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Abstract. A large-deviations principle (LDP) is derived for the state at fixed time, of the multiplica-

tive coalescent in the large particle number limit. The rate function is explicit and describes each of the

three parts of the state: microscopic, mesoscopic and macroscopic. In particular, it clearly captures the

well known gelation phase transition given by the formation of a particle containing a positive fraction

of the system mass. Via a standard map of the multiplicative coalescent onto a time-dependent version

of the Erdős-Rényi random graph, our results can also be rephrased as an LDP for the component

sizes in that graph. The proofs rely on estimates and asymptotics for the probability that smaller

Erdős-Rényi graphs are connected.
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1. Introduction

Smoluchowski introduced a (deterministic) ODE model for the concentrations of coagulating par-
ticles in the course of his work on Brownian motion [vS16]. This was motivated by an underlying
concept of microscopic dynamics similar to the mean-field limit. Flory [Flo41a] investigated the dis-
tributions of polymer sizes and connectivity structures in order to understand the physical properties
of these (at that time relatively new) materials. As is now well known the particle and random graph
models are almost equivalent, but unlike Smoluchowski, Flory was interested in the phase transition
that occurs when a giant particle/connected component of the graph forms, which he called a gel,
terminology which we shall adopt.

In this paper, we study one of the simplest stochastic coagulation models and give a complete
description by means of a powerful mathematical theory, the large-deviations theory. This turns out
to be equivalent to the description, in the large-deviations framework of the statistics of connected
components in the sparse regime for the Erdős-Rényi random graph, i.e. G(N, p) when p ∼ 1

N . We
provide a new analysis to the gelation phase transition via the large-deviations rate function. This
then provides an alternative proof of the uniqueness of the giant component in sparse Erdős-Rényi
random graphs.

1.1. A non-spatial mean-field coagulation model. In this paper, we study a stochastic coagula-
tion process, called the Marcus–Lushnikov process, see [Mar68, Gil72, Lus78]. This is a continuous-time
Markov process of vectors of particle masses M (N)

i (t) ∈ N at time t ∈ [0,∞), arranged in descending
order:

M (N)

1 (t) ≥M (N)

2 (t) ≥M (N)

3 (t) ≥ · · · ≥M (N)

n(t)(t) ≥ 1,

n(t)∑
i=1

M (N)

i (t) = N, (1.1)

for some parameter N ∈ N. This process is specified by the initial configuration, which we take in the
monodisperse case, i.e. M (N)

i (0) = 1 for all i = 1, . . . , N = n(0), and by the transition mechanism,
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which is given in terms of a symmetric, non-negative coagulation kernel KN : N × N → [0,∞). That
is, we start with N particles of unit mass at time 0, and in the course of the process, each (unordered)
pair of particles with respective masses m, m̃ ∈ N coagulate to a particle of mass m + m̃ with rate
KN (m, m̃), independently of all the other pairs of particles.

If the dependence of the coagulation kernel KN on N is chosen so that KN (m, m̃) � 1/N for fixed
m, m̃ as N → ∞, then any given pair of finitely sized particles coagulates after a time � N and so
each particle undergoes a coagulation with some other particle after an order 1 time, since it is in
contact with � N other particles. This is a mean field interaction in which every particle in a large
population has contact with every other on an equal basis. In this limit it is reasonable to write
lk(t) = limN→∞

1
N#{particles of size k at time t}, then under suitable conditions these limits satisfy

d

dt
lk(t) =

1

2

∑
m,m̃ :
m+m̃=k

lm(t)lm̃(t)K(m, m̃)− lk(t)
∑
m

lm(t)K(k,m) ∀k ∈ N (1.2)

where K(m, m̃) = limN→∞NKN (m, m̃). This is the Smoluchowski equation [vS16] referred to above.
In this paper, we exclusively study the case of the multiplicative kernel, KN (m, m̃) = mm̃/N . This
choice has the two interesting features: (1) it can be mapped onto a natural time-dependent version
of the Erdős-Rényi random graph [ER61], and (2) it exhibits an interesting phase transition in the
limit N →∞ at time t = 1, because a gel, i.e., a particle of macroscopic size, appears. Our main goal
in this paper is to recover the gelation phenomenon in rather explicit terms through a large-deviations
principle (LDP). Moreover, we will be able to describe the large-deviations of all parts of the particle
model, the microscopic, mesoscopic and macroscopic parts. As a consequence, the above mentioned
phase transition as well as the solution of the Smoluchowski ODE will be clear from our formulas and
will be given a new interpretation in terms of combinatorial structures. Indeed, we will analyse the
joint distribution of the microscopic and the macroscopic empirical measure of the particle sizes, and
we will also deduce interesting information about the mesoscopic part of the configuration. We will
keep the time t ∈ (0,∞) fixed and consider only the limit as N →∞.

There is a well-known description of the distribution of the coagulation process that we study in the
present work at time t in terms of the well-known Erdős-Rényi random graph on N nodes with edge
probability 1 − e−t/N , see the review [Ald99]. More precisely, the joint distribution of all the cluster
sizes in this graph is equal to the distribution of the particle sizes, (M (N)

i (t))i. Hence, the formation of
a gel in the coagulation process is equivalent to occurrence of percolation in the graph, i.e., formation
of a giant component, see the classic reference [Bél01]. The connection between the two models will
be the starting point of our analysis and will be recalled at the beginning of Section 2.1. Because of
this connection, our results give a new contribution to the theory of the Erdős-Rényi graph in terms
of an LDP for connected component statistics in the sparse regime. These kind of asymptotic results
were not previously available in random graph theory, even though there are large-deviations results
of various types, see Section 1.5 for an overview.

1.2. Our results: Large-deviations principles. In this section, we present all our results on the
exponential behaviour of distributions of the main characteristics of the Marcus–Lushnikov model. In
Section 1.3 we will draw conclusions about the gelation phase transition from that.

For N ∈ N we consider the state space

SN =
{

(mi)i=1,...,n ∈ Nn : n ∈ N, n ≤ N,m1 ≥ m2 ≥ m3 ≥ · · · ≥ mn ≥ 1,

n∑
i=1

mi = N
}

(1.3)

of tuples of positive integers summing to N , ordered in a decreasing way. Starting from the initial
configuration M (N)(0) = (1, . . . , 1) ∈ SN , the Markov process (M (N)(t))t∈[0,∞) specified in the previous
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section has the generator

LNf
(
(mi)i=1,...,n

)
=

1

2

n∑
i,j=1
i 6=j

KN (mi,mj)
[
f(m̃(i,j))− f

(
(mi)i=1,...,n

)]
,

where m̃(i,j) is the collection of the n − 1 numbers mk with k 6= i, j and mi + mj , properly ordered.
Here we restrict to the multiplicative kernel, i.e. KN (m, m̃) = mm̃/N . That is, each pair of distinct
particles coagulates after an exponential time with mean N/mm̃ where m and m̃ are the particle
masses. Coagulation means that the two particles are replaced by one particle of mass m+ m̃. All the
exponential waiting times are independent. Then the number n(t) of particles at time t is a decreasing
function of t, and with probability one, it reaches the value one in finite time.

We denote the probability and expectation by PN and EN , respectively. We fix a time horizon
t ∈ (0,∞) and describe the distribution of the particle masses M (N)(t) in (1.1) in the limit N → ∞
in terms of a large-deviations principle. It will be convenient to work with the empirical measures of
the particle masses in the microscopic and macroscopic size ranges:

Mi(N)(t) =
1

N

n(t)∑
i=1

δ
M

(N)
i (t)

and Ma(N)(t) =

n(t)∑
i=1

δ 1
N
M

(N)
i (t)

. (1.4)

Intuitively, while Mi(N)(t) registers the numbers of particles of “microscopic” sizes 1,2,3,... on the scale
N , in contrast Ma(N)(t) registers the numbers of particles of “macroscopic” sizes of order N . Even
though each of the two measures admits a one-to-one map onto the vector (M (N)

i (t))i for fixed N ∈ N,
in the limit N → ∞, for topological reasons, they will be able to describe only the statistics of the
microscopic, respectively macroscopic, part of the particle configuration. For a full description, a kind
of mesoscopic part has to be considered, but this is a more complicated issue, which we defer.

Mi(N)(t) is a random element of the set N =
⋃
c∈[0,1]N (c) of measures on N that have an integral

against the identity not larger than one, where

N (c) =
{
λ ∈ [0,∞)N :

∑
k∈N

kλk = c
}
, c > 0. (1.5)

We equip N with the topology of coordinate-wise convergence, which is compact by the Bolzano-
Weierstrass theorem combined with Fatou’s lemma.

