

Weierstrass Institute for Applied Analysis and Stochastics

Cluster Size Distributions in a Classical Many-Body System

Wolfgang König TU Berlin and WIAS

based on joint works with Collevecchio (Melbourne), **Jansen (Leiden)**, Metzger (Duisburg), Mörters (Bath), Sidorova (London).

supported by the DFG-Forschergruppe 718 Analysis and Stochastics in Complex Physical Systems

We consider a classical stable interacting many-particle system with attraction in continuous space.

- We study the transition between gaseous and solid phase in the thermodynamic limit.
- Very difficult at positive temperature and positive particle density.
- Most explicit results in the dilute low-temperature regime. Here, the particles organise themselves into small groups called clusters.
- We approximate the system with a well-known ideal-mixture of clusters (droplets) and prove that the difference vanishes exponentially with vanishing temperature.

We consider a classical stable interacting many-particle system with attraction in continuous space.

- We study the transition between gaseous and solid phase in the thermodynamic limit.
- Very difficult at positive temperature and positive particle density.
- Most explicit results in the dilute low-temperature regime. Here, the particles organise themselves into small groups called clusters.
- We approximate the system with a well-known ideal-mixture of clusters (droplets) and prove that the difference vanishes exponentially with vanishing temperature.
- We study
 - the free energy,
 - the constrained free energy given a cluster-size distribution,
 - the optimal cluster-size distribution.

We consider a classical stable interacting many-particle system with attraction in continuous space.

- We study the transition between gaseous and solid phase in the thermodynamic limit.
- Very difficult at positive temperature and positive particle density.
- Most explicit results in the dilute low-temperature regime. Here, the particles organise themselves into small groups called clusters.
- We approximate the system with a well-known ideal-mixture of clusters (droplets) and prove that the difference vanishes exponentially with vanishing temperature.
- We study
 - the free energy,
 - the constrained free energy given a cluster-size distribution,
 - the optimal cluster-size distribution.
- We clarify the relation to existence and uniqueness of a Gibbs measure and its percolation properties.
- We prove crystallisation of the particles inside large clusters at positive temperature (in progress).

Energy

Energy of N particles in \mathbb{R}^d :

$$U_N(x) = U_N(x_1, \dots, x_N) = \sum_{\substack{i,j=1\\i \neq j}}^N v(|x_i - x_j|), \quad \text{for } x = (x_1, \dots, x_N) \in (\mathbb{R}^d)^N.$$

Pair-interaction function $v: [0, \infty) \to (-\infty, \infty]$ of Lennard-Jones type:

- short-distance repulsion (possibly hard-core) implying stability,
- preference of a certain positive distance,
- bounded interaction length.

Random Clusters

inverse temperature $oldsymbol{eta} \in (0,\infty)$

Gibbs measure:
$$\mathbb{P}_{\beta,\Lambda}^{(N)}(\mathrm{d} x) = \frac{1}{Z_{\Lambda}(\beta,N)N!} \mathrm{e}^{-\beta U_N(x)} \mathrm{d} x, \qquad x \in \Lambda^N.$$

Partition function:
$$Z_{\Lambda}(\beta, N) = \frac{1}{N!} \int_{\Lambda^N} e^{-\beta U_N(x)} dx.$$

Connectivity structure: Fix *R* larger than the interaction length of *v*. Sites *x* and *y* are called connected if $|x - y| \le R$. clusters (droplets) = the connected components $N_k(x)$ =number of *k*-clusters in $x = (x_1, ..., x_N)$

k-cluster density :
$$\rho_{k,\Lambda}(x) = \frac{N_k(x)}{|\Lambda|}$$

cluster size distribution: $\rho_{\Lambda} = (\rho_{k,\Lambda})_{k \in \mathbb{N}}$

as an $M_{N/|\Lambda|}$ -valued random variable, where

$$M_{\rho} := \Big\{ (\rho_k)_{k \in \mathbb{N}} \in [0,\infty)^{\mathbb{N}} \, \Big| \, \sum_{k \in \mathbb{N}} k \rho_k \leq \rho \Big\}, \qquad \rho \in (0,\infty).$$

Regimes Considered

We study the cluster-size distribution in the box $\Lambda = [0, L]^d$

■ in the thermodynamic limit

$$N o \infty, \qquad L = L_N o \infty, \qquad ext{such that } rac{N}{L_N^d} o
ho \in (0,\infty),$$

followed by the dilute low-temperature limit

$$eta
ightarrow\infty, eta\downarrow 0$$
 such that $-rac{1}{eta}\log
ho
ightarrow
u\in(0,\infty),$

