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Background and Goals of this Talk

We consider a classical stable interacting many-particle system with attraction in
continuous space.

� We study the transition between gaseous and solid phase in the thermodynamic
limit.

� Very difficult at positive temperature and positive particle density.
� Most explicit results in the dilute low-temperature regime. Here, the particles

organise themselves into small groups called clusters.
� We approximate the system with a well-known ideal-mixture of clusters

(droplets) and prove that the difference vanishes exponentially with vanishing
temperature.
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� We study

� the free energy,
� the constrained free energy given a cluster-size distribution,
� the optimal cluster-size distribution.
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Background and Goals of this Talk

We consider a classical stable interacting many-particle system with attraction in
continuous space.

� We study the transition between gaseous and solid phase in the thermodynamic
limit.

� Very difficult at positive temperature and positive particle density.
� Most explicit results in the dilute low-temperature regime. Here, the particles

organise themselves into small groups called clusters.
� We approximate the system with a well-known ideal-mixture of clusters

(droplets) and prove that the difference vanishes exponentially with vanishing
temperature.

� We study

� the free energy,
� the constrained free energy given a cluster-size distribution,
� the optimal cluster-size distribution.

� We clarify the relation to existence and uniqueness of a Gibbs measure and its
percolation properties.

� We prove crystallisation of the particles inside large clusters at positive
temperature (in progress).
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Energy

Energy of N particles in R
d :

UN(x) = UN(x1, . . . ,xN) =
N

∑
i, j=1
i 6= j

v
(

|xi −x j|
)

, for x = (x1, . . . ,xN) ∈ (Rd)N .

Pair-interaction function v : [0,∞) → (−∞,∞] of Lennard-Jones type:

∞

Lennard-Jones potential

v(r) = r−12 − r−6

examples of our potentials

� short-distance repulsion (possibly hard-core) implying stability,

� preference of a certain positive distance,

� bounded interaction length.
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Random Clusters

inverse temperature β ∈ (0,∞)

Gibbs measure: P
(N)

β ,Λ
(dx) =

1

ZΛ(β ,N)N!
e−βUN(x) dx, x ∈ ΛN .

Partition function: ZΛ(β ,N) =
1

N!

∫

ΛN
e−βUN(x) dx.

Connectivity structure: Fix R larger than the interaction length of v.
Sites x and y are called connected if |x−y| ≤ R.
clusters (droplets) = the connected components
Nk(x) =number of k-clusters in x = (x1, . . . ,xN)

k-cluster density : ρk,Λ(x) =
Nk(x)

|Λ|

cluster size distribution: ρΛ =
(

ρk,Λ

)

k∈N

as an MN/|Λ|-valued random variable, where

Mρ :=
{

(ρk)k∈N ∈ [0,∞)N

∣

∣

∣ ∑
k∈N

kρk ≤ ρ
}

, ρ ∈ (0,∞).
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Regimes Considered

We study the cluster-size distribution in the box Λ = [0,L]d

� in the thermodynamic limit

N → ∞, L = LN → ∞, such that
N

Ld
N

→ ρ ∈ (0,∞),

followed by the dilute low-temperature limit

β → ∞,ρ ↓ 0 such that −
1

β
logρ → ν ∈ (0,∞),

(joint work with SABINE JANSEN (Leiden) and BERND METZGER [JKM11])

� and in the coupled dilute low-temperature limit

N → ∞, β = βN → ∞, L = LN → ∞ such that −
1

βN
log

N

Ld
N

→ ν > 0.

(joint work with A. COLLEVECCHIO (Venice), P. MÖRTERS (Bath) and N.
SIDOROVA (London), [CKMS10])

Here,

� total entropy ≈ sum of the entropies of the clusters,

� excluded-volume effect between the clusters may be neglected,

� mixing entropy may be neglected.
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LDP in the Thermodynamic Limit

Free energy per unit volume : fΛ(β , N
|Λ| ) := −

1

β |Λ|
logZΛ(β ,N).

limiting free energy : f (β ,ρ) := lim
N,L→∞

N/Ld→ρ

f[0,L]d (β , N
Ld ).

