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Abstract: We investigate a probabilistic model for routeing in a multihop ad-hoc com-
munication network, where each user sends a message to the base station. Messages
travel in hops via the other users, used as relays. Their trajectories are chosen at
random according to a Gibbs distribution that favours trajectories with low interfer-
ence, measured in terms of sum of the signal-to-interference ratios for all the hops, and
collections of trajectories with little total congestion, measured in terms of the number
of pairs of hops arriving at each relay. This model was introduced in our earlier paper
[KT17], where we expressed, in the high-density limit, the distribution of the optimal
trajectories as the minimizer of a characteristic variational formula.

In the present work, in the special case in which congestion is not penalized, we
derive qualitative properties of this minimizer. We encounter and quantify emerging
typical pictures in analytic terms in three extreme regimes. We analyze the typical
number of hops and the typical length of a hop, and the deviation of the trajectory
from the straight line in two regimes, (1) in the limit of a large communication area and
large distances, and (2) in the limit of a strong interference weight. In both regimes,
the typical trajectory turns out to quickly approach a straight line, in regime (1) with
equally-sized hops. Surprisingly, in regime (1), the typical length of a hop diverges
logarithmically as the distance of the transmitter to the base station diverges. We
further analyze the local and global repulsive effect of (3) a densely populated area on
the trajectories. Our findings are illustrated by numerical examples. We also discuss
a game-theoretic relation of our Gibbsian model with a joint optimization of message
trajectories opposite to a selfish optimization, in case congestion is also penalized.

MSC 2010. 60G55; 60K30; 65K10; 82B21; 90B15; 90B18; 91A06

Keywords and phrases. multihop ad-hoc network, signal-to-interference ratio, Gibbs distribution,
message routeing, high-density limit, point processes, variational analysis, expected number of hops,
expected length of a hop, deviation from the straight line, selfish optimization

1. Introduction

In this work, we continue our research [KT17] on a spatial Gibbsian model for message routeing in
a multi-hop ad-hoc network. In [KT17] we prepared for an analysis of the qualitative properties of
the model by deriving simplifying formulas that describe the situation in a densely populated area in
the sense of a law of large numbers. In the present work, we carry out this analysis and describe a
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number of characteristic properties of the message trajectories. In particular, we are interested in the
counterplay between probabilistic properties like entropy and energetic properties like interference and
congestion and how it develops geometric properties like number and lengths of the hops or straightness
of the trajectories. Our goal is to detect some rules of thumbs in the relationships between all these
quantities in asymptotic regimes in which they become particularly pronounced, like large areas and
long trajectories, strong influence of interference, or local regions with a particularly high population.
While [KT17] used mainly probabilistic methods, the present paper entirely employs analytic tools.

1.1. The main features of the model. Let us introduce the reader to the nature of our telecom-
munication model. The communication area is a bounded set in Rd, and it has a unique base station
at the origin o. Many users are randomly distributed according to some measure. Each user sends
out a message to the base station along a random multi-hop trajectory that uses other users as relays
and has at most kmax steps. The model that we are interested in is a joint distribution of all these
message trajectories, conditional on the (random) locations of the users. It is based on a Gibbsian
ansatz: the a priori distribution is uniform (i.e., each message chooses first a hop number k and then a
k-hop trajectory, both uniformly at random, and trajectories of different users are independent), and
there are two exponential weight terms that punish interference and congestion, respectively. More
precisely, the first one weights the interference of each of the hops, measured in terms of the well-known
signal-to-interference ratio (SIR), while the other term punishes the entire trajectory family for high
total congestion in the system, measured as constant times the sum of the number of pairs of incoming
hops at the relays. Note that the SIR term is linear in the number of hops, hence this number is upper
bounded by some geometric random variable and thus almost surely finite, even without an artificial
upper bound by kmax.