(joint work with SABINE JANSEN (Leiden) and BERND METZGER [JKM11]) and in the coupled dilute low-temperature limit

$$N \to \infty, \qquad \beta = \beta_N \to \infty, \qquad L = L_N \to \infty \qquad \text{such that } -\frac{1}{\beta_N} \log \frac{N}{L_N^d} \to \nu > 0.$$

(joint work with A. COLLEVECCHIO (Venice), P. MÖRTERS (Bath) and N. SIDOROVA (London), [CKMS10])

Here,

- total entropy \approx sum of the entropies of the clusters,
- excluded-volume effect between the clusters may be neglected,
- mixing entropy may be neglected.

F

Free energy per unit volume :
$$f_{\Lambda}(eta, rac{N}{|\Lambda|}) := -rac{1}{eta|\Lambda|} \log Z_{\Lambda}(eta, N).$$

 $\underset{N/L^{d} \to \rho}{\text{limiting free energy}}: \qquad f(\beta, \rho) := \underset{N/L^{d} \to \rho}{\lim} f_{[0,L]^{d}}(\beta, \tfrac{N}{L^{d}}).$

Goal: find $f(\boldsymbol{\beta},\boldsymbol{\rho},\cdot)\colon M_{\boldsymbol{\rho}}\to [0,\infty]$ such that

$$\frac{1}{N!} \int_{\Lambda^N} e^{-\beta U_N(x)} \mathbb{1}\left\{ (\rho_{k,\Lambda}(x))_{k\in\mathbb{N}} \approx (\rho_k)_{k\in\mathbb{N}} \right\} dx \approx \exp\left(-\beta |\Lambda| f(\beta,\rho,(\rho_k)_{k\in\mathbb{N}})\right),$$

and define the rate function as

$$J_{\boldsymbol{\beta},\boldsymbol{\rho}}((\boldsymbol{\rho}_k)_{k\in\mathbb{N}}) = \boldsymbol{\beta}(f(\boldsymbol{\beta},\boldsymbol{\rho},(\boldsymbol{\rho}_k)_{k\in\mathbb{N}}) - f(\boldsymbol{\beta},\boldsymbol{\rho})).$$

Large deviation principle with convex rate function, [JKM11]

In the thermodynamic limit $N \to \infty$, $L \to \infty$, $N/L^d \to \rho$, the distribution of ρ_Λ under $\mathbb{P}_{\beta,\Lambda}^{(N)}$ with $\Lambda = [0,L]^d$ satisfies a large deviation principle with speed $|\Lambda| = L^d$. The rate function $J_{\beta,\rho} : M_{\rho+\epsilon} \to [0,\infty]$ is convex, and its effective domain $\{J_{\beta,\rho}(\cdot) < \infty\}$ is contained in M_{ρ} .

On the Proof of the LDP

Standard strategy, adapted to cluster-size distributions:

- **1.** Projection: LDP for $(\rho_{k,\Lambda}(x))_{k=1,\dots,j}$ for fixed *j* with some rate function $J_{\beta,\rho,j}$.
 - Use subadditivity along special seqences of increasing cubes (having a separating margin) to define a densely defined preliminary rate function,
 - extend this rate function continuously and prove that it is finite on open sets,
 - fill the gaps for an arbitrary sequence of cubes,
 - show that the extended preliminary rate function gives an LDP.
- 2. Apply the Gärtner-Dawson theorem (projective limit LDP) to get full LDP with rate function

$$J_{\beta,\rho}((\rho_k)_{k\in\mathbb{N}}) = \sup_{j\in\mathbb{N}} J_{\beta,\rho,j}((\rho_k)_{k=1,\dots,j}).$$

The ground state, i.e., zero temperature : $E_N := \inf_{x \in (\mathbb{R}^d)^N} U_N(x).$

stability & subadditivity $\implies e_{\infty} := \lim_{N \to \infty} \frac{E_N}{N} \in (-\infty, 0)$ exists.

Interpret $q_k = k\rho_k/\rho$ as the probability that a given particle lies in a *k*-cluster.