Ma(N)(t) is a random element of the set MN0 =
⋃
c∈[0,1]MN0(c), where

MN0(c) =
{
α ∈MN0((0, 1]) :

∫
(0,1]

xα(dx) = c
}
, (1.6)

and MN0((0, 1]) is the set of all measures on (0, 1] with values in N0 = {0} ∪ N. We equip MN0 with
the topology that is induced by functionals of the form µ 7→

∫
(0,1] f(x)µ(dx) where f : (0, 1] → R is

continuous and compactly supported. We always write the elements of MN0(c) as α =
∑

j δαj with

1 ≥ α1 ≥ α2 ≥ · · · > 0 and
∑

j αj = c, where j extends over a finite subset of N or over N. Then
convergence is equivalent with the pointwise convergence of each of the atoms. By similar arguments
as for N , also MN0 is compact.

Note that the microscopic and the macroscopic total masses
∑

k kMi(N)

k (t) and
∫

(0,1] xMa(N)(t)(dx)

are each equal to one, hence indeed Mi(N)(t) ∈ N (1) and Ma(N)(t) ∈MN0(1). However the functions

λ 7→ cλ :=
∑
k∈N

kλk and α 7→ cα :=

∫
(0,1]

xα(dx)

are not continuous, but only lower semicontinuous in the respective topologies.

We equip the product of N and MN0 with the product topology, so that it is also compact.
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Our main result is the following description of the two empirical measures in terms of a joint large-
deviations principle (LDP).

Theorem 1.1 (LDP for the empirical measures). Fix t ∈ [0,∞). Then, as N → ∞, the pair
(Mi(N)(t),Ma(N)(t)) satisfies a large-deviations principle with speed N and rate function

(λ, α) 7→ I(λ, α; t) =

{
IMi(λ; t) + IMa(α; t) + (1− cλ − cα)

(
t
2 − log t

)
, if cλ + cα ≤ 1,

∞ otherwise,

where

IMi(λ; t) =
∞∑
k=1

λk log
k!tλk
e kk−2

+ cλ

(
1 +

t

2
− log t

)
, cλ =

∞∑
k=1

kλk, (1.7)

IMa(α; t) =

∫ 1

0

[
x log

x

1− e−tx
+
t

2
x(1− x)

]
α(dx), cα =

∫
(0,1]

xα(dx). (1.8)

The proof of this theorem is in Section 3. Let us recall the notion of an LDP: Theorem 1.1 says
that, for any open set G ⊂ N ×MN0 respectively closed set F ⊂ N ×MN0 ,

lim inf
N→∞

1

N
logPN ((Mi(N)(t),Ma(N)(t)) ∈ G) ≥ − inf

G
I(·; t),

lim sup
N→∞

1

N
logPN ((Mi(N)(t),Ma(N)(t)) ∈ F ) ≤ − inf

F
I(·; t).

For the theory of large-deviations, see e.g. [DZ10]. It is not difficult to see that the rate function
I(·, ·; t) is lower semicontinuous. Since N ×MN0 is compact, it is even a good rate function, i.e., its
level sets {(λ, α) : I(λ, α; t) ≤ r} are compact for any r.

From our main result, the LDP in Theorem 1.1, a number of other LDPs follow via the contraction
principle (which says that if a random variable satisfies an LDP, so does its image under a continuous
transformation). Let us begin with the particle size distribution of the microscopic part.

Corollary 1.2 (LDP for particle size statistics). Fix t ∈ [0,∞). Then, as N →∞, Mi(N)(t) satisfies
an LDP with rate function IMi(·; t) : N → [0,∞], given by

IMi(λ; t) = inf
α∈MN

I(λ, α; t) = IMi(λ; t)− (1− cλ)

(
log

1− e(cλ−1)t

1− cλ
− cλt

2

)
. (1.9)

The first equality is the contraction principle [DZ10]; the second equality is checked in Lemma 4.1.

In the same way one can investigate the macroscopic part of the system.

Corollary 1.3 (LDP for macroscopic particles). Fix t ∈ [0,∞). Then, as N →∞, Ma(N)(t) satisfies
an LDP with rate function IMa(·; t) : MN0 → [0,∞], given by

IMa(α; t) = inf
λ∈N

I(λ, α; t)

= IMa(α; t) + (1− cα)
( t

2
− log t

)
+ Cα,t

(
log(tCα,t)−

t

2
Cα,t

)
,

(1.10)

where Cα,t = (1− cα) ∧ 1
t (recall cα =

∫ 1
0 xα(dx)).

Only the second equality has to be checked; this is done in Lemma 4.2.

Hence, we can hope to derive a phase transition from non-existence to existence of a gel, i.e., to a
non-trivial macroscopic part, at t = 1, from the rate functions. However, even though it seems as if
this phenomenon is present only in the macroscopic rate function IMa, actually it has its origin in the
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discussion of the existence of minimizers λ for the microscopic rate function IMi in Corollary 1.2; this
is the content of Theorem 1.5.

Now we come to the mesoscopic part of the particle configuration. Since this part comprises particle
sizes on all the scales between finite and O(N), it makes no sense to consider an empirical measure.
Instead, we consider only the total mass of the mesoscopic part. Let ε > 0 and R ∈ N, we define the
(R, ε)-mesoscopic total mass as

Me
(N)

R,ε(t) =
1

N

∑
i : R<M

(N)
i (t)<εN

M (N)

i (t). (1.11)

The mesoscopic total mass in a strict sense arises after taking the limits N → ∞, followed by ε ↓ 0
and R→∞, but this does not define a random variable. However, it is possible to calculate an LDP
in the N → ∞ limit and then to study the rate function, J (R,ε)

Me , as ε ↓ 0 and R → ∞. On the other
hand, the proof of Theorem 1.1 shows that it is possible to define a coupled mesoscopic total mass

Me
(N)

RN ,εN
(t), for any diverging sequence RN and vanishing sequence εN . This is a well-defined random

variable and it satisfies an LDP.

Corollary 1.4 (LDP for mesoscopic mass). Fix t ∈ [0,∞).

(1) Then, for any R ∈ N and ε ∈ (0, 1), as N →∞, Me
(N)

R,ε(t) satisfies an LDP with rate function

c 7→ J (R,ε)

Me (c; t), where

J (R,ε)

Me (c; t) = inf
{
I(λ, α; t) :

R∑
k=1

kλk + c+

∫ 1

ε
xα(dx) = 1

}
.

(2) For any RN ∈ N and εN ∈ (0, 1) such that 1� RN < εNN � N , the coupled mesoscopic total

mass Me
(N)

RN ,εN
(t) satisfies an LDP with rate function

JMe(c; t) = (1− c)
(

log(1− c)t− (1− c)t
2

)
+
t

2
− log t. (1.12)

The function JMe(c; t) is strictly increasing in c, its minimum over [0, 1] is JMe(0; t) = 0.

Hence, JMe(·; t) can rightfully be called the rate function for the mesoscopic total mass. The
probability to have a non-trivial mesoscopic part decays exponentially towards zero. Interestingly,
taking RN + 1 = εnN ∈ N, we see that already just one mesoscopic particle alone satisfies the same
LDP as the entire (R, ε)-mesoscopic total mass in the limit R→∞, ε ↓ 0.

Corollary 1.4 part (1) is a simple consequence of the contraction principle, as the maps λ 7→∑R
k=1 kλk and α 7→

∫ 1
ε xα(dx) are continuous. Assertion (2) follows as a byproduct of our proof

of Theorem 1.1 in Section 3.

1.3. Our results: Phase transitions. Now we proceed with the main phenomenon in the Marcus–
Lushnikov model: the gelation phase transition. We will deduce it from our large-deviations rate
functions from Section 1.2. The LDPs and the identification of their strict minimiser(s) lead to laws
of large numbers for a number of random quantities.

Consider the following functions of the total masses of the microscopic and macroscopic particles
respectively:

JMi(c; t) = inf
λ∈N (c)

IMi(λ; t) and JMa(c; t) = inf
α∈MN0 (c)

IMa(α; t),

where c ∈ [0, 1]. Clearly, JMi(c; t) = JMa(1 − c; t). These two functions are not entirely analogous
to JMe(c; t) as rate functions for the total masses of the micro and the macro part, because the total
masses both of Mi(N)(t) and Ma(N)(t) are equal to one. This is consistent with the fact that the
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contraction principle cannot be applied to total masses, as they are not continuous functions of the
measures. However, they contain rather interesting information about the gelation phase transition.