The highest probability is attached to those trajectory families that realize the best compromise
between entropy (i.e., probability) and energy (i.e., interference plus congestion). In Section 2.4.2,
we give a thorough discussion of the motivation for studying such a type of model, in particular the
randomness of the trajectories.

The interesting feature is that the total punishment is given to the entire system in terms of a
probability weight, in the spirit of a “common-welfare” mechanism, instead of selfish routeing opti-
mization. In Section 6, we give a game-theoretic discussion of the two weight terms in the exponent
in the light of traffic theory; more precisely we ask the question under what circumstances the op-
timization of these two terms can be called selfish or non-selfish. In Section 2.4.2, we also make a
connection between this optimization and our model from the viewpoint of stochastic algorithms for
an experimental realization of the optimum.

The idea of an optimal compromise between entropy and energy is most clearly realized in a certain
limiting sense in [KT17, Theorem 1.4], which will be the starting point of the present paper and will
be summarized in Section 2 below. There, we carried out the limit of a high density of users, and we
derived a kind of law of large numbers for the “typical” trajectory distribution, i.e., the joint trajectory
distribution that has the highest probability under the Gibbs measure. This was done using large-
deviation theory, and the answer came with a characteristic variational formula in [KT17, Theorem
1.2], whose minimizer(s) describe(s) that object. Roughly speaking, the variational formula is of the
form “minimize the sum of entropy and energy among all admissible trajectory families”.

1.2. Goals. Our goal in the present paper is to understand the global effects that are induced in the
Gibbsian system exclusively by entropy and energy into geometric properties of the joint behaviour
of the trajectory family. We will be working in an analytical way; our goal is to reveal macroscopic
phenomena in important settings and regimes. As our model depends on various parameters (size
and form of the communication area, density of users, choice of the SIR term, strength of interference
and congestion weighting, etc.), this can be done rigorously only in certain limiting regimes. We are
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interested in the most important and obvious geometric properties: number and lengths of the hops,
and the spatial shape of the trajectory.

In the following three limiting regimes we will encounter particularly clear pictures:

(1) large communication area and long distances (and large hop numbers),
(2) strong interference punishment, and
(3) high local density of users on a subset of the communication area.

In regimes (1) and (2), we expect that the typical trajectories approach straight lines, and in (1)
there is an additional question about the typical length of a hop and the number of hops. Here, we
would like to understand how the quality of service becomes bad in a large telecommunication area
and how many and how large steps the messages would like to make if the artificial constraint by kmax

is dropped.

However, the regime (3) and our questions here are of a different nature: We would like to understand
if the presence of a subarea with a particularly high population density has a significant (positive or
negative) impact on the effective use of the relaying system: on one hand, the trajectories have more
available relays in such an area, but on the other hand, the interference achieves high values there. It
is a competition between entropy and energy of a particular type that we want to understand.

Let us announce that we are going to work on these questions only in the case where only interfer-
ence is penalized, but not congestion. This is due to the case that the minimizer(s) are characterized
in [KT17, Proposition 1.3] in a way that is enormously implicit and cumbersome in general, but re-
duces, if the congestion term is dropped, to relatively simple formulas that are amenable for analytical
investigations [KT17, Proposition 1.5]. In particular, we know only here that the minimizer is unique.
Therefore, we decided to analyze the limiting regimes (1)–(3) under the assumption that only inter-
ference is penalized. We believe that the main qualitative properties persist to the case where also
congestion is penalized, as this is purely combinatorial and not spatial. In Section 6 we will discuss
non-selfishness and other game-theoretic properties of the Gibbsian model in the presence of both
terms.

1.3. Our findings. In regimes (1)–(2), we will see that the typical trajectory follows a straight line
with exponential decay of probabilities of macroscopic deviations from the straight line. Moreover, in
the regime (1) we will also find simple formulas for the asymptotic number of hops and the average
length of a hop, which turns out to be the same for each hop of the trajectory.