Goal: find f (β ,ρ, ·) : Mρ → [0,∞] such that

1

N!

∫

ΛN
e−βUN(x)1l

{

(ρk,Λ(x))k∈N ≈ (ρk)k∈N

}

dx ≈ exp
(

−β |Λ| f (β ,ρ,(ρk)k∈N)
)

,

and define the rate function as

Jβ ,ρ

(

(ρk)k∈N

)

= β
(

f (β ,ρ,(ρk)k∈N)− f (β ,ρ)
)

.

Large deviation principle with convex rate function, [JKM11]

In the thermodynamic limit N → ∞, L → ∞, N/Ld → ρ , the distribution of ρΛ under
P

(N)

β ,Λ with Λ = [0,L]d satisfies a large deviation principle with speed |Λ| = Ld . The
rate function Jβ ,ρ : Mρ+ε → [0,∞] is convex, and its effective domain {Jβ ,ρ (·) < ∞} is
contained in Mρ .
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On the Proof of the LDP

Standard strategy, adapted to cluster-size distributions:

1. Projection: LDP for (ρk,Λ(x))k=1,..., j for fixed j with some rate function Jβ ,ρ , j.

� Use subadditivity along special seqences of increasing cubes (having a
separating margin) to define a densely defined preliminary rate function,

� extend this rate function continuously and prove that it is finite on open sets,
� fill the gaps for an arbitrary sequence of cubes,
� show that the extended preliminary rate function gives an LDP.

2. Apply the Gärtner-Dawson theorem (projective limit LDP) to get full LDP with
rate function

Jβ ,ρ

(

(ρk)k∈N

)

= sup
j∈N

Jβ ,ρ , j

(

(ρk)k=1,..., j

)

.
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Dilute Low-Temperature Limit

The ground state, i.e., zero temperature : EN := inf
x∈(Rd)N

UN(x).

stability & subadditivity =⇒ e∞ := lim
N→∞

EN

N
∈ (−∞,0) exists.

Interpret qk = kρk/ρ as the probability that a given particle lies in a k-cluster.

Approximate rate function: gν
(

(qk)k

)

:= ∑
k∈N

qk

Ek −ν

k
+

(

1− ∑
k∈N

qk

)

e∞

on the set
Q :=

{

(qk)k∈N ∈ [0,1]N
∣

∣

∣ ∑
k∈N

qk ≤ 1
}

Γ-convergence of the rate function, [JKM11]

In the limit β → ∞, ρ → 0 such that −β−1 logρ → ν , the function

Q → R∪{∞}, (qk)k 7→
1

ρ
f
(

β ,ρ,( ρqk

k )k∈N

)

Γ-converges to gν .
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Explanation

Our Approximations:

� We approximate f (β ,ρ,(ρk)k) by an ideal gas of clusters, neglecting the
“excluded volume”:

f ideal(β ,ρ,(ρk)k) := ∑
k∈N

kρk f cl
k (β )+

(

ρ − ∑
k∈N

kρk

)

f cl
∞ (β )+

1

β ∑
k∈N

ρk(logρk −1).

( f cl
k

(β ) = free energy per particle in a cluster of size k.)

� We approximate f ideal(β ,ρ,( ρqk

k )k∈N) with ρgν (q) using two simplifications:

� cluster internal free energies ≈ ground state energies: f cl
k (β ) ≈ Ek.

�

1

β ∑
k∈N

ρk(logρk −1) = ∑
k∈N

ρk
logρ

β
+

ρ

β ∑
k∈N

qk

k

(

log
qk

k
−1

)

≈ ∑
k∈N

ρk
logρ

β

≈−ρ ∑
k∈N

qk

ν

k
.

