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Background and Goals of this Talk

We consider a classical stable interacting many-particle system with attraction in
continuous space.
m We study the transition between gaseous and solid phase in the thermodynamic
limit.
m Very difficult at positive temperature and positive particle density.
m Most explicit results in the dilute low-temperature regime. Here, the particles
organise themselves into small groups called clusters.
m We approximate the system with a well-known ideal-mixture of clusters
(droplets) and prove that the difference vanishes exponentially with vanishing
temperature.
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Background and Goals of this Talk

We consider a classical stable interacting many-particle system with attraction in
continuous space.

m We study the transition between gaseous and solid phase in the thermodynamic
limit.

m Very difficult at positive temperature and positive particle density.

m Most explicit results in the dilute low-temperature regime. Here, the particles
organise themselves into small groups called clusters.

m We approximate the system with a well-known ideal-mixture of clusters
(droplets) and prove that the difference vanishes exponentially with vanishing
temperature.

m We study

m the free energy,
m the constrained free energy given a cluster-size distribution,
m the optimal cluster-size distribution.
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Background and Goals of this Talk

We consider a classical stable interacting many-particle system with attraction in
continuous space.

We study the transition between gaseous and solid phase in the thermodynamic
limit.
Very difficult at positive temperature and positive particle density.
Most explicit results in the dilute low-temperature regime. Here, the particles
organise themselves into small groups called clusters.
We approximate the system with a well-known ideal-mixture of clusters
(droplets) and prove that the difference vanishes exponentially with vanishing
temperature.
We study

m the free energy,

m the constrained free energy given a cluster-size distribution,

m the optimal cluster-size distribution.
We clarify the relation to existence and uniqueness of a Gibbs measure and its
percolation properties.
We prove crystallisation of the particles inside large clusters at positive
temperature (in progress).
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Energy

Energy of N particles in R?:
N

Un(x) = Un(xr,....xn) = Yov(lxi—x]),  forx=(x1,...,xy) € (RN
ij=1
i#]
Pair-interaction function v: [0,00) — (—oo, 0] of Lennard-Jones type:
VAN

| AN

Lennard-Jones potential examples of our potentials
v(r) = po12 6

m short-distance repulsion (possibly hard-core) implying stability,
m preference of a certain positive distance,

®m bounded interaction length.
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Random Clusters

inverse temperature f € (0, )

1
; . P _ —BUy(x) N
Gibbs measure ﬁ-,/\(dx) ZiBN e dx, XEA

Partition function: ~ Zx(B,N) = % /Ne*ﬁUN(X) dx.
tJa

Connectivity structure: Fix R larger than the interaction length of v.
Sites x and y are called connected if |x —y| <R.

clusters (droplets) = the connected components

Ny(x) =number of k-clusters in x = (xq,...,xy)

N,
k-cluster density :  ppa(x) = %
cluster size distribution: o = (Pr.A) ey
as an My 5 -valued random variable, where
My :={(pk)keNe \ kak<p} p € (0,00).

keN
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Regimes Considered

We study the cluster-size distribution in the box A = [0,L]¢
m in the thermodynamic limit

N
N — oo, L=Ly— oo, such that—d—>pe(0,oo),
Ly
followed by the dilute low-temperature limit

1
B—o,pl0 such that —Blogp—we(o,oo),

(joint work with SABINE JANSEN (Leiden) and BERND METZGER [JKM11])

®m and in the coupled dilute low-temperature limit
N — oo, B =PBn — oo, L=Ly—oo suchthat—ilogﬁd—w>0.