Approximate rate function:
$$g_{\mathbf{v}}((q_k)_k) := \sum_{k \in \mathbb{N}} q_k \frac{E_k - \mathbf{v}}{k} + \left(1 - \sum_{k \in \mathbb{N}} q_k\right) e_{\infty}$$

on the set

$$\mathscr{Q} := \left\{ (q_k)_{k \in \mathbb{N}} \in [0,1]^{\mathbb{N}} \, \Big| \, \sum_{k \in \mathbb{N}} q_k \le 1 \right\}$$

Γ-convergence of the rate function, [JKM11]

In the limit $\beta \to \infty$, $\rho \to 0$ such that $-\beta^{-1}\log \rho \to v$, the function

$$\mathscr{Q} \to \mathbb{R} \cup \{\infty\}, \qquad (q_k)_k \mapsto \frac{1}{\rho} f\left(\beta, \rho, (\frac{\rho q_k}{k})_{k \in \mathbb{N}}\right)$$

 Γ -converges to g_{V} .

Cluster Size Distributions - Mark Kac Seminar, 9 November 2012 - Page 8 (19)

Explanation

Our Approximations:

We approximate f(β,ρ,(ρ_k)_k) by an ideal gas of clusters, neglecting the "excluded volume":

$$f^{\text{ideal}}(\beta,\rho,(\rho_k)_k) := \sum_{k \in \mathbb{N}} k \rho_k f_k^{\text{cl}}(\beta) + \left(\rho - \sum_{k \in \mathbb{N}} k \rho_k\right) f_{\infty}^{\text{cl}}(\beta) + \frac{1}{\beta} \sum_{k \in \mathbb{N}} \rho_k (\log \rho_k - 1).$$

 $(f_k^{cl}(\beta) =$ free energy per particle in a cluster of size *k*.)

We approximate f^{ideal}(β, ρ, (^{ρqk}/_k)_{k∈ℕ}) with ρg_ν(q) using two simplifications:
 cluster internal free energies ≈ ground state energies: f^{cl}_k(β) ≈ E_k.

$$\frac{1}{\beta} \sum_{k \in \mathbb{N}} \rho_k (\log \rho_k - 1) = \sum_{k \in \mathbb{N}} \rho_k \frac{\log \rho}{\beta} + \frac{\rho}{\beta} \sum_{k \in \mathbb{N}} \frac{q_k}{k} \left(\log \frac{q_k}{k} - 1 \right) \approx \sum_{k \in \mathbb{N}} \rho_k \frac{\log \rho}{\beta}$$
$$\approx -\rho \sum_{k \in \mathbb{N}} q_k \frac{\nu}{k}.$$

In classical statistical physics: "Geometric (or droplet) picture of condensation".

Closely related to the contour picture of the Ising model an lattice gases.

Consequences of Γ -convergence, [JKM11]

In the same limit $\beta \to \infty, \, \rho \downarrow 0$ such that $- \frac{1}{\beta} \log \rho \to \nu,$

$$\frac{1}{\rho}f(\boldsymbol{\beta},\boldsymbol{\rho}) \to \min_{\mathcal{Q}}g_{\boldsymbol{\nu}} =: \boldsymbol{\mu}(\boldsymbol{\nu}),$$

If v is not a kink point of µ(·), then any minimiser of J_{β,ρ} converges to the minimiser of g_v.

Properties of g_{v}

$$\mathbf{v}^* := \inf_{N \in \mathbb{N}} (E_N - Ne_{\infty}) \text{ lies in } (0, \infty).$$

• $v \mapsto \mu(v) = \inf_{\mathscr{Q}} g_v = \inf_{N \in \mathbb{N}} \frac{E_N - v}{N}$ is continuous, piecewise affine and concave.

- $\mu(\cdot)$ has at least one kink, and the kinks accumulate at most at v^* .
- If v ∈ (v^{*},∞) is not a kink point, then g_v has the unique minimizer δ_{k(v)} (Dirac sequence) with k(v) the unique minimizer of k ↦ (E_k − v)/k.
- For $v < v^*$, the unique minimizer of g_v is 0 (zero sequence).

Interpretation:

- There is at least one phase transition, possibly much more.
- In the high-temperature phase $v \gg 1$, all clusters are singletons.
- In any intermediate phase, all clusters have size k(v).
- In the low-temperature phase $v \in (0, v^*)$, there are only infinite clusters.