In classical statistical physics: “Geometric (or droplet) picture of condensation”.

Closely related to the contour picture of the Ising model an lattice gases.

Cluster Size Distributions · Mark Kac Seminar, 9 November 2012 · Page 9 (19)



Corollary: Convergence of Minimisers

Consequences of Γ-convergence, [JKM11]

In the same limit β → ∞, ρ ↓ 0 such that − 1
β logρ → ν ,

�

1

ρ
f (β ,ρ) → min

Q
gν =: µ(ν),

� if ν is not a kink point of µ(·), then any minimiser of Jβ ,ρ converges to the
minimiser of gν .

density ρ

0 temperature T

Phase I (single points)

configu-

rations)

Phase IV

(infinite

ρ = e−ν∗/T

ρ = e−ν2/T

Phase II

ρ = e−ν1/T

Phase III
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Properties of gν

� ν∗ := infN∈N(EN −Ne∞) lies in (0,∞).

� ν 7→ µ(ν) = infQ gν = infN∈N
EN−ν

N
is continuous, piecewise affine and concave.

� µ(·) has at least one kink, and the kinks accumulate at most at ν∗.

� If ν ∈ (ν∗,∞) is not a kink point, then gν has the unique minimizer δk(ν) (Dirac
sequence) with k(ν) the unique minimizer of k 7→ (Ek −ν)/k.

� For ν < ν∗, the unique minimizer of gν is 0 (zero sequence).

Interpretation:

� There is at least one phase transition, possibly much more.

� In the high-temperature phase ν � 1, all clusters are singletons.

� In any intermediate phase, all clusters have size k(ν).

� In the low-temperature phase ν ∈ (0,ν∗), there are only infinite clusters.
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Corollary: LLN for Cluster Sizes

The main consequence of the LDP, together with the Γ-convergence of the rate
function, is:

Limiting distributions of cluster sizes, [JKM11]

Let ν ∈ (0,∞) be not a kink point, and fix ε > 0. Then, if β is sufficiently large, ρ

sufficiently small and − 1
β logρ is sufficiently close to ν , for boxes ΛN with volume

N/ρ ,

lim
N→∞

P
(N)

β ,ΛN

(
∣

∣

∣

k(ν)

ρ
ρk(ν),Λ −1

∣

∣

∣
> ε

)

= 0 if ν > ν∗,

lim
N→∞

P
(N)

β ,ΛN

(

∑
k∈N

ρk,Λ > ε
)

= 0 if ν < ν∗.

In other words, in this two-step limit, the model has only one cluster size, which is
infinite for small ν .
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Approximation with Ideal Mixture

� The approximation with gν is difficult to interpret physically, and gν has some
“unphysical” properties: possibly many phase transitions of ν 7→ µ(ν), and many
minimisers of gν in the kinks. We think that just one of these phase transitions is
“physical”, the others correspond to cross-overs inside the gas phase.

� Much better is the approximation with the ideal mixture of droplets, f ideal, which
is known, under reasonable assumptions, to have only one phase transition.

� These assumptions are on the compactness of the shape of the relevant
configurations at positive, but low temperature:

� The main contribution to the cluster internal energy comes from compact
(d-dimensional) configurations,

� the correction term in the convergence f cl
k (β ) → f cl

∞ (β ) is of surface order:
k f cl

k (β )−k f cl
∞ (β ) ≥Ck1−1/d .

(Verification seems out of reach yet.)

� We have rigorous bounds for the comparison of the original model with the
ideal-mixture model, which are exponentially small in vanishing temperature,
see next slides.
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The ideal mixture

Recall:

f ideal(β ,ρ,(ρk)k) := ∑
k∈N

kρk f cl
k (β )+

(

ρ − ∑
k∈N

kρk

)

f cl
∞ (β )+

1

β ∑
k∈N

ρk(logρk −1).