N Ly
(joint work with A. COLLEVECCHIO (Venice), P. MORTERS (Bath) and N.
SIDOROVA (London), [CKMS10])
Here,

m total entropy ~ sum of the entropies of the clusters,

m excluded-volume effect between the clusters may be neglected,

B mixing entropy may be neglected.
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LDP in the Thermodynamic Limit

1
Free energy per unit volume : fa(B, Ilf\\il) = —mlogZA(ﬁ,N),

limiting free energy : f(B,p):= lim fo.uga (B 15)-

N/Li—p
Goal: find f(B,p,-): Mp — [0,c] such that

5 e PO (alen ~ (pedsere v = exp(~BIALIB.p, (aer)).

and define the rate function as

Jg.p ((P)ren)= B(f (B, P, (Px)ken) = f(B:P))-

Large deviation principle with convex rate function, [JKM11]

In the thermodynamic limit N — oo, L — oo, N/L¢ — p, the distribution of p , under
IP’;;’)A with A = [0, L] satisfies a large deviation principle with speed |A| = L¢. The
rate function Jg ,: Mp+e — [0,9] is convex, and its effective domain {Jg , (-) < =} is
contained in Mp.
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On the Proof of the LDP
Standard strategy, adapted to cluster-size distributions:

1. Projection: LDP for (pg A (x))k=1,...,; for fixed j with some rate function JB.p.j
m Use subadditivity along special segences of increasing cubes (having a
separating margin) to define a densely defined preliminary rate function,
m extend this rate function continuously and prove that it is finite on open sets,
m fill the gaps for an arbitrary sequence of cubes,
m show that the extended preliminary rate function gives an LDP.
2. Apply the Gartner-Dawson theorem (projective limit LDP) to get full LDP with
rate function
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Dilute Low-Temperature Limit

The ground state, i.e., zero temperature : Ey:= inf Uy(x).
xe(RANV

E,
stability & subadditivity = o := lim WN € (—o0,0) exists.

N—oo

Interpret g, = kpy/p as the probability that a given particle lies in a k-cluster.

E,—v
Approximate rate function: gy ((gk)k) =Y. 4« LA (1 -y qk) oo
kEN k keN

on the set

2= {(qk)keN cfo.1" ’ k%qk = 1}

I'-convergence of the rate function, [JKM11]

In the limit B — oo, p — 0 such that —B~!logp — v, the function

2 —RU{=}, (@ %f(ﬁvpv(%)kel\l)

I'-converges to gy.
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Explanation
Our Approximations:

m We approximate f(B,p, (pr)r) by an ideal gas of clusters, neglecting the
“excluded volume”:

1deal(ﬁ 0, (P Z kpkf ( Z kpk) Z pr(logpr —1).

keN keN B keN

(f,fl(ﬁ) = free energy per particle in a cluster of size k.)
m We approximate 19 (B, p. (Bf),cn) with pgy(g) using two simplifications:

m cluster internal free energies ~ ground state energies: f,fl(ﬁ) ~ Ej.
]

1 logp L Py % logp
Ezpk(logpk—l)zzpk 5 B%Ioogf—l) Y o 5

keN keN keN

—quk

keN

In classical statistical physics: “Geometric (or droplet) picture of condensation”.

Closely related to the contour picture of the Ising model an lattice gases.
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Corollary: Convergence of Minimisers

Consequences of I'-convergence, [JKM11]

In the same limit B — oo, p | 0 such that —% logp — Vv,

|
1
Ef(va) i rr:@ingv = H(V)v

m if v is not a kink point of w(-), then any minimiser of Jg , converges to the
minimiser of gy .

density p
VT
<---""777 p=e
ey e T
P L
Phase IV —_- p:fv‘/'l
(infinite
configu-

rations)

Phase I (single points)

temperature 7
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Properties of gy

B v*:=infycn(En — New) lies in (0,00).

m v u(v) =infggy = infyey 55

is continuous, piecewise affine and concave.
m u(-) has at least one kink, and the kinks accumulate at most at v*.

m If v € (v*,o0) is not a kink point, then g, has the unique minimizer SkM (Dirac
sequence) with k(Vv) the unique minimizer of k — (E; — v) /k.

m For v < v*, the unique minimizer of gy is 0 (zero sequence).