The main consequence of the LDP, together with the $\Gamma\mbox{-}convergence$ of the rate function, is:

Limiting distributions of cluster sizes, [JKM11]

Let $v \in (0,\infty)$ be not a kink point, and fix $\varepsilon > 0$. Then, if β is sufficiently large, ρ sufficiently small and $-\frac{1}{\beta}\log\rho$ is sufficiently close to v, for boxes Λ_N with volume N/ρ ,

$$\begin{split} \lim_{N \to \infty} \mathbb{P}_{\beta, \Lambda_N}^{\scriptscriptstyle (N)} \left(\left| \frac{k(\boldsymbol{\nu})}{\rho} \rho_{k(\boldsymbol{\nu}), \Lambda} - 1 \right| > \varepsilon \right) &= 0 \qquad \text{if } \boldsymbol{\nu} > \boldsymbol{\nu}^*, \\ \lim_{N \to \infty} \mathbb{P}_{\beta, \Lambda_N}^{\scriptscriptstyle (N)} \left(\sum_{k \in \mathbb{N}} \rho_{k, \Lambda} > \varepsilon \right) &= 0 \qquad \text{if } \boldsymbol{\nu} < \boldsymbol{\nu}^*. \end{split}$$

In other words, in this two-step limit, the model has only one cluster size, which is infinite for small v.

Approximation with Ideal Mixture

- The approximation with g_v is difficult to interpret physically, and g_v has some "unphysical" properties: possibly many phase transitions of $v \mapsto \mu(v)$, and many minimisers of g_v in the kinks. We think that just one of these phase transitions is "physical", the others correspond to cross-overs inside the gas phase.
- Much better is the approximation with the ideal mixture of droplets, f^{ideal}, which is known, under reasonable assumptions, to have only one phase transition.
- These assumptions are on the compactness of the shape of the relevant configurations at positive, but low temperature:
 - The main contribution to the cluster internal energy comes from compact (*d*-dimensional) configurations,
 - the correction term in the convergence $f_k^{\text{cl}}(\beta) \to f_{\infty}^{\text{cl}}(\beta)$ is of surface order: $kf_k^{\text{cl}}(\beta) - kf_{\infty}^{\text{cl}}(\beta) \ge Ck^{1-1/d}$.

(Verification seems out of reach yet.)

We have rigorous bounds for the comparison of the original model with the ideal-mixture model, which are exponentially small in vanishing temperature, see next slides.

The ideal mixture

Recall:

$$f^{\text{ideal}}(\beta,\rho,(\rho_k)_k) := \sum_{k \in \mathbb{N}} k \rho_k f_k^{\text{cl}}(\beta) + \left(\rho - \sum_{k \in \mathbb{N}} k \rho_k\right) f_{\infty}^{\text{cl}}(\beta) + \frac{1}{\beta} \sum_{k \in \mathbb{N}} \rho_k (\log \rho_k - 1).$$

saturation density: Let

$$\rho_{\text{sat}}^{\text{ideal}}(\beta) := \sum_{k \in \mathbb{N}} k e^{\beta k [f_{\infty}^{\text{cl}}(\beta) - f_{k}^{\text{cl}}(\beta)]} \in (0, \infty]$$

• chemical potential: For $\rho < \rho_{sat}^{ideal}(\beta)$, let $\mu^{ideal}(\beta, \rho) \in (-\infty, f_{\infty}^{cl}(\beta))$ be the unique solution of

$$\sum_{k=1}^{\infty} k e^{\beta k [\mu^{\text{ideal}}(\beta,\rho) - f_k^{\text{cl}}(\beta)]} = \rho,$$

and for $\rho \ge \rho_{\text{sat}}^{\text{ideal}}(\beta)$, let $\mu^{\text{ideal}}(\beta, \rho) := f_{\infty}^{\text{cl}}(\beta)$. Then, the minimiser $(\rho_k^{\text{ideal}}(\beta, \rho))_k$ of $f^{\text{ideal}}(\beta, \rho, \cdot)$ is given by

$$\rho_k^{\text{ideal}}(\beta,\rho) = e^{\beta k [\mu^{\text{ideal}}(\beta,\rho) - f_k^{\text{cl}}(\beta)]}.$$

Under appropriate bounds on $f_k^{\text{cl}}(\beta)$, the saturation density is finite at low temperature, and $f^{\text{ideal}}(\beta, \rho, \cdot)$ has a phase transition.

Comparison with ideal mixture

Joint work with SABINE JANSEN (Leiden). Our hypotheses:

- (1) Some Hölder continuity and uniform stability of *v*. (holds under general assumptions)
- (2) Compact shape of ground states. (in d ≤ 2 see [AU YEUNG, FRIESECKE, SCHMIDT (2011)])
- (3) Compact shape of clusters at low temperature. (open)
- (4) Surface-order correction: $kf_k^{cl}(\beta) kf_{\infty}^{cl}(\beta) \ge Ck^{1-1/d}$. (open)

Let $H(a;b) = \sum_{k \in \mathbb{N}} (b_k - a_k + a_k \log \frac{a_k}{b_k})$ denote the entropy.