Theorem 1.5 (Microscopic total mass phase transition). Fix t ∈ [0,∞).

(1) For any c ∈ [0, 1],

JMi(c; t) = tc+ (1− c) log
1− c

1− et(c−1)
+

{
c log c− tc2 for c < 1

t ,

− 1
2t −

t
2c

2 − c log t for c ≥ 1
t .

(1.13)

(2) For c ∈ (0, 1], the minimum of N (c) 3 λ 7→ IMi(λ; t) is attained precisely at λ∗(c; t) ∈ N (c)
given by

λ∗k(c; t) =
kk−2cktk−1e−ctk

k!
, k ∈ N, (1.14)

and the minimum of the function c 7→ JMi(c; t) is attained precisely at c = 1 with value
JMi(1; t) = 0. Therefore the infimum

inf
(λ,α)∈N×MN0

I(λ, α; t) (1.15)

is attained at (λ, α) = (λ∗(1; t),0), where 0 = (0, 0, . . . ).
(3) For t ∈ (1,∞), the minimum of the function c 7→ JMi(c; t) is attained at c = βt where βt ∈ (0, t)

is the smallest positive solution to

log βt = tβt − t. (1.16)

The infimum in (1.15) is attained precisely at (λ, α) = (λ∗(βt; t), (1− βt, 0, 0, . . . )).

The proof is found in Section 4.2.

Theorem 1.5 implies the well-known phase transition at t = 1 because the derivative of the minimiser
jumps at this point. Combining Theorem 1.5 with the LDP in Theorem 1.1 one has the following law
of large numbers:

(
Mi(N)(t),Ma(N)(t)

) N→∞
=⇒

{
(λ∗(1; t),0) if t ≤ 1,

(λ∗(βt; t), (1− βt, 0, . . . )) if t ≥ 1,

and can check for t ≤ 1 that λ∗(1; t) is the exact solution of (1.2), the Smoluchowski equation, also

given in [Ald99, Table 2]. One also sees that the cut-off versions of the total masses,
∑R

k=1 kMi(N)

k (t)
and

∫
[ε,1] xMa(N)(t)(dx), converge towards the respective cut-off versions of the limits, and their limits

as R→∞ and ε ↓ 0 are (1, 0) for t ≤ 1 and (βt, 1− βt) for t ≥ 1.

1.4. Literature remarks. It was expected for a long time that the empirical measure of the masses
from the Marcus–Lushnikov process converge in a weak sense to a solution of the Smoluchowski ODEs.
The first rigorous convergence result of this kind is due to Lang and Nguyen [LN80], but Lushnikov
[Lus78] provided a more informal justification. In the case of a multiplicative kernel, K(m, m̃) = cmm̃
for all m, m̃ and a proportionality factor c, Smoluchowski’s ODEs exhibit mass loss after a critical time
(which is equal to 1/c); a feature that cannot be reproduced by any Marcus–Lushnikov process for
finite N . Lushnikov however realised that at large enough times M (N)

1 (t) � N , that is: a macroscopic
particle or gel forms and the Smoluchowski ODEs are not able to describe it. On the other hand the
Smouchowski ODEs can be augmented by an equation for the size of the gel, this takes into account
the gelation phase transition and convergence has been later proved for the empirical measure plus
the rescaled gel mass by Norris [Nor00].
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In [HSES85], it is noted that the representation of the solutions of the master equation1 from
Lushnikov [Lus78] can be written in product form as

P
(
M (N)

1 (t) = m1,M
(N)

2 (t) = m2, . . .
)

=
1

ZN

∏
i

ϕN (mi), (mi)i ∈ SN , (1.17)

for some ZN > 0 and positive function ϕN . Actually, this is true for any coagulation kernel that can
be written as K(m, m̃) = mf(m̃) + f(m)m̃ for any m, m̃, for some positive function f ; see [BP90].
Necessary conditions for (1.17) to hold are given by Granovsky and Kryvoshaev [GK12].

Building on the product structure in (1.17), Buffet and Pulé [BP90, BP91] make precise and rigorous
the insight of Lushnikov regarding the formation of a gel in the limit N → ∞. Their main result is
the existence of the gelation phase transition, for the kernel KN (m, m̃) = mm̃/N , somewhere in the
time interval [log 2, 1], by exclusively looking at the macroscopic particles and deriving estimate for
the expected values of their sizes. In arriving at these estimates they use bounds on the solution
of the master equation derived from the recursive representation going back to Lushnikov [Lus78],
which are equivalent to our limits derived via random graph arguments in (2.5) below. They do not
prove large-deviations upper bounds for the state of the Marcus–Lushnikov process. In a later work,
providing more precise characterisation of the gel, but still at a formal level, Lushnikov [Lus04] picks
up on this idea talking about a particular quantity playing the role of a “free energy”. We also exploit
this product structure in the present work along with connections to random graph theory.

1.5. Large-deviations for Erdős-Rényi random graphs. As noted in the introduction, the dis-
tribution at time t of the Markus–Lushnikov process with multiplicative kernel is closely related to
that of the connected component sizes for the Erdős-Rényi random graph G(N, 1−e−t/N ). This corre-
spondence was not mentioned in [BP90], but was discussed one year later in [BP91], which highlights
the connection between gelation in the coagulation process and the phase transition given by the
formation of a giant connected component in the Erdős-Rényi random graph [ER60].

Our analysis and results are both closely connected to the study of Erdős-Rényi random graph
G(N, 1− e−t/N ), more precisely with the large-deviation properties of the sizes of all the components
as N → ∞. The literature does not contain many results in this respect for sparse graphs, that is
G(N, p) with p ∼ 1/N . An LDP for the size of the largest component has been found [O’C98], some
results dealing with the macroscopic components [Puh05] and the degree distribution are available

[BC15]. Under assumptions that imply at a minimum p� N−
1
2 recent progress has been made on the

upper tails of sub-graph counts [CD16, BCCL18, Aug18, CD18]. In the case of dense graphs (fixed
p ∈ (0, 1)) there is a complete treatment thanks to Chatterjee and Varadhan [CV11], see [Cha16] for
an overview.

1.6. Pathwise large-deviations. In this work we focus on large-deviations for the coagulation pro-
cess at a single time t starting with an initial state composed entirely of monomers, that is, with no
prior coagulation. One could seek to derive an LDP for the paths of the coagulation process on a
compact time interval. For this, one would have to extend the combinatorial and asymptotical work
of the present paper to general starting configurations, and use the Markov property to prove LDPs
for the finite dimensional distributions. One could then use a projective limit argument augmented
by a path space exponential tightness result (see for example [FK06, Chapter 4]). We consider this
programme doable, but cumbersome, and therefore decided to defer it to future work.

Such an LDP would be in the spirit of the well-known Wentsel–Freidlin theory, and there are already
a number of results of this type in the literature. For the coalescent process an LDP has been derived
formally [MPPR17, Thm 3.4] following the non-linear semi-group approach of [FK06]. This type of

1The master equation is the Kolmogorov forward equation, that is, the ODE for the time marginals ν(N)

t of the law

of M (N). It is given by d
dt
ν(N)

t = L†Nν
(N)

t , where L†N is the adjoint of LN .
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results yield a formula for the rate function that is much less explicit and rather different from those
that an extension of the present work would yield. On the other hand the less explicit approach is
applicable to a wide range of Markov processes.

As in the classic Wentsel–Freidlin results, the formal path space calculations from [MPPR17] yield
a rate function for the entire path of the microscopic part of the system [0, T ] 3 t 7→ λ(t) that can be
written as

IMi(λ) =

∫ T

0
L
(
λ(t), λ̇(t)

)
dt,

where L is the solution of variational problem. In order to derive, via the contraction principle, a
formula for the rate function for λ(t) at a fixed time t, one observes that all paths where the rate
function is finite are continuous (in fact a.e. differentiable), and obtains, for configurations λ,

IMi(λ; t) = inf
c : c(t)=λ

∫ T

0
L
(
c(s), ċ(s)

)
ds.

Solving this multilayered optimisation problem seems to require major work, and identifying the right-
hand side with our formula in (1.9) remains an intriguing problem.