� saturation density: Let

ρ ideal
sat (β ) := ∑

k∈N

k eβk[ f cl
∞ (β )− f cl

k (β )] ∈ (0,∞]

� chemical potential: For ρ < ρ ideal
sat (β ), let µ ideal(β ,ρ) ∈ (−∞, f cl

∞ (β )) be the
unique solution of

∞

∑
k=1

k eβk[µ ideal(β ,ρ)− f cl
k (β )] = ρ,

and for ρ ≥ ρ ideal
sat (β ), let µ ideal(β ,ρ) := f cl

∞ (β ).

� Then, the minimiser (ρ ideal
k (β ,ρ))k of f ideal(β ,ρ, ·) is given by

ρ ideal
k (β ,ρ) = eβk[µ ideal(β ,ρ)− f cl

k (β )].

� Under appropriate bounds on f cl
k (β ), the saturation density is finite at low

temperature, and f ideal(β ,ρ, ·) has a phase transition.
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Comparison with ideal mixture

Joint work with SABINE JANSEN (Leiden). Our hypotheses:

(1) Some Hölder continuity and uniform stability of v. (holds under general
assumptions)

(2) Compact shape of ground states. (in d ≤ 2 see [AU YEUNG, FRIESECKE,
SCHMIDT (2011)])

(3) Compact shape of clusters at low temperature. (open)
(4) Surface-order correction: k f cl

k (β )−k f cl
∞ (β ) ≥Ck1−1/d . (open)

Let H(a;b) = ∑k∈N(bk −ak +ak log ak

bk
) denote the entropy.

Approximation with ideal mixture

Under Hypotheses (1), (3) and (4), for any sufficiently large β and sufficiently small ρ ,

0 ≤ f (β ,ρ)− f ideal(β ,ρ) ≤
C

β
mideal(β ,ρ)ρ1/(d+1),

and, for any minimiser ρ = ρ (β ,ρ) = (ρk)k∈N of f (β ,ρ, ·), with m := ∑k∈N ρk,
∣

∣

∣

m

mideal(β ,ρ)
−1

∣

∣

∣

2
≤C′ρ1/(d+1) and

1

2
H

( ρ

m
;

ρ ideal(β ,ρ)

mideal(β ,ρ)

)

≤C′ρ1/(d+1).

If Hypotheses (3) and (4) are replaced by (2), this holds for −β−1 logρ > ν∗ + ε with
ε-dependent constants.
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Coupled Limit

Idea: Couple inverse temperature β = βN → ∞ with particle density N/Ld
N = ρN → 0

such that

−
1

βN
log

N

Ld
N

= ν ∈ (0,∞) is constant.

(Example: βN � logN and |ΛN | = |[0,LN ]d = Nα with α > 1.)

Then energic and entropic forces compete on the same, critical scale, and determine
the behaviour of the system.

Large ν =⇒ entropy wins, i.e., typical inter-particle distance diverges,
Small ν =⇒ interaction wins, i.e., crystalline structure in the particles emerges.

Free energy per particle in the coupled limit, [CKMS10]

−µ(ν) = lim
N→∞

1

NβN
logZ[0,LN ](βN ,N).

The proof is a preliminary version of the proof of the above LDP.
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Gibbs Measures and their Percolation Properties I

This is taken from [JANSEN 2012]. Some further (natural) assumptions on v are
made.
Introduce Pθ , the set of all shift-invariant distributions P of random point
configurations ω = ∑x∈ξ δx with ξ ⊂ R

d locally finite. Denote

energy: U (P) =
1

2

∫

P(dω) ∑
x∈ξ∩[0,1]d

∑
y∈ξ

v(|y−x|)

entropy: S (P) = 1− lim
Λ→Rd

HΛ(PΛ | QΛ)

k-cluster number: ρk(P) =
∫

P(dω) ∑
x∈ξ∩[0,1]d

1l{|Cξ (x)| = k},

where Cξ (x) is the cluster of ξ that contains x. By ρ(P) we denote the P-expectation
of |ξ ∩ [0,1]d |.

