukherjee/Varadhan 2014]

For any neighbourhood  $U(\mathfrak{m})$  of  $\mathfrak{m}$ ,  $\limsup_{t\to\infty} \frac{1}{t}\log \widehat{\mathbb{P}}_t \{L_t \notin U(\mathfrak{m})\} < 0.$ 

Important idea: a true compactification of the quotient space  $\widetilde{\mathcal{M}}_1(\mathbb{R}^d)$  of orbits  $\widetilde{\mu} = \{\mu \star \delta_x : x \in \mathbb{R}^d\}$  of  $\mu \in \mathcal{M}_1(\mathbb{R}^d)$ .

#### Here is the idea.

Let a sequence  $(\mu_n)_{n\in\mathbb{N}}$  in  $\mathcal{M}_1(\mathbb{R}^d)$  be given.

How can we extract a converging subsequence?

Problem: Mass may escape and leak out (e.g.,  $\mu_n = \frac{1}{2}(\delta_{nx} + \delta_{-nx}))$  or spread too flat (e.g.,  $\mu_n = \mathcal{N}(0, n)$ ) or many mixtures of these.

Here is the procedure: Along a subsequence,

$$\sup_{x \in \mathbb{R}^d} \mu_n(B_R + x) \stackrel{n \to \infty}{\longrightarrow} p(R)$$



### $L_t$ approaches $\mathfrak{m}$

First substantial step for the mean-field polaron model after 1983:  $L_t$  converges to m.

### Tube property [Mukherjee/Varadhan 2014]

For any neighbourhood  $U(\mathfrak{m})$  of  $\mathfrak{m}$ ,  $\limsup_{t\to\infty} \frac{1}{t}\log \widehat{\mathbb{P}}_t \{L_t \notin U(\mathfrak{m})\} < 0.$ 

Important idea: a true compactification of the quotient space  $\widetilde{\mathcal{M}}_1(\mathbb{R}^d)$  of orbits  $\widetilde{\mu} = \{\mu \star \delta_x : x \in \mathbb{R}^d\}$  of  $\mu \in \mathcal{M}_1(\mathbb{R}^d)$ .

#### Here is the idea.

Let a sequence  $(\mu_n)_{n\in\mathbb{N}}$  in  $\mathcal{M}_1(\mathbb{R}^d)$  be given.

How can we extract a converging subsequence?

Problem: Mass may escape and leak out (e.g.,  $\mu_n = \frac{1}{2}(\delta_{nx} + \delta_{-nx}))$  or spread too flat (e.g.,  $\mu_n = \mathcal{N}(0, n)$ ) or many mixtures of these.

Here is the procedure: Along a subsequence,

$$\sup_{x \in \mathbb{R}^d} \mu_n(B_R + x) \xrightarrow{n \to \infty} p(R) \xrightarrow{R \to \infty} p_1 \in [0, 1]$$

Peel off the corresponding mass distribution. Work with the leftover. Iterate. Collect all partial masses in a sequence.



#### Compactification

In other words, decompose

 $\mu_n = \underbrace{\mu_n \big|_{B_R(x_n)}}_{\gamma_n} + \underbrace{\operatorname{rest}}_{\beta_n} \quad \text{so that} \quad \gamma_n \star \delta_{-x_n} \stackrel{n \to \infty, R \to \infty}{\Longrightarrow} p_1 \alpha_1 \quad \text{(along some subsequence)}$ 

Peel off  $\gamma_n$  from  $\mu_n$  and apply the first step to the leftover  $\beta_n$  in place of  $\mu_n$ . Repetition yields an element in

$$\widetilde{X} = \Big\{ (p_n, \widetilde{\alpha}_n)_{n \in \mathbb{N}} \in ([0, 1] \times \widetilde{\mathcal{M}}_1(\mathbb{R}^d))^{\mathbb{N}} \colon \sum_{n \in \mathbb{N}} p_n \le 1 \Big\}.$$

- This is the compactification of  $\widetilde{\mathcal{M}}_1(\mathbb{R}^d)$ .
- There is a metric on  $\widetilde{X}$  that makes it a compact Polish space.
- Any  $\mu \in \mathcal{M}_1(\mathbb{R}^d)$  can be seen as  $((1, \tilde{\mu}), (0, 0), \dots) \in \widetilde{X}$ .