1.7. Comparison to Bose-Einstein condensation without interaction. Our large-deviations
approach to the Marcus–Lushnikov models shows remarkable similarities to another well-known phase
transition in a non-spatial model, the non-interacting Bose gas. Here the situation is similar in that
the gas can be conceived as a joint distribution of N particles that are randomly grouped into smaller
units, called cycles, which can become arbitrarily large. The natural question is then, under what
circumstances do macroscopic cycles arise. An explicit answer in terms of a large-deviations analysis
has been given in [Ada08], where the transition, the famous Bose-Einstein Condensation (BEC) in
dimensions d ≥ 3, is derived from the minimization of the rate function, in a way analogous to that
in our Theorem 1.5. The two phase transitions differ in that the BEC transition is of saturation type,
while the gelation transition is not.

For the non-interacting Bose gas in the thermodynamic limit at temperature 1/β ∈ (0,∞) with
particle density ρ ∈ (0,∞) the partition function is given by

Z(β)

ΛN
=

∑
(`k)k∈N∈NN

0 :
∑
k k`k=N

∏
k

N `k

`k! k`k
[ρ(4πβk)

d
2 ]−`k ,

where ΛN is the centred box in Rd with volume N/ρ. The free energy per particle is then

f(β, ρ) = lim
N→∞

1

N
logZ(β)

ΛN
= − inf

λ∈N (ρ)
I(λ), where I(λ) =

∑
k

λk log
λkk

(4πβk)
d
2 e
.

For the Marcus–Lushnikov model the equivalent quantity is the rate function IMi from (1.9). The key
difference between the rate functions is that only IMi contains terms in the total mass of microscopic
particles, cλ. This reflects the fact that the giant particle makes a significant contribution to the rate
function in the Marcus–Lushnikov model, but the condensate in the non-interacting Bose gas does
not.

The respective minimisers of IMi and I are

kλ(ML)

k (c; t) =
1

t

(cte−ct)k

k1−k k!
∼ 1√

2πt

(
cte−ct+1

)k
k3/2

and kλ(BEC)

k (α;β) =
1

ρ(4πβ)
d
2

e−αk

k
d
2

,

where c and α control the values of
∑

k kλk.

The crucial parameters are the time t for the Marcus–Lushnikov model and the inverse temperature
β for the Bose gas. Both models have a trivial upper bound for the total microscopic mass,

∑
k kλk,
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namely one. One additional upper bound arises in each model from the optimisation of the rate
function with respect to the λk, but these are not relevant, until t respectively β rises to its critical

value. For the Marcus–Lushnikov model this bound is 1/t, because
∑

k
(cte−ct)k

k1−k k!
≤ 1 for all ct ∈ (0,∞),

and the summands take their maxima at ct = 1, when they correspond to the Borel probability

distribution with parameter 1. For λ(BEC) this bound is ρ−1(4πβ)−d/2
∑

k k
− d

2 . At this point we see a
difference between the two models, because the total microscopic mass in the Bose gas remains on this
bound as β rises further, while for the Marcus–Lushnikov model it immediately drops strictly below
the bound. This explains why BEC is known as a saturation phase transition, but this description
cannot be applied to gelation.

2. The distribution of the particle sizes

We fix the parameter t ∈ (0,∞). In Section 2.1, we derive, for fixed N ∈ N, an explicit formula for
the distribution of the empirical measure of the particle sizes M (N)

i (t) in terms of connectivity prob-
abilities for Erdős-Rényi random graphs. Furthermore, we prepare in Section 2.2 for the asymptotic
analysis by giving some estimates and asymptotics for the most crucial object, the probability that a
graph is connected.

2.1. The connection with random graphs. Let us explain the connection between the Marcus–
Lushnikov coagulation model with multiplicative kernel and a time-dependent version of the well-
known Erdős-Rényi graph, see [Ald99]. This will be our starting point for the identification of the
joint distribution of Mi(N)(t) and Ma(N)(t).

Equip each unordered pair {i, j} of distinct numbers in {1, . . . , N} with an exponentially distributed
random time ei,j with parameter N , i.e., with expected value 1/N . All these N(N − 1)/2 random
times are assumed to be independent. At time ei,j a bond is created between i and j so the probability

of a bond between i and j forming by time t is 1 − e−t/N . By independence, an Erdős-Rényi graph
G(N, p) with parameter pN (t) = 1 − e−t/N arises. If now m(N)

i (t) denotes the size of the i-th largest

connected component (cluster) of this graph, then we have that (m(N)

i (t))i and (M (N)

i (t))i are identical
in distribution. (This equality is even true process-wise in t, but we are here not interested in that.)
In this way, we can see the coagulation process as a function of G(N, pN (t)). The fact that this
description of the distribution is correct comes from the two characteristic properties of the exponential
distribution: (1) it has no memory, and (2) the minimum of two independent exponential times is
an exponential random time with parameter equal to the sum of the two parameters. Two particles
in the coagulation process of cardinalities m and m̃ at a given time have precisely mm̃ independent
exponential times with parameter N that have not yet elapsed; any elapsure of any of them would
connect the two particles. Altogether, this means that these two particles coagulate with ratemm̃/N =
KN (m, m̃).

Hence, an important quantity is

µ(N)

t (k) = P
(
G(k, 1− e−

t
N ) is connected

)
, (2.1)

where we wrote P for the probability on the graphs.

We denote by PN the set of all partitions of {1, . . . , N}. We write Bi(π) for the number of sets in
π ∈ PN with cardinality i. Then we can describe the distribution of the coagulation process at time t
as follows.

Lemma 2.1. For any N ∈ N and every (mi)i ∈ SN ,

PN
(
(M (N)

i (t))i = (mi)i
)

= #{π ∈ PN : Bi(π) = mi ∀i} ×
(∏

i

µ(N)

t (mi)
)
×
(∏
i 6=j

e−
t

2N
mimj

)
. (2.2)
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Proof. A set A ⊂ {1, . . . , N} of indices is a connected component in the graph G(N, pN (t)) if and
only if (1) no bond between any index in A and any index outside has been connected by time t, and
(2) the subgraph formed out of the vertices in A and all the bonds between any two vertices in A
that have been created by time t is connected. This is the case precisely if any only if ei,j > t for all

i ∈ A and j ∈ Ac = {1, . . . , N} \A, and A is connected. This has probability e−|A| |A
c|t/N × µ(N)

t (|A|).
Applying this reasoning to Ac and describing the next cluster, and iterating this argument, shows that
the product of the two products on the right-hand side of (2.2) is equal to the probability, for a given
partition π with mi sets of size i for any i, that the clusters of G(N, pN (t)) are precisely the sets of π.
Since this probability depends only on the cardinalities, the counting term completes the formula. �

Now we rewrite the right-hand side of (2.2) in terms of the empirical measure of (mi)i, i.e., of the
numbers `k of indices i such that mi = k. Introduce the event

AN,t(`) =
⋂
k∈N
{#{i : M (N)

i (t) = k} = `k}, ` = (`k)k∈N ∈ NN
0 , (2.3)

Corollary 2.2. For any N and any ` = (`k)k ∈ NN
0 satisfying

∑
k k`k = N ,

PN (AN,t(`)) = N !
∏
k

µ(N)

t (k)`ke−
t

2N
k(N−k)`k

k!`k `k!
. (2.4)

Proof. Note that the last product on the right-hand side of (2.2) can also be written as
∏
i e−

t
2
mi(N−mi).

Hence, if `k is equal to the number of i such that mi = k for any k, then the product of the last two
product can be written as ∏

k

(
µ(N)

t (k)`ke−
t

2N
k(N−k)`k

)
.

The counting term is easily identified as

#{π ∈ PN : #{A ∈ π : |A| = k} = `k ∀k} =
N !∏

k k!`k `k!
.

Substituting ends the proof. �

(To avoid confusion, we note that there is a typographical error in Section 4.5 of [Ald99], where the

formula (2.4) appears with e−
t
2 replaced by e−t.)

2.2. The probability of being connected. Our analysis of (2.4) will depend crucially on an analysis
of µ(N)

t (k). The next two lemmas collect results from [Ste70, Lemma1&2, Theorem 1].

Lemma 2.3 (Bounds and asymptotics for µ(N)

t , [Ste70]). For any N ∈ N and any k ≤ N ,

e−
t

2N (k−1)(k−2) ≤ µ(N)

t (k)

kk−2(1− e−
t
N )k−1

≤ 1. (2.5)

In particular, if k = o(
√
N),

µ(N)

t (k) = kk−2
( t
N

)k−1
(1 + o(1)), N →∞.

The expression for the upper bound in (2.5) appears to be present (using somewhat applied chemical
language) in [Flo41b, equation (5)]. The following is an alternative upper bound to µ(N)

t (k), which will
be useful in the macroscopic setting, together with an asymptotic result for the connection probability
in the so-called sparse case, where the bond probability is proportional to the inverse of the size of
the graph.
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Lemma 2.4 ([Ste70]). For all t > 0 and k ∈ N

µ
(N)
t (k) ≤

(
1− e

−kt
N
)k−1

.