Approximation with ideal mixture

Under Hypotheses (1), (3) and (4), for any sufficiently large β and sufficiently small ρ ,

$$0 \leq f(\boldsymbol{\beta}, \boldsymbol{\rho}) - f^{\text{ideal}}(\boldsymbol{\beta}, \boldsymbol{\rho}) \leq \frac{C}{\boldsymbol{\beta}} m^{\text{ideal}}(\boldsymbol{\beta}, \boldsymbol{\rho}) \boldsymbol{\rho}^{1/(d+1)},$$

and, for any minimiser $\rho = \rho^{(\beta,\rho)} = (\rho_k)_{k \in \mathbb{N}}$ of $f(\beta, \rho, \cdot)$, with $m := \sum_{k \in \mathbb{N}} \rho_k$, $\left| \frac{m}{m^{\text{ideal}}(\beta, \rho)} - 1 \right|^2 \le C' \rho^{1/(d+1)}$ and $\frac{1}{2} H\left(\frac{\rho}{m}; \frac{\rho^{\text{ideal}}(\beta, \rho)}{m^{\text{ideal}}(\beta, \rho)}\right) \le C' \rho^{1/(d+1)}$.

If Hypotheses (3) and (4) are replaced by (2), this holds for $-\beta^{-1}\log\rho > v^* + \varepsilon$ with ε -dependent constants.

Coupled Limit

Idea: Couple inverse temperature $\beta = \beta_N \to \infty$ with particle density $N/L_N^d = \rho_N \to 0$ such that

$$-rac{1}{eta_N}\lograc{N}{L_N^d}=
u\in(0,\infty)$$
 is constant.

(Example: $\beta_N \asymp \log N$ and $|\Lambda_N| = |[0, L_N]^d = N^{\alpha}$ with $\alpha > 1$.)

Then energic and entropic forces compete on the same, critical scale, and determine the behaviour of the system.

Large $v \implies$ entropy wins, i.e., typical inter-particle distance diverges,

Small $v \implies$ interaction wins, i.e., crystalline structure in the particles emerges.

Free energy per particle in the coupled limit, [CKMS10]

$$-\mu(\nu) = \lim_{N\to\infty} \frac{1}{N\beta_N} \log Z_{[0,L_N]}(\beta_N,N).$$

The proof is a preliminary version of the proof of the above LDP.

Gibbs Measures and their Percolation Properties I

This is taken from [JANSEN 2012]. Some further (natural) assumptions on v are made.

Introduce \mathscr{P}_{θ} , the set of all shift-invariant distributions P of random point configurations $\omega = \sum_{x \in \xi} \delta_x$ with $\xi \subset \mathbb{R}^d$ locally finite. Denote

$$\begin{array}{lll} \text{energy:} & \mathscr{U}(P) & = & \displaystyle\frac{1}{2} \int P(\mathrm{d}\omega) \sum_{x \in \xi \cap [0,1]^d} \sum_{y \in \xi} v(|y-x|) \\ & \text{entropy:} & \mathscr{S}(P) & = & \displaystyle1 - \displaystyle\lim_{\Lambda \to \mathbb{R}^d} H_\Lambda(P_\Lambda \mid Q_\Lambda) \\ & k\text{-cluster number:} & \rho_k(P) & = & \displaystyle\int P(\mathrm{d}\omega) \sum_{x \in \xi \cap [0,1]^d} \mathrm{l}\{|C_\xi(x)| = k\}, \end{array}$$

where $C_{\xi}(x)$ is the cluster of ξ that contains x. By $\rho(P)$ we denote the P-expectation of $|\xi \cap [0, 1]^d|$.