However, in regime (3), we encounter different effects. First we see the following global effect on
the total number of relaying hops in the entire system: If the communication area is small (in the
sense that all the interferences in the system do not vary much), then the total number of relaying
hops vanishes exponentially fast in the diverging parameter of the dense population, regardless of the
choice of the densely populated subset. In some cases, we also detect a local effect on the relaying
hops if the densely populated subset is very small: We demonstrate that a certain neighbourhood of
that subset is definitely unfavourable for relaying hops for practically all the other users, a very clear
effect coming from the high interference of the densely populated area, which expels the trajectories
away.

Some of our results are more or less expected, and the main value of our work is the explicit
characterization of the quantities and the derivation of exponential bounds for deviations. However,
one of our most strinking findings is that, in the regime (1), the typical hop length diverges as a
logarithmic function of the distance between the transmitter and the base station, and hence the
typical number of hops is sub-linear in the distance. This effect seems to come from the fact that a
priori, i.e., before switching on the interference weight, every message trajectory of a given length has
the same weight, even very ridiculous ones that have long spatial detours, e.g., many loops.
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We formulated our results in quite simple settings, by putting the communication area equal to a
ball and the user density equal to the Lebesgue measure, but it is clear that they can be extended
into various directions with respect to more complex shapes and/or user distributions.

Based on our explicit formulas, we also provide some simulations at the end, in Section 7. They
illustrate that most of the effects that we derived analytically in limiting settings, i.e., for large values of
the parameters, already appear in a very pronounced way for quite moderate values of the parameters.

1.4. Related literature. The quality of service in highly dense relay-augmented ad-hoc networks has
received particular interest in the last years. A multi-hop network with users distributed according to
a Poisson point process, the intensity of which tends to infinity, was investigated in [HJKP15]. Using
large-deviation methods, this paper derives the asymptotic behaviour of rare frustration events such
as many users having an unlikely bad quality of service for an unusually long period of time. [HJP16]
also describes frustration probabilities in a network, where relays have a bounded capacity, and users
become frustrated when their connection to a relay is refused because it is already occupied; see also
[HJ17].

One difference between these works and the model of the present paper introduced in [KT17] is
that the latter one uses a notion of quality of service for the entire system rather than for single
transmissions. In particular, trajectories with bad SIR are a priori not excluded. [KT17] defines a
random mechanism for choosing the message trajectories of all users, given the user locations, and its
results hold almost surely with respect to all users. For these results, users need not form a Poisson
point process, and they can even be located deterministically [KT17, Section 1.7.4]. This is also a
difference from [HJKP15], [HJP16] and [HJ17], where user locations are not fixed and their randomness
is (at least partially) responsible for unlikely frustration events.

For literature remarks on the notion and use of SIR, in particular for multiple hops, and about the
interference penalization term see Section 2.4.1 below.

In Section 2.4.2, we discuss the use of Gibbs sampling for an experimental realization of our Gibbs
distribution. Gibbs sampling was used for telecommunication networks, e.g., in [CBK16] for optimal
placement of contents in a cellular network, and in [BC12] for power control and for associating users
to base stations. These Monte Carlo Markov chain methods are used to decrease some kind of cost
in the system via a random mechanism, with no easily implementable deterministic methods being
available. Our Gibbsian model also has this property, at least if congestion is penalized as well,
and approximating our Gibbs distribution by Markov chain methods such as the Gibbs sampler is
imaginable. However, the main focus of our research is the high-density limit, unlike for [CBK16] and
[BC12].

1.5. Organization of this paper. In the fundamental Section 2, we present our Gibbsian model
and the results of [KT17] that are relevant for the investigations of the current paper. In particular, in
Section 2.3, we comment on the objects of our study, the “typical trajectory”, and Section 2.4 contains
discussions about modeling questions such as our motivation for the Gibbsian ansatz, the choice of
the interference penalization term and possible extensions of the model.