Percolation

For any P ∈ Pθ ,

∑
k∈N

kρk(P) < ρ(P) ⇐⇒ P(there is an infinite cluster) > 0.
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Gibbs Measures and their Percolation Properties II

Identification of rate function

f
(

β ,ρ,(ρk)k∈N)
)

= min
{

U (P)−
1

β
S (P) : P ∈ Pθ ,ρ(P) = ρ,ρk(P) = ρk∀k

}

.
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Identification of rate function

f
(

β ,ρ,(ρk)k∈N)
)

= min
{

U (P)−
1

β
S (P) : P ∈ Pθ ,ρ(P) = ρ,ρk(P) = ρk∀k

}

.

Gibbs variational principle

The minimizers (ρk)k∈N of f (β ,ρ, ·) correspond with shift-invariant Gibbs measures
P (with respect to a suitable chemical potential) satisfying ρ(P) = ρ and ρk(P) = ρk

for all k.
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Gibbs Measures and their Percolation Properties II

Identification of rate function

f
(

β ,ρ,(ρk)k∈N)
)

= min
{

U (P)−
1

β
S (P) : P ∈ Pθ ,ρ(P) = ρ,ρk(P) = ρk∀k

}

.

Gibbs variational principle

The minimizers (ρk)k∈N of f (β ,ρ, ·) correspond with shift-invariant Gibbs measures
P (with respect to a suitable chemical potential) satisfying ρ(P) = ρ and ρk(P) = ρk

for all k.

The following is a continuous version of what is called dependent percolation.

Bounds on (non-)percolation

� For ν > ν∗ and ρ < e−βν , for all large β , the Gibbs measure has no infinite
cluster, and the cluster size distribution has exponentially decaying tails.

� For ρ large enough (up to a bound that does not depend on β ) and all large β ,
the Gibbs measure has an infinite cluster with probability one.
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Crystallisation at Positive Temperature

This is taken from [JANSEN, K., SCHMIDT, THEIL 2013+]: work in progress.
At zero temperature, [THEIL 06] proved crystallisation in d = 2. That is, in the limit
N → ∞, the optimal particle configuration x, the minimiser in

e∞ := lim
N→∞

1

N
inf

x∈(Rd)N
UN(x) = min

r∈(0,∞)
∑

i∈L

v(ir) = ∑
i∈L

v(i) ∈ (−∞,0),

approaches the triangular lattice L . (We normalised the potential v.) (d = 3 is in
preparation)
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Crystallisation at Positive Temperature

This is taken from [JANSEN, K., SCHMIDT, THEIL 2013+]: work in progress.
At zero temperature, [THEIL 06] proved crystallisation in d = 2. That is, in the limit
N → ∞, the optimal particle configuration x, the minimiser in

e∞ := lim
N→∞

1

N
inf

x∈(Rd)N
UN(x) = min

r∈(0,∞)
∑

i∈L

v(ir) = ∑
i∈L

v(i) ∈ (−∞,0),

approaches the triangular lattice L . (We normalised the potential v.) (d = 3 is in
preparation)
Goal: Prove an analogous approximate probabilistic assertion for large β under P

(N)

β ,Λ.
More precisely, prove that, for ρ ∈ (0,1) and large β , a macroscopic fraction of the N

particles forms large grids with fluctuations around the grid sites, vanishing as β → ∞.
We first concentrate on d = 1 (the two-dimensional case seems different) and
approximate with the model that has Hamiltonian

U
(W )

N (x) =
N−1

∑
i=1

W (|xi+1 −xi|), where W (r) = ∑
i∈N

v(ir).

where x1 < x2 < · · · < xN . This model has large, β -dependent grid-like clusters with
large, β -dependent empty intervals inbetween.
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