Fix α ∈ (0, 1). Then, for N →∞,

µ(N)

t (bαNc) =
(

1− αt

eαt − 1

)(
1− e−tα

)αN
(1 + o(1)).

The assertion remains true if the bond probability 1− e−t/N is replaced by any sequence tN = t
N (1 +

o(1)).

3. Proof of the LDP

In this section we prove the main result of this paper, the large-deviations principle in Theorem 1.1.

Recall the topological remarks on the two state spaces N andMN0 at the beginning of Section 1.2.
The metrics d on N and D on MN ((0, 1]), defined by

d(λ, λ̃) =
∞∑
k=1

2−k |λk − λ̃k| and D(α, α̃) =
∞∑
i=1

2−i|αi − α̃i|, (3.1)

induce the respective topologies of pointwise and vague convergence. We write Bδ(λ) respectively
Bρ(α) for the δ-ball around λ respectively for the ρ-ball around α. Our main result, the LDP in
Theorem 1.1, follows from the following.

Proposition 3.1. Fix t ∈ [0,∞). Then, for any λ ∈ N and α ∈MN((0, 1]),

lim
δ,ρ↓0

lim
N→∞

1

N
logPN

(
Mi(N)(t) ∈ Bδ(λ), Ma(N)(t) ∈ Bρ(α)

)
= −I(λ, α; t). (3.2)

Proof. To each element (mi)i of the state space SN defined in (1.3), we associate a unique element of
the space

NN =
{
` = (`k)k ∈ NN

0 :
∑
k

k`k = N
}
, (3.3)

where for each k, `k is the number of indices i such that mi = k. The map (mi)i 7→ ` is a bijection
and in the following we refer to configurations equally in terms of (mi)i or `.

Fix δ, ρ > 0 and N ∈ N and recall the definition of AN,t(`) in (2.3), then we see that

PN
(
Mi(N)(t) ∈ Bδ(λ), Ma(N)(t) ∈ Bρ(α)

)
=
∑
`∈NN

1l{d( 1
N `, λ) < δ} 1l{D(`b·Nc, α) < ρ}PN (AN,t(`)).

(3.4)

Step 1: Cardinality of NN : First we note that |NN | = eo(N) because the following argument (which
is due to an argument in [Ada08]). For any ` ∈ NN , the set H(`) = {k ∈ N : `k > 0} has no more

than 2
√
N elements, since

N =
∑

k∈H(`)

k`k ≥
∑

k∈H(`)

k ≥
|H(`)|∑
k=1

k = |H(`)|1
2

(|H(`)| − 1).
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Hence,

|NN | ≤
∣∣∣{(`k)k ∈ NN

0 :
∑
k

k`k = N, |H(`)| ≤ 2
√
N
}∣∣∣ ≤ ∑

H⊂N : |H|≤2
√
N

∣∣∣{(`k)k∈H ∈ NH :
∑
k∈H

k`k = N
}∣∣∣

≤
∑

H⊂N : |H|≤2
√
N

∣∣∣{(Lk)k∈H ∈ NH :
∑
k∈H

Lk = N
}∣∣∣ ≤ ( N

b2
√
Nc

)(
N + b2

√
Nc

b2
√
Nc

)
= eo(N).

Hence, we only have to give asymptotic estimates on the single summands on the right-hand side of
(3.4).

Step 2: Splitting PN (AN,t(`)). The strategy is to divide the terms in the product representation from
Corollary 2.2 into three groups, which we call micro-, meso-, and macroscopic. We fix two increasing
sequences RN and εNN in N such that RN ↗∞, εN ↓ 0 and RN < εNN . We write

PN (AN,t(`)) = N !× FMi(`)× FMe(`)× FMa(`), (3.5)

where

FMi(`) =

RN∏
k=1

zk(`), FMe(`) =
∏

RN<k≤εNN
zk(`), FMa(`) =

∏
εNN<k≤N

zk(`),

and

zk(`) =
µNt (k)`ke−

t
2N

k(N−k)`k

k!`k `k!
.

Let us set

cMi(`/N) =
1

N

RN∑
k=1

k`k, cMe(`/N) =
1

N

∑
RN<k≤εNN

k`k, cMa(`/N) =
1

N

∑
εNN<k≤N

k`k. (3.6)

Note that the sum of these three terms is equal to one. For the factor N !, we use Stirling’s formula
N ! = (Ne )Neo(N) so that uniformly in ` ∈ NN

N ! =

(
N

e

)NcMi(`/N)(N
e

)NcMe(`/N)(N
e

)NcMa(`/N)

eo(N), N →∞. (3.7)

Step 3: Upper bound in the case cλ+cα ≤ 1. We start by looking at the first term on the right-hand
side, i.e., the ‘microscopic’ term. We use the upper bound in (2.5), to obtain

zk(`) ≤
k(k−2)`kt(k−1)`ke−

t
2N

k(N−k)`k

k!`kN (k−1)`k (1
e `k)

`k
.

Using this in the first term of (3.5) (together with the first term in (3.7)), we obtain, uniformly for

` ∈ NN , also using that
∑RN

k=1
t

2N k
2`k ≤ t

2RNcMi(`/N),(
N

e

)NcMi(`/N)

FMi(`) ≤
RN∏
k=1

[(N
e

)k`k k(k−2)`kt(k−1)`ke`ke−
t
2
k`k e

t
2N

k2`k

k!`kN (k−1)`k(`k)`k

]

= exp
(
−N

RN∑
k=1

1

N
`k log

k!ek 1
N `k

kk−2tk−1e1− t
2
k

)
eo(N)

= exp
(
−NI(RN )

Mi ( 1
N `; t)

)
eo(N),
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where

I
(RN )

Mi (λ̃; t) = f (RN )(λ̃; t) +

RN∑
k=1

kλ̃k

( t
2
− log t

)
with f (RN )(λ̃; t) : =

RN∑
k=1

λ̃k log
k!tek−1λ̃k
kk−2

,

is the cut-off version of the rate function defined in (1.7). Recall that d( 1
N `, λ) < δ and that cλ =∑

k∈N kλk ∈ [0, 1] and observe that limR→∞ I
(R)

Mi (λ; t) = IMi(λ; t). Therefore we see that, for any
R ∈ N,(

N

e

)NcMi(`/N)

FMi(`) ≤ exp (−NIMi(λ; t)) eN(CR(δ)+γR)+o(N) e−N( t
2
−log t)(cMi(`/N)−cλ) , N →∞,

(3.8)
where limR→∞ γR = 0 and limδ↓0CR(δ) = 0. Indeed, since f (R)(·; t) is continuous, it is clear that

sup` : d( 1
N
`,λ)<δ |f (R)( 1

N `; t)− f
(R)(λ; t)| vanishes as δ ↓ 0 and can therefore be estimated against such a

CR(δ). Moreover, we estimate (substituting 1
N ` by λ̃), for any N such that RN > R, with the help of

the Stirling bound k!ekk−k ≥ 1 and Jensen’s inequality for ϕ(x) = x log x, as follows:

f (RN )(λ̃; t)− f (R)(λ̃; t) =

RN∑
k=R+1

λ̃k log
k!tek−1λ̃k
kk−2

≥
RN∑

k=R+1

λ̃k log
k2tλ̃k

e

≥
RN∑

k=R+1

e

tk2
ϕ
( RN∑
k=R+1

λ̃k

/ RN∑
k=R+1

e

tk2

)

=

RN∑
k=R+1

λ̃k log
( RN∑
k=R+1

λ̃k

/ RN∑
k=R+1

e

tk2

)
≥

RN∑
k=R+1

λ̃k log
(
cR

RN∑
k=R+1

λ̃k

)
≥ −γR,

(3.9)

for some c > 0, where we used that the remainder sum
∑

k>R
1
k2

is of order 1/R as R→∞ and that∑RN
k=R+1 λ̃k ≤ 1/R since

∑
k kλ̃k ≤ 1 and that the map x 7→ x log(cRx) is decreasing in (0, 1/eRc),

introducing some −γR that vanishes as R→∞. In this way, we arrived at the estimate in (3.8). Notice
that the last term on the right-hand side cannot be further estimated with the help of continuity (since
λ 7→ cλ is not continuous), but will be jointly handled together with the correspondent macroscopic
and mesoscopic terms.