Interpretation:
m There is at least one phase transition, possibly much more.
m In the high-temperature phase v > 1, all clusters are singletons.
® In any intermediate phase, all clusters have size k(v).

m In the low-temperature phase v € (0,v*), there are only infinite clusters.
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Corollary: LLN for Cluster Sizes

The main consequence of the LDP, together with the I'-convergence of the rate
function, is:

Limiting distributions of cluster sizes, [JKM11]

Let v € (0,00) be not a k|nk point, and fix € > 0. Then, if f is sufficiently large, p
sufficiently small and _F log p is sufficiently close to v, for boxes Ay with volume

N/p,

I\IILMPﬁ AN( %pk( —1‘ >8) = 0 ifv>v",
lim P’ pA>€E) = 0 ifv<vh
N—oo ﬁA (g\T S )

In other words, in this two-step limit, the model has only one cluster size, which is
infinite for small v.
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Approximation with Ideal Mixture

m The approximation with gy is difficult to interpret physically, and gy has some
“unphysical” properties: possibly many phase transitions of v — u(v), and many
minimisers of gy in the kinks. We think that just one of these phase transitions is
“physical”, the others correspond to cross-overs inside the gas phase.

® Much better is the approximation with the ideal mixture of droplets, €3 which
is known, under reasonable assumptions, to have only one phase transition.

m These assumptions are on the compactness of the shape of the relevant
configurations at positive, but low temperature:
m The main contribution to the cluster internal energy comes from compact
(d-dimensional) configurations,
m the correction term in the convergence fC(B) — f<(B) is of surface order:
kfEH(B) — ke (B) = Ck! =1
(Verification seems out of reach yet.)

m We have rigorous bounds for the comparison of the original model with the
ideal-mixture model, which are exponentially small in vanishing temperature,
see next slides.
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The ideal mixture
Recall:

1deal(ﬁ 0, (P )k Z kpifx (p — Z kpk) B Z pr(logpx —1).

keN keN keN

m saturation density: Let

P;gfal ) = Z keﬁk[feil(ﬁ)_ffl(ﬁ)] c (0700]
keN

m chemical potential: For p < pideal(B), let u'dl(B, p) € (—oo, f<(B)) be the
unique solution of

Y ke B0 B = p
k=1

and for p > pldal(B), let u9< (B, p) := f<(B).
m Then, the minimiser (pjdeal(B, p)), of fi9eal(B, p,-) is given by

pideal(B p) = Bkl (B.p)— £ (B)]

m Under appropriate bounds on fkd(ﬁ), the saturation density is finite at low
temperature, and f192(B, p,.) has a phase transition.
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Comparison with ideal mixture

Joint work with SABINE JANSEN (Leiden). Our hypotheses:
(1) Some Holder continuity and uniform stability of v. (holds under general
assumptions)
(2) Compact shape of ground states. (in d < 2 see [AU YEUNG, FRIESECKE,
SCHMIDT (2011)])
(3) Compact shape of clusters at low temperature. (open)
(4) Surface-order correction: kf¢'(B) —kf<(B) > Ck'~1/4. (open)
Let H(a;b) = Y ren(br — ax +aglog ‘b‘—i) denote the entropy.

Approximation with ideal mixture
Under Hypotheses (1), (3) and (4), for any sufficiently large § and sufficiently small p,
0 £(B.p) = £4=(B.p) < (B p)p! 4+,

and, for any minimiser p = p®? = (p)ren Of f(B,p,-), With m := Y jen i

oom P w1/ 1P P B.P)Y _ o1/t
mideal(ﬁ7p) -1 Spr and ZH(m’mideal(ﬁ,p)) SCP o

If Hypotheses (3) and (4) are replaced by (2), this holds for —3~!logp > v* + & with
e-dependent constants.
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Coupled Limit

Idea: Couple inverse temperature § = By — oo with particle density N/L{, = py — 0
such that
1 N

——log— =v e (0, is constant.
By C L (0,2)

(Example: By < logN and |Ay| = |[0,Ly]¢ = N* with @ > 1.)

Then energic and entropic forces compete on the same, critical scale, and determine
the behaviour of the system.

Large v = entropy wins, i.e., typical inter-particle distance diverges,
Small v = interaction wins, i.e., crystalline structure in the particles emerges.