With the help of this compactification, we can lift the famous weak large-deviation principle (LDP)

$$\mathbb{P}(L_t \approx \mu) \approx e^{-tI(\mu)}, \quad t \to \infty,$$

to the compact space  $\widetilde{X}$ :

## LDP for $L_t$ [Mukherjee/Varadhan (2014)]

The family of distributions  $\widetilde{L_t}$  satisfies a (strong) LDP in  $\widetilde{X}$  with rate function

$$(p_n, \widetilde{\alpha}_n)_{n \in \mathbb{N}} \mapsto \sum_j p_j I(\alpha_j).$$

### Important improvement of DONSKER-GÄRTNER-VARADHAN LDP theory!

Can generally be applied to shift-invariant exponential functionals of the Brownian occupation measures.



## Tube property of $\Lambda(L_t)$

We proceed with the analysis of the mean-field polaron model. First a translation of the tube property from  $L_t$  to  $\Lambda(L_t)$ , i.e., the convergence of  $\Lambda(L_t)$  towards  $\Lambda(\mathfrak{m})$ :

Tube property for  $\Lambda(L_t)$  in the uniform metric [König/Mukherjee (2016)]

For any 
$$\varepsilon > 0$$
,  
$$\limsup_{t \to \infty} \frac{1}{t} \log \widehat{\mathbb{P}}_t \bigg\{ \inf_{x \in \mathbb{R}^3} \big\| \Lambda(L_t) - \Lambda \psi_x^2 \big\|_{\infty} > \varepsilon \bigg\} < 0.$$

In particular,  $H(L_t)$  converges weakly under  $\widehat{\mathbb{P}}_t$  to

$$H(\psi_0^2) = \langle \psi_0^2, \Lambda(\psi_0^2) \rangle = \int \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\psi_0^2(x)\psi_0^2(y)}{|x-y|} \, \mathrm{d}x \mathrm{d}y.$$



## Tube property of $\Lambda(L_t)$

We proceed with the analysis of the mean-field polaron model. First a translation of the tube property from  $L_t$  to  $\Lambda(L_t)$ , i.e., the convergence of  $\Lambda(L_t)$  towards  $\Lambda(\mathfrak{m})$ :

Tube property for  $\Lambda(L_t)$  in the uniform metric [König/Mukherjee (2016)]

For any 
$$\varepsilon > 0$$
,  
$$\limsup_{t \to \infty} \frac{1}{t} \log \widehat{\mathbb{P}}_t \bigg\{ \inf_{x \in \mathbb{R}^3} \big\| \Lambda(L_t) - \Lambda \psi_x^2 \big\|_{\infty} > \varepsilon \bigg\} < 0.$$

In particular,  $H(L_t)$  converges weakly under  $\widehat{\mathbb{P}}_t$  to

$$H(\psi_0^2) = \langle \psi_0^2, \Lambda(\psi_0^2) \rangle = \int \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\psi_0^2(x)\psi_0^2(y)}{|x-y|} \,\mathrm{d}x \mathrm{d}y.$$

Note that  $\inf_{x \in \mathbb{R}^3} \left\| \Lambda(L_t) - \Lambda \psi_x^2 \right\|_{\infty} = \operatorname{dist}_{\infty}(\Lambda(L_t), \Lambda(\mathfrak{m})).$ 

Greatest obstacle: singularity of Coulomb kernel  $x \mapsto |x|^{-1}$ .

Important step: for every b > 0,

$$\lim_{\delta \to 0} \limsup_{t \to \infty} \frac{1}{t} \log \mathbb{P} \bigg\{ \sup_{x_1, x_2 \in \mathbb{R}^3 \colon |x_1 - x_2| \le \delta} |\Lambda_t(x_1) - \Lambda_t(x_2)| \ge b \bigg\} = -\infty.$$

Corollary:  $\limsup_{t\to\infty} \frac{1}{t} \log \mathbb{P}(||\Lambda(L_t)||_{\infty} \ge a) < 0$  for every a > 0.