For handling the third term in (3.5), we proceed analogously, but use the upper bound in Lemma 2.4,
to obtain, for k ∈ {εNN, . . . , N},

zk(`) ≤
(1− e−t

k
N )(k−1)`ke−

t
2N

k(N−k)`k

k!`k (1
e `k)

`k

and consequently(
N

e

)NcMa(`/N)

FMa(`) ≤
∏

εNN≤k≤N

[(N
e

)k`k (1− e−t
k
N )k`ke−

t
2
k`ke

t
2
k2`k/N

k!`k `k!

]
≤

∏
εNN≤k≤N

[(N
k

)k`k
(1− e−t

k
N )k`ke−

t
2
k`ke

t
2
k2`k/N

]
= exp

(
−NI(εN )

Ma (`b·Nc; t)
)

(3.10)

where

I
(εN )

Ma (α̃; t) = g(εN )(α̃; t) +

∫
[εN ,1]

x α̃(dx)
( t

2
− log t

)
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with

g(εN )(α̃; t) =

∫
[εN ,1]

[
x log

tx

1− e−tx
− t

2
x2
]
α̃(dx),

denotes the cut-off version of the rate function IMa defined in (1.7). Recall that D(`b·Nc, α) < ρ and

cα =
∫

(0,1] xα(dx) ≤ 1 and observe that limε↓0 I
(ε)

Ma(α; t) = IMa(α; t), then we see that, for any ε > 0,(
N

e

)NcMa(`/N)

FMa(`) ≤ exp
(
−NIMa(α; t)

)
eN(Cε(ρ)+γε+

t
2
ε)+o(N) e−N( t

2
−log t)(cMa(`/N)−cα),

N →∞, (3.11)

for some Cε(ρ) and γε that satisfy limε↓0 γε = 0 and limρ↓0Cε(ρ) = 0. Indeed, first observe that g(ε)(·; t)
is continuous and hence |g(ε)(`d·Ne; t)− g(ε)(α; t)| can be estimated against such a Cε(ρ), uniformly in
N ∈ N and ` such that D(`b·Nc, α) < ρ. Furthermore, for any ε > 0 and any N ∈ N such that εN < ε,

g(εN )(`d·Ne; t)− g(ε)(`d·Ne; t) =
εN∑

k=εNN

`k
k

N

(
log

k
N t

1− e−t
k
N

− t

2

k

N

)
≥ − t

2
ε,

since log x
1−e−x ≥ 0 for all x > 0. Hence, we arrived at the bound in (3.11). Notice that again we refrain

from estimating the term e−N( t
2
−log t)(cMa(`/N)−cα), which needs to be coupled with the microscopic

and the mesoscopic part.

Then we are left to handle the middle term in (3.5), for which we use again the upper bound in (2.5)
and Stirling’s formula, to see that(

N

e

)NcMe(`/N)

FMe(`) ≤
bεNNc∏
k=RN+1

[(N
e

)k`k k(k−2)`k(1− e−t/N )(k−1)`ke−
t

2N
k(N−k)`k

k!`k `k!

]

≤
( bεNNc∏
k=RN+1

[ Ne

k2`kt

]`k)( bεNNc∏
k=RN+1

e
t

2N
k2`k

) (
te−t/2

)NcMe(`/N)
.

We claim that the right-hand side is equal to (te−t/2)NcMe(`/N)eNLN (`) for some LN (`) that van-
ishes, uniformly in `, as N → ∞. First note that the one-but-last term is such a term, since
t

2N

∑bεNNc
k=RN+1 k

2`k ≤ t
2εNNcMe(`/N). Furthermore,

∑bεNNc
k=RN+1 `k ≤ N/RN , which shows that the

terms containing t and e in the first product are as small. With the same approach as in (3.9), we see
the lower bound

lim inf
N→∞

bεNNc∑
k=RN+1

`k
N

log
k2`k
N
≥ 0.

Therefore, uniformly in ` such that D(`d·Ne, α) < ρ, we have arrived at the estimate(
N

e

)NcMe(`/N)

FMe(`) ≤
(
te−t/2

)NcMe(`/N))+o(N)
= exp

(
−N

( t
2
−log t

)
cMe(`/N)

)
eo(N), N →∞. (3.12)

Now we collect (3.8), (3.11) and (3.12) and substitute them in (3.5), also using (3.7), then we obtain,
uniformly in ` such that d( 1

N `, λ) < δ) and D(`b·Nc, α) < ρ, for any R ∈ N and any ε > 0, as N →∞,

1

N
logPN (AN,t(`)) ≤ −IMi(λ; t)− IMa(α; t) + CR(δ) + γR + Cε(ρ) + γε +

t

2
ε

−
( t

2
− log t

)
(1− cλ − cα) + o(1)

= −I(λ, α; t) +KR,ε(δ, ρ) + o(1),
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where KR,ε(δ, ρ) vanishes as δ ↓ 0 and ρ ↓ 0, followed by R → ∞ and ε ↓ 0, and we recall that
cMe(`/N) = 1 − cMi(`/N) − cMa(`/N). This implies the upper bound in (3.2) in the case where
cλ + cα ≤ 1.

Step 4: Upper bound in the case cλ+cα > 1. In this case, we implicitly use the lower semicontinuity of
the maps λ 7→ cλ and α 7→ cα to show that the event AN,t(`) is empty for any ` such that d( 1

N `, λ) < δ
and D(`b·Nc, α) < ρ, if δ and ρ are small enough. This will give the right super-exponential upper
bound for PN (AN,t(`)), since I(λ, α; t) =∞.

Indeed, first pick R ∈ N so large and ε ∈ (0, 1) so small that
∑R

k=1 kλk +
∫

[ε,1] xα(dx) are larger

than one, say equal to 1 + η for some η > 0. Then choose δ and ρ in (0, 1) so small that, for any `
such that d( 1

N `, λ) < δ) and D(`b·Nc, α) < ρ, we have∣∣∣ 1

N

R∑
k=1

k`k +
1

N

∑
εN≤k≤N

k`k −
R∑
k=1

kλk +

∫
[ε,1]

xα(dx)
∣∣∣ < η

2
.

For such `, we then have that, using the notation in (3.6),

cMi(`/N) + cMa(`/N) ≥ 1 +
η

2
,

which contradicts the fact that cMi(`/N), cMe(`/N) and cMa(`/N) sum up to one.

Step 5: Logarithmic asymptotics of the lower bound. For the lower bound we only need to consider
the case I(λ, α; t) < ∞, and here we construct a “recovery sequence”, that is, a sequence (`(N))N∈N
such that

lim
N→∞

d( 1
N `

(N), λ) = 0, (3.13)

lim
N→∞

D(`(N)

b·Nc, α) = 0, (3.14)

lim inf
N→∞

1

N
logPN (AN,t(`

(N))) ≥ −I(λ, α; t). (3.15)

For N large enough define `(N) ∈ NN by

`(N)

k =


bλkNc for k = 2, . . . , RN ;

b (1−cλ−cα)N
RN+1 c for k = RN + 1;

α
(
k−1
N , kN

]
for k = RN + 2, . . . , N ;

N −
∑N

j≥2 j`
(N)

j for k = 1,

(3.16)

where RN is an arbitrary diverging sequence in N such that logN � RN . It is clear by construction
that (3.13) and (3.14) hold.

Using Lemma 2.3, a calculation similar to that for the upper bound shows that(
N

e

)NcMi(`
(N)/N)

FMi(`
(N)) ≥ exp

(
−NI(RN )

Mi (λ; t)
)

eo(N),

and in the same way, one checks that for k = RN + 1

lim inf
N→∞

1

N

[
log zk

(
`(N)

k

)
+ k`(N)

k

logN !

N

]
≥ (1− cλ − cα)

(
log t− t

2

)
.

Now, fix δ ∈ (0, 1). One can see that

α
(
RN+2
N , δ

]
≤ N

RN + 2

∫ δ

RN+2

N

xα(dx) ≤ N

RN + 2
cα(δ), (3.17)



16 L. ANDREIS, W. KÖNIG, AND R.I.A. PATTERSON

where cα(δ) vanishes as δ ↓ 0 whenever α ∈MN0 . Then we use Lemma 2.3 and Stirling’s upper bound
to see that, for N large

1

N

bδNc∑
k=RN+2

[
log zk

(
`(N)
)

+ k`(N)

k

logN !

N

]

≥
(

log t− t
2

) δN∑
k=RN+2

k

N
α
(
k
N ,

k+1
N ]
)
!− 1

N

δN∑
k=RN+2

logα
(
( kN ,

k+1
N ]
)

−
δN∑

k=RN+2

2 log k + log
√

2πk

N
α
(
( kN ,

k+1
N ]
)

+ o(1).