Free energy per particle in the coupled limit, [CKMS10]

|
—

n(v) = AllgnooNiBN logZg 1,1 (BN N).

The proof is a preliminary version of the proof of the above LDP.
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Gibbs Measures and their Percolation Properties |

This is taken from [JANSEN 2012]. Some further (natural) assumptions on v are
made.

Introduce Py, the set of all shift-invariant distributions P of random point
configurations @ = ¥,c¢ & with & C R? locally finite. Denote

energy: % (P) = %/P(dw) Y Y vlly—x)

x€&N[0,1)4 ye&
entropy:  Z(P) = 1— lim HA(Py|Qn)
A—R4
k-cluster number:  pi(P) = /P(da)) Y {lC:(x)| =k},
xeEno, 14

where Cg (x) is the cluster of & that contains x. By p(P) we denote the P-expectation
of |EN[0, 1]¢].

Percolation

For any P € &y,

Y kpi(P) < p(P) <= P(there is an infinite cluster) > 0.
keN
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Gibbs Measures and their Percolation Properties Il

Identification of rate function

1(B.p- (i) = min{% (P) ~ 5. (P): P € Za.p(P) = p.pulP) = pu¥k .
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Gibbs Measures and their Percolation Properties Il

Identification of rate function

£(B.p: (P)ien)) = min{ % (P) — %f(P): P e P9,p(P) = p.pe(P) = vk}

Gibbs variational principle

The minimizers (px)rer Of £(B,p,-) correspond with shift-invariant Gibbs measures
P (with respect to a suitable chemical potential) satisfying p(P) = p and p(P) = px
for all k.
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Gibbs Measures and their Percolation Properties Il

Identification of rate function

1(B.p- (i) = min{% (P) ~ 5. (P): P € Za.p(P) = p.pulP) = pu¥k .

Gibbs variational principle

The minimizers (px)rer Of £(B,p,-) correspond with shift-invariant Gibbs measures
P (with respect to a suitable chemical potential) satisfying p(P) = p and p(P) = px
for all &.

The following is a continuous version of what is called dependent percolation.

Bounds on (non-)percolation

m Forv>v*andp < e PV, for all large B, the Gibbs measure has no infinite
cluster, and the cluster size distribution has exponentially decaying tails.

m For p large enough (up to a bound that does not depend on ) and all large 3,
the Gibbs measure has an infinite cluster with probability one.
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Crystallisation at Positive Temperature

This is taken from [JANSEN, K., SCHMIDT, THEIL 2013+]: work in progress.
At zero temperature, [THEIL 06] proved crystallisation in d = 2. That is, in the limit
N — oo, the optimal particle configuration x, the minimiser in

1
€w:= lim — inf Upy(x)= min v(ir) = ) € (—0,0),
Jm N o v (x) r€<07w>i§$ (ir) ig;(l) (—e,0)

approaches the triangular lattice .Z. (We normalised the potential v.) (d =3 is in
preparation)
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Crystallisation at Positive Temperature

This is taken from [JANSEN, K., SCHMIDT, THEIL 2013+]: work in progress.
At zero temperature, [THEIL 06] proved crystallisation in d = 2. That is, in the limit
N — oo, the optimal particle configuration x, the minimiser in

1

¢ = lim Nxe%fég)w Un(x) = ré?é,rlo | iév(ir) = iez:%)v(i) € (—,0),
approaches the triangular lattice .Z. (We normalised the potential v.) (d =3 is in
preparation)
Goal: Prove an analogous approximate probabilistic assertion for large  under P%VfA.
More precisely, prove that, for p € (0,1) and large 8, a macroscopic fraction of the N
particles forms large grids with fluctuations around the grid sites, vanishing as 8 — co.
We first concentrate on d = 1 (the two-dimensional case seems different) and
approximate with the model that has Hamiltonian

N-1

Uy (x) = ; W(|xip1 —xi|),  where W(r)= %v(ir).

where x; < xp < --- < xy. This model has large, f-dependent grid-like clusters with
large, B-dependent empty intervals inbetween.
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