### On the proof of regularity of $\Lambda(L_t)$

Important step in the proof: There are constants  $\rho > 1$ ,  $a \in (0, 1)$  and  $\beta \in (0, \infty)$  such that

$$\sup_{\substack{x_1,x_2\in\mathbb{R}^3\\|x_1-x_2|\leq 1}}\sup_{x\in\mathbb{R}^3}\mathbb{E}_x\left[\exp\left\{\beta\left(\frac{\left|\Lambda_1(x_1)-\Lambda_1(x_2)\right|}{|x_1-x_2|^a}\right)^{\rho}\right\}\right]<\infty.$$



### On the proof of regularity of $\Lambda(L_t)$

Important step in the proof: There are constants  $\rho > 1, a \in (0, 1)$  and  $\beta \in (0, \infty)$  such that

$$\sup_{\substack{x_1,x_2\in\mathbb{R}^3\\|x_1-x_2|\leq 1}}\sup_{x\in\mathbb{R}^3}\mathbb{E}_x\left[\exp\left\{\beta\left(\frac{\left|\Lambda_1(x_1)-\Lambda_1(x_2)\right|}{|x_1-x_2|^a}\right)^{\rho}\right\}\right]<\infty.$$

For proving this, we write  $\Lambda_1(x_1)-\Lambda_1(x_2)=\int_0^1 V_{x_1,x_2}(W_s)\,\mathrm{d} s,$  where

$$V_{x_1,x_2}(y) = \frac{1}{|y-x_1|} - \frac{1}{|y-x_2|},$$

use Khas'minski's lemma

$$\sup_{x} \mathbb{E}_{x} \Big[ \int_{0}^{1} V(W_{s}) \, \mathrm{d}s \Big] \leq \eta < 1 \quad \Rightarrow \quad \sup_{x} \mathbb{E}_{x} \Big[ \exp \Big\{ \int_{0}^{1} V(W_{s}) \, \mathrm{d}s \Big\} \Big] \leq \frac{\eta}{1 - \eta},$$

and the GARSIA-RODEMICH-RUMSEY estimate (a variant of the KOLOMOGOROV-CHENTSOV criterion).



#### Convergence of $L_t$

Hence,  $L_t$  approaches under  $\widehat{\mathbb{P}}_t$  shifts of  $\mu_0$ . Which ones? – Here is our main result:

### Convergence of $L_t$ [Bolthausen/König/Mukherjee (2016)]

The distribution of  $L_t$  under  $\widehat{\mathbb{P}}_t$  converges towards the random shift  $\mu_X = \mu_0 \star \delta_X$  of  $\mu_0$ , where X has the distribution with density  $\psi_0 / \int \psi_0$ .

Furthermore, the distribution of the endpoint  $W_t$  under  $\widehat{\mathbb{P}}_t$  converges towards the one of X + X', where X and X' are two independent copies of X.



#### Convergence of $L_t$

Hence,  $L_t$  approaches under  $\widehat{\mathbb{P}}_t$  shifts of  $\mu_0$ . Which ones? – Here is our main result:

#### Convergence of L<sub>t</sub> [Bolthausen/König/Mukherjee (2016)]

The distribution of  $L_t$  under  $\widehat{\mathbb{P}}_t$  converges towards the random shift  $\mu_X = \mu_0 \star \delta_X$  of  $\mu_0$ , where X has the distribution with density  $\psi_0 / \int \psi_0$ .

Furthermore, the distribution of the endpoint  $W_t$  under  $\widehat{\mathbb{P}}_t$  converges towards the one of X + X', where X and X' are two independent copies of X.

Explanation in terms of the Pekar process: For  $1 \ll t_0 \ll t$ , split

$$L_t = \frac{t_0}{t} L_{t_0} + \frac{t - t_0}{t} L_{t_0, t},$$

and accordingly the energy

$$tH(L_t) = \frac{t_0^2}{t}H(L_{t_0}) + 2\frac{t_0(t-t_0)}{t}\langle L_{t_0}, \Lambda(L_{t_0,t})\rangle + \frac{(t-t_0)^2}{t}H(L_{t_0,t})$$



#### Convergence of $L_t$

Hence,  $L_t$  approaches under  $\widehat{\mathbb{P}}_t$  shifts of  $\mu_0$ . Which ones? – Here is our main result:

#### Convergence of L<sub>t</sub> [Bolthausen/König/Mukherjee (2016)]

The distribution of  $L_t$  under  $\widehat{\mathbb{P}}_t$  converges towards the random shift  $\mu_X = \mu_0 \star \delta_X$  of  $\mu_0$ , where X has the distribution with density  $\psi_0 / \int \psi_0$ .

Furthermore, the distribution of the endpoint  $W_t$  under  $\widehat{\mathbb{P}}_t$  converges towards the one of X + X', where X and X' are two independent copies of X.