By using (3.17), log k ≤ k and that

δN∏
k=RN+2

α
(
( kN ,

k+1
N ]
)
! ≤

( δN∑
k=RN+2

α
(
k
N ,

k+1
N

])
! ≤

( N

RN + 2

)
!

we see that, whenever logN � RN , there exist a finite εδ, vanishing as δ ↘ 0 such that

lim inf
N→∞

1

N

bδNc∑
k=RN+2

[
log zk

(
`(N)
)

+ k`(N)

k

logN !

N

]
≥ εδ.

For the remaining terms one calculates that

1

N

N∑
bδNc+1

[
log zk

(
`(N)

k

)
+ k`(N)

k

logN !

N

]

=
1

N

N∑
bδNc+1

k`(N)

k

[
log

(
µ(N)

t (k)
1
k

k/N

)
− t

2N
(N − k)

]
+ o(1)

=

∫
(δ,1]

x

[
log

(
µ(N)

t (bNxc)
1
bNxc

x

)
− t

2
(1− x)

]
α(dx) + o(1). (3.18)

Now by Lemma 2.4 the integrand converges pointwise to

x

[
log

(
1− e−tx

x

)
− t

2
(1− x)

]
.

Since, for N large enough,

x log

(
x

µ(N)

t (bNxc)
1
bNxc

)
≤ x

[
log

(
x

1− e−tx

)
+ 1

]
,

which is clearly integrable over x ∈ (δ, 1] with respect to α, we can apply the dominated convergence
theorem.

Combining the above estimates we see that for any δ ∈ (0, 1) we have aδ with limδ↘0 aδ = 0 and

lim inf
N→∞

1

N
logPN (AN,t(`

(N))) ≥ −I(λ, α; t)− aδ (3.19)

so (3.15) follows on taking the limit δ ↘ 0.

�
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4. Corollaries and study of the rate functions

In this section we analyse, for fixed t ∈ [0,∞), the minima of the rate function, I(λ, α; t), over
the configurations λ respectively α, and afterwards the minimima of the rate functions for the total
masses, JMi, JMe and JMa. In particular, we find analytical characterisations for the gelation phase
transition at 1/t if t > 1.

4.1. Rate functions for the microscopic part. We start by minimizing I(λ, α; t), for a fixed λ ∈ N
over all compatible α ∈ MN0 . We will obtain the rate function for the microscopic part, and we will
see that this minimum is attained for α of the form α = δcα . Informally speaking, the following in
particular implies that, with probability tending to one, there is at most one macroscopic particle.

Lemma 4.1 (Analysis of the microscopic rate function). Fix λ ∈ N and recall that cλ =
∑

k∈N kλk ∈
[0, 1], then

inf
α∈MN

I(λ, α; t) =

∞∑
k=1

λk log
k!ek−1tλk
kk−2

− (1− cλ)

(
log

1− e(cλ−1)t

(1− cλ)
− cλt

2

)
+ cλ

( t
2
− log t

)
.

Moreover, the minimum is attained precisely at α = δ1−cλ.

Proof. Clearly

inf
α∈MN

I(λ, α; t) = inf
c∈[0,1−cλ]

inf
α∈MN0 (c)

I(λ, α; t)

= IMi(λ; t) + inf
c∈[0,1−cλ]

(
inf

α∈MN0 (c)
IMa(α; t) + (1− cλ − c)

( t
2
− log t

))
.

Fix c ∈ [0, 1] and α ∈MN0(c). Note that α((c, 1]) = 0 since α is a point measure with
∫

(0,1] xα(dx) = c.

We have, denoting ft(x) = log x
1−e−tx + t

2(1− x),

IMa(α; t) =

∫
(0,c]

xft(x)α(dx) ≥
∫
xft(c)α(dx) = cft(c) = c log

c

1− e−tc
+
t

2
c(1− c) = IMa(δc; t),

(4.1)
since ft is strictly decreasing in [0,∞). Indeed,

f ′t(x) =
1

x
− te−tx

1− e−tx
− t

2
=

t(1 + y)

2y(1− e−2y)

[1− y
1 + y

− e−2y
]
, y =

tx

2
.

We want to prove that f ′(x) < 0 for x ∈ [0,∞). For y ≥ 1, this is obvious from above, and for
y ∈ [0, 1), this is easily seen as follows.

e2y = 1 +

∞∑
k=1

(2y)k

k!
< 1 +

∞∑
k=1

2yk = (1 + y)

∞∑
k=0

yk =
1 + y

1− y
,

since 2k

k! < 2 for all k ≥ 3. Hence, we see that f ′t(x) ≤ 0 for x ∈ [0,∞), and (4.1) follows.

Furthermore, it is immediate that c log c
1−e−tc + t

2c(1 − c) + (1 − cλ − c)( t2 − log t) is decreasing in
c, and hence the optimal value of c is c = 1− cλ. �

Now the proof of Corollary 1.2 directly follows from Theorem 1.1, Lemma 4.1 and the contraction
principle since the projection (λ, α) 7→ λ is continuous in the product topology.

Let us analyse the minimising statistics of the macroscopic part.
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Lemma 4.2 (Analysis of the macroscopic rate function). Fix α ∈ MN0 and recall that cα =∫
(0,1] xα(dx) ∈ [0, 1], then

inf
λ∈N

I(λ, α; t) = IMa(α; t) + Cα,t

(
log(tCα,t)−

t

2
Cα,t

)
+ (1− cα)

( t
2
− log t

)
, (4.2)

where Cα,t = (1− cα)∧ 1
t . Furthermore, for 1− cα ≤ 1

t , the unique minimizer is equal to λ∗(1− cα; t)

defined in (1.14), and for 1 − cα > 1
t , there is no minimizer, but there are approximating sequences

that approach λ∗(1
t ; t).

Proof. As in the proof of Lemma 4.1, we see that

inf
λ∈N

I(λ, α; t) = inf
c∈[0,1−cα]

inf
λ∈N (c)

I(λ, α; t)

= IMa(α; t) + inf
c∈[0,1−cα]

(
inf

λ∈N (c)
IMi(λ; t) + (1− cα − c)

( t
2
− log t

))
= IMa(α; t) + (1− cα)

( t
2
− log t

)
+ inf
c∈[0,1−cα]

inf
λ∈N (c)

Î(λ),

(4.3)

where

Î(λ) =
∞∑
k=1

λk log
k!tek−1λk
kk−2

.

We always interpret 0 log 0 as 0. Fix c ∈ [0, 1]. Since Î is strictly convex on the convex set N (c), we
see by evaluating the variational equations that the only candidate for a minimiser in the interior is

λ∗k(c; t) =
ek(ρ−1)kk−2

k!t
, k ∈ N,

with ρ ∈ R such that
∑∞

k=1 kλ
∗
k(c; t) = c. Interestingly, we can identify kλ∗k(c; t) = Boµρ(k)µρ/t, where

µρ is determined by µρ − logµρ = 1− ρ, and

Boµ(k) =
e−µk(µk)k−1

k!
, k ∈ N,

are the probabilities of the Borel distribution with parameter µ ∈ [0, 1]. Note that Boµ(k) is not
summable for µ > 1. Hence, ρ must be picked such that c = µρ/t. The largest value c that can
be realised in this way is c = 1/t by picking ρ = 0. Hence, the preceding is possible at most for
c ∈ [0, 1 ∧ 1

t ]. By continuity and strict monotonicity of
∑∞

k=1 kλ
∗
k(c; t) in ρ, indeed, any c ∈ [0, 1 ∧ 1

t ]
can be uniquely realized, by picking ρ = −tc + log tc + 1 ≤ 0 such that

∑∞
k=1 kλ

∗
k(c; t) = c... In this

case, it is clear that the minimizer of Î in the interior of N (c) is equal to

λ∗k(c; t) =
kk−2cktk−1e−ctk

k!
, k ∈ N,

as claimed in (1.14), with value

Î(λ∗(c; t)) = c
(

log tc− tc

2

)
. (4.4)

Now give an argument why λ∗(c; t) realises the minimum of Î over N (c). We show that any such
minimiser must be positive in every component. Indeed, if λk∗ = 0 for some k∗ ∈ N, then we consider

λ̂ ∈ N (c), defined by

λ̂k =


ε, if k = k∗,

−εC, if k = k̂,

λk otherwise,

with k̂ ∈ N \ {k∗} such that λ
k̂
> 0 and C > 0 such that λ̂ ∈ N (c) for any sufficiently small ε > 0.