Percolation

For any $P \in \mathscr{P}_{\theta}$,

 $\sum_{k \in \mathbb{N}} k \rho_k(P) < \rho(P) \qquad \Longleftrightarrow \qquad P(\text{there is an infinite cluster}) > 0.$

Cluster Size Distributions - Mark Kac Seminar, 9 November 2012 - Page 17 (19)

Identification of rate function

$$f(\boldsymbol{\beta},\boldsymbol{\rho},(\boldsymbol{\rho}_k)_{k\in\mathbb{N}})) = \min\left\{\mathscr{U}(P) - \frac{1}{\boldsymbol{\beta}}\mathscr{S}(P) \colon P \in \mathscr{P}_{\boldsymbol{\theta}}, \boldsymbol{\rho}(P) = \boldsymbol{\rho}, \boldsymbol{\rho}_k(P) = \boldsymbol{\rho}_k \forall k\right\}.$$

Identification of rate function

$$f(\beta,\rho,(\rho_k)_{k\in\mathbb{N}})) = \min\left\{\mathscr{U}(P) - \frac{1}{\beta}\mathscr{S}(P) \colon P \in \mathscr{P}_{\theta}, \rho(P) = \rho, \rho_k(P) = \rho_k \forall k\right\}.$$

Gibbs variational principle

The minimizers $(\rho_k)_{k\in\mathbb{N}}$ of $f(\beta, \rho, \cdot)$ correspond with shift-invariant Gibbs measures P (with respect to a suitable chemical potential) satisfying $\rho(P) = \rho$ and $\rho_k(P) = \rho_k$ for all k.

Identification of rate function

$$f(\beta,\rho,(\rho_k)_{k\in\mathbb{N}})) = \min\left\{\mathscr{U}(P) - \frac{1}{\beta}\mathscr{S}(P) \colon P \in \mathscr{P}_{\theta}, \rho(P) = \rho, \rho_k(P) = \rho_k \forall k\right\}.$$

Gibbs variational principle

The minimizers $(\rho_k)_{k\in\mathbb{N}}$ of $f(\beta, \rho, \cdot)$ correspond with shift-invariant Gibbs measures P (with respect to a suitable chemical potential) satisfying $\rho(P) = \rho$ and $\rho_k(P) = \rho_k$ for all k.

The following is a continuous version of what is called dependent percolation.

Bounds on (non-)percolation

- For ν > ν* and ρ < e^{-βν}, for all large β, the Gibbs measure has no infinite cluster, and the cluster size distribution has exponentially decaying tails.
- For ρ large enough (up to a bound that does not depend on β) and all large β, the Gibbs measure has an infinite cluster with probability one.

Cluster Size Distributions - Mark Kac Seminar, 9 November 2012 - Page 18 (19)

Crystallisation at Positive Temperature

This is taken from [JANSEN, K., SCHMIDT, THEIL 2013+]: work in progress. At zero temperature, [THEIL 06] proved crystallisation in d = 2. That is, in the limit $N \rightarrow \infty$, the optimal particle configuration *x*, the minimiser in

$$e_{\infty} := \lim_{N \to \infty} \frac{1}{N} \inf_{x \in (\mathbb{R}^d)^N} U_N(x) = \min_{r \in (0,\infty)} \sum_{i \in \mathscr{L}} v(ir) = \sum_{i \in \mathscr{L}} v(i) \in (-\infty, 0),$$

approaches the triangular lattice \mathscr{L} . (We normalised the potential *v*.) (d = 3 is in preparation)

Crystallisation at Positive Temperature

This is taken from [JANSEN, K., SCHMIDT, THEIL 2013+]: work in progress. At zero temperature, [THEIL 06] proved crystallisation in d = 2. That is, in the limit $N \rightarrow \infty$, the optimal particle configuration *x*, the minimiser in

$$e_{\infty} := \lim_{N \to \infty} \frac{1}{N} \inf_{x \in (\mathbb{R}^d)^N} U_N(x) = \min_{r \in (0,\infty)} \sum_{i \in \mathscr{L}} v(ir) = \sum_{i \in \mathscr{L}} v(i) \in (-\infty, 0),$$

approaches the triangular lattice \mathscr{L} . (We normalised the potential *v*.) (d = 3 is in preparation)

Goal: Prove an analogous approximate probabilistic assertion for large β under $\mathbb{P}_{\beta,\Lambda}^{(N)}$. More precisely, prove that, for $\rho \in (0,1)$ and large β , a macroscopic fraction of the N particles forms large grids with fluctuations around the grid sites, vanishing as $\beta \to \infty$. We first concentrate on d = 1 (the two-dimensional case seems different) and approximate with the model that has Hamiltonian

$$U_N^{(w)}(x) = \sum_{i=1}^{N-1} W(|x_{i+1} - x_i|), \qquad \text{where} \quad W(r) = \sum_{i \in \mathbb{N}} v(ir).$$

where $x_1 < x_2 < \cdots < x_N$. This model has large, β -dependent grid-like clusters with large, β -dependent empty intervals inbetween.