Explanation in terms of the Pekar process: For  $1 \ll t_0 \ll t$ , split

$$L_t = \frac{t_0}{t} L_{t_0} + \frac{t - t_0}{t} L_{t_0, t},$$

and accordingly the energy

$$\begin{split} tH(L_t) &= \frac{t_0^2}{t} H(L_{t_0}) + 2\frac{t_0(t-t_0)}{t} \langle L_{t_0}, \Lambda(L_{t_0,t}) \rangle + \frac{(t-t_0)^2}{t} H(L_{t_0,t}) \\ &\approx 2t_0 \langle L_{t_0}, \Lambda(L_{t_0,t}) \rangle + tH(L_{t_0,t}) \quad \text{ as } t \to \infty. \end{split}$$



#### **Explanation (continued)**

On the event  $\{L_t \approx \mu_x\}$ , we have  $\{L_{t_0,t} \approx \mu_x\}$ . By the tube property for  $\Lambda(L_t)$ , we then have  $\Lambda(L_{t_0,t}) \approx \Lambda(\mu_x)$ . Hence, on this event

$$tH(L_t) \approx 2t_0 \langle L_{t_0}, \Lambda(\mu_x) \rangle + tH(L_{t_0,t}) = 2 \int_0^{t_0} \Lambda(\psi_x^2)(W_s) \,\mathrm{d}s + tH(L_{t_0,t}).$$



#### **Explanation (continued)**

On the event  $\{L_t \approx \mu_x\}$ , we have  $\{L_{t_0,t} \approx \mu_x\}$ . By the tube property for  $\Lambda(L_t)$ , we then have  $\Lambda(L_{t_0,t}) \approx \Lambda(\mu_x)$ . Hence, on this event

$$tH(L_t) \approx 2t_0 \langle L_{t_0}, \Lambda(\mu_x) \rangle + tH(L_{t_0,t}) = 2 \int_0^{t_0} \Lambda(\psi_x^2)(W_s) \,\mathrm{d}s + tH(L_{t_0,t}).$$

Now note that the density

$$\frac{1}{Z_t^{(\psi_x)}} \exp\left\{\int_0^{t_0} \Lambda(\psi_x^2)(W_s) \,\mathrm{d}s\right\}$$

defines a Girsanov transformation from Brownian motion to the Pekar process with parameter x, which is driven by the SDE

$$\mathrm{d}Y_t^{(x)} = \mathrm{d}W_t + \Big(\frac{\nabla\psi_x}{\psi_x}\Big)(W_t)\,\mathrm{d}t.$$

This process is ergodic with invariant distribution  $\mu_x(dy) = \psi_x(y)^2 dy$ . From here, it is not far to conclude that our main result should hold.



#### **Explanation (continued)**

On the event  $\{L_t \approx \mu_x\}$ , we have  $\{L_{t_0,t} \approx \mu_x\}$ . By the tube property for  $\Lambda(L_t)$ , we then have  $\Lambda(L_{t_0,t}) \approx \Lambda(\mu_x)$ . Hence, on this event

$$tH(L_t) \approx 2t_0 \langle L_{t_0}, \Lambda(\mu_x) \rangle + tH(L_{t_0,t}) = 2 \int_0^{t_0} \Lambda(\psi_x^2)(W_s) \,\mathrm{d}s + tH(L_{t_0,t}).$$

Now note that the density

$$\frac{1}{Z_t^{(\psi_x)}} \exp\left\{\int_0^{t_0} \Lambda(\psi_x^2)(W_s) \,\mathrm{d}s\right\}$$

defines a Girsanov transformation from Brownian motion to the Pekar process with parameter x, which is driven by the SDE

$$dY_t^{(x)} = dW_t + \left(\frac{\nabla\psi_x}{\psi_x}\right)(W_t) dt.$$

This process is ergodic with invariant distribution  $\mu_x(dy) = \psi_x(y)^2 dy$ . From here, it is not far to conclude that our main result should hold. Furthermore, it is also not really difficult to extend it to

#### **Process convergence**

The distribution of the process  $(W_s)_{s\in[0,t]}$  under  $\widehat{\mathbb{P}}_t$  as  $t \to \infty$  is the mixture  $Y^{(X)}$  of the Pekar process, where X is a random vector with density  $\psi_0 / \int \psi_0$ .



# Herzlichen Glückwunsch zum Geburtstag, lieber Erwin!

Hier ist mein Geburtstagsgeschenk: Unser erster Artikel!

[BKM16] E. BOLTHAUSEN, W. KÖNIG and C. MUKHERJEE, Mean-field interaction of Brownian occupation measures, II: Rigorous construction of the Pekar process, *Comm. Pure Appl. Math*, to appear (2016).