Now a simple insertion shows that Î(λ̂) < Î(λ), if ε > 0 is small enough, since the slope of ε 7→ ε log ε
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at zero is −∞. Hence, λ cannot be a minimizer. On the other hand, λ∗(c; t) has the property that all

directional derivatives of Î in all admissible directions with compact support are zero; hence it is the

minimizer of Î over N (c) for c ∈ [0, 1
t ].

When c > 1
t , it is possible to pick a sequence of λ(n) ∈ N (c) such that limn→∞ Î(λ(n)) = − 1

2t (pick

λ(n)

k as λ∗k(
1
t ; t) + εnδn(k) for some suitable εn > 0). Furthermore, we now show that

inf
λ∈N

Î(λ) ≥ − 1

2t
.

Minimising in x for each k ∈ N independently shows

x log
k!tek−1x

kk−2
≥ −1

t

1

k

kk−1e−k

k!
= −1

t

1

k
Bo1(k), (4.5)

and so

Î(λ) ≥ −1

t
E
[

1

X

]
,

where X is Borel distributed with parameter 1. Now this expectation [AP98, §4.5] is precisely 1
2 ,

which is equal to the value of the right-hand side of (4.4) for the critical value c = 1
t . Hence, the

infimum of Î over λ ∈ N (c) for c ≥ 1
t is equal to − 1

2t . This shows that the infimum over λ ∈ N (c) in

the last line of (4.3) is equal to (c ∧ 1
t )(log(t(c ∧ 1

t ))−
t
2(c ∧ 1

t ), and (4.2) follows. �

Then, the proof of Corollary 1.3 directly follows from Theorem 1.1, Lemma 4.2 and the contraction
principle, since the projection is continuous.

Finally, let us draw some conclusions regarding the mesoscopic mass. As stated after Corollary 1.4,
it is not possible to apply the contraction principle, if we want to derive an LDP for the sequence of

random variables Me
(N)

RN ,εN
(t), however we can still identify the rate function by minimizing I over all

pairs (λ, α) such that cλ + cα = 1− c. Even if the contraction principle cannot be applied directly, the
following lemma proves that the rate function JMe(c; t) has exactly the expected form, given by (4.7).

Lemma 4.3. Fix t ∈ [0,∞). Then, for any c ∈ [0, 1] and any RN ∈ N and εN ∈ (0, 1) such that
1� RN < εNN � N ,

lim
δ↓0

lim
N→∞

1

N
logPN

(∣∣Me
(N)

RN ,εN
(t)− c

∣∣ ≤ δ) = −JMe(c; t). (4.6)

Proof. First we have to prove that, for a fixed c ∈ [0, 1],

inf
λ∈N

α∈MN0
cλ+cα=1−c

I(λ, α; t) = JMe(c; t)
(

= (1− c)
(

log(1− c)t− (1− c)t
2

)
+
t

2
− log t.

)
(4.7)

Fix x ∈ [0, 1− c], then for a fixed λ ∈ N (x)

inf
α∈MN0 (1−c−x)

I(λ, α; t) = IMi(λ; t)

+ c
( t

2
− log t

)
+
[
(1− c− x) log

1− c− x
1− e−t(1−c−x)

+
t

2
(1− c− x)(c+ x)

]
,

since the infimum is attained in α = δ1−c−x, as proved in Lemma 4.1. Then, with the same procedure
of Lemma 4.2, we see that the infimum over λ ∈ N (x), when xt ≤ 1 is attained in

λ∗(x; t) = x
e−xtk(xt)k−1kk−2

k!
,
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giving

inf
α∈MN0 (1−c−x)

λ∈N (x)

I(λ, α; t) = x log(xte−tx)− x(1− xt

2
) + c

( t
2
− log t

)

+
[
(1− c− x) log

1− c− x
1− e−t(1−c−x)

+
t

2
(1− c− x)(c+ x)

]
,

while if xt > 1, for any λ ∈ N (x),

inf
α∈MN0 (1−c−x)

I(λ, α; t) ≥ − 3

2t
+ c
( t

2
− log t

)
+
[
(1− c− 1

t
) log

1− c− 1
t

1− e−t(1−c−
1
t
)

+
t

2
(1− c− 1

t
)(c+

1

t
)
]
.

Minimizing then for x ∈ [0, 1− c], we see that the infimum is attained in x∗ smallest solution to

x∗ = (1− c)e−t(1−c−x∗),
which is x∗ = 1− c, for all t ≥ 1

1−c and x∗ < 1− c otherwise. By substitution, we see that (4.7) holds.

Now, notice that procedure to get the upper bound in the proof of Proposition 3.1 implies in a
straightforward way that

lim
δ↓0

lim sup
N→∞

PN
(∣∣Me

(N)

RN ,εN
(t)− c

∣∣ ≤ δ) ≤ −JMe(c; t).

In the same way, from the proof of Proposition 3.1, we borrow the strategy of constructing a “recovery
sequence”, this time using λ∗(x∗; t) and α∗ = δ1−c−x∗ to construct `(N) as in (3.16). This gives

lim
δ↓0

lim inf
N→∞

PN
(∣∣Me

(N)

RN ,εN
(t)− c

∣∣ ≤ δ) ≥ −JMe(c; t).

Notice that in the lower bound part of the proof of Proposition 3.1 we see a restriction on RN (i.e.
logN � RN ). However, in this case, we construct the “recovery sequence” in such a way that this is
not needed. Indeed, the macroscopic part of the sequence `(N) puts all the mass in k = N(1− c− x∗)
and the condition on RN is superfluous. �

The proof of the second point in Corollary 1.4 follows as a direct consequence of Lemma 4.3.

4.2. Proof of Theorem 1.5. Item (1) follows by Lemma 4.1 and 4.2. Following the approach of
those proofs, one can easily see that

JMi(c; t) = inf
λ∈N (c)

IMi(λ; t) = inf
α∈MN0 (1−c)

IMa(α; t) = JMa(1− c; t).

Let us now prove assertion (2). The form of the minimizing λ follows from Lemma 4.2. Fix t ∈ [0, 1].
Then JMi(c; t) = c log c− tc2 + tc+ (1− c) log 1−c

1−et(c−1) is strictly decreasing in c ∈ [0, 1]. Indeed

d

dc
JMi(c; t) = log tc− tc+

t(1− c)e−t(1−c)

1− e−t(1−c)
− log

t(1− c)e−t(1−c)

1− e−t(1−c)
= F

( t(1− c)e−t(1−c)
1− e−t(1−c)

)
− F (tc),

where we introduced the function F (x) = x − log x, which is decreasing in x ∈ (0, 1]. Hence, mono-
tonicity of JMi(·; t) in [0, 1] follows from

tc ≤ t(1− c)e−t(1−c)

1− e−t(1−c)
≤ 1. (4.8)

The first inequality follows by observing that the function φt(c) = e−t(1−c) − c is nonnegative for all
c ∈ [0, 1 ∧ 1

t ], since φt(0) = e−t > 0, φt(1) = 0, and φt is strictly decreasing in [0, 1], since t ≤ 1. The
second inequality follows from the fact that ψ(z) : = 1 − e−z − ze−z ≥ 0 for all z ∈ [0, 1] (substitute
z = t(1 − c)), since ψ(0) = 0, ψ(1) = 1 − 2e−1 ≥ 0 and ψ is strictly increasing in [0, 1]. Therefore,
JMi(·; t) is minimized in c = 1, which implies the conclusion.
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Now we turn to assertion (3). For t ∈ (1,∞), the derivative of JMi(c; t) writes as follows

d

dc
JMi(c; t) =

t(1− c)e−t(1−c)

1− e−t(1−c)
− log

t(1− c)e−t(1−c)

1− e−t(1−c)
+

{
log tc− tc for c ≤ 1

t ,

−1 for c > 1
t .

It is clear that JMi(c; t) is strictly increasing in c ∈ (1
t , 1], while for c ∈ [0, 1

t ], we need to go back

to (4.8). The right inequality there is still true for any c < 1
t . Since the quotient in (4.8) is strictly

increasing in c and since F (x) = x− lg x is strictly convex in x, the unique zero of d
dcJMi(c; t) is given

by the unique solution c of

tc =
t(1− c)e−t(1−c)

1− e−t(1−c)
,

which is precisely the solution c = βt of (1.16). The remaining assertions follow.
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[Bél01] B. Béla. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2

edition, 2001.
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