Each of the following three sections is devoted to one of our three theoretical investigations, which
form the core of this paper, i.e., the analysis of the large-distance limit (1) in Section 3, the limit of
strong interference punishment (2) in Section 4 and limit of high local density of users (3) in Section 5.
Each of these sections gives the question, the results, the proofs and a discussion in the respective
setting.

Section 6 discusses the relevance and properties of our Gibbsian model and the related optimization
problem in the light of game-theoretic considerations in traffic theory.

Finally, Section 7 gives numerical plots and studies about qualitative properties of our model.
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2. The Gibbsian model and its behaviour in the high-density limit

In this section, we introduce the Gibbsian model of [KT17] and its properties in the limit of high
density of users that are most relevant for the analysis of the current paper. We present the model in
Section 2.1, describe its behaviour in the high-density limit in Section 2.2, comment on the notion of
the typical trajectory sent out by a user in Section 2.3 and provide motivations and discussions about
our setting in Section 2.4.

2.1. The Gibbsian model. We introduce the model that we study in the present paper. This model
was introduced in [KT17, Section 1.2.4]; it is a special case of the general model of [KT17].

For any n ∈ N and for any measurable subset V of Rn, let M(V ) denote the set of all finite
nonnegative Borel measures on V .

The model is defined as follows, on Rd with d ∈ N fixed. Let W ⊂ Rd be compact, the territory
of the telecommunication system, containing the origin o of Rd. Let µ ∈ M(W ) be an absolutely

continuous measure on W with µ(W ) > 0. For λ > 0, we let Xλ = (Xi)i∈Iλ = (Xi)
N(λ)
i=1 be a Poisson

point process in W with intensity measure λµ, such that the empirical measure of Xλ normalized by
1/λ,

Lλ =
1

λ

∑
i∈Iλ

δXi , (2.1)

converges to µ almost surely as λ → ∞. This condition is satisfied e.g. if λ 7→ Xλ is increasing; for
further details see [KT17, Section 1.7.4].

Now we introduce message trajectories. For any i ∈ Iλ, we call a vector of the form

Si = (Si−1 = Ki, S
i
0 = Xi, S

i
1 ∈ Xλ, . . . , SiKi−1 ∈ Xλ, SiKi = o) ∈ N×

( ⋃
k∈N

W k
)
× {o}, (2.2)

a message trajectory from Xi to o with Ki hops. That is, Si starts from Xi and ends in o after a
random number Ki of hops from user to user ∈ Xλ. Hence, the users also serve as relays. We fix
kmax ∈ N and write Sikmax

(Xλ) for the set of all possible realizations of the random variable Si with

Ki ≤ kmax hops. Hence, elements of Sikmax
(Xλ) satisfy si−1 ∈ {1, . . . , kmax}, si0 = Xi and si

si−1
= o. We

write Skmax(Xλ) =
∏
i∈Iλ Sikmax

(Xλ) and [k] = {1, . . . , k} for k ∈ N. Given i ∈ Iλ, we consider each

trajectory Si in (2.2) as an Sikmax
(Xλ)-valued random variable.

With this definition of message trajectories, we only consider uplink communication, i.e., users
transmitting messages to the base station, such as in [KT17]. As we have mentioned in [KT17,
Section 1.2.4], the downlink, i.e., the reversed direction, works very similarly, and all results of [KT17]
have an analogue for the downlink with an analogous proof. We are certain that the same applies to
the results of the current paper, and we abstain from spelling out the downlink case.

Next, interference is introduced as follows. We choose a path-loss function, which describes the
propagation of signal strength over distance. This is a monotone decreasing, continuous function
` : [0,∞) → (0,∞). A typical choice is ` corresponding to isotropic antennas with ideal Hertzian
propagation, i.e. `(r) = min{1, r−α}, for some α > 0 (see e.g. [GT08, Section II.]). We write
`max = maxx,y∈W `(|x − y|) and `min = minx,y∈W `(|x − y|) for the maximal and the minimal path-
loss values in the system, respectively.The signal-to-interference ratio (SIR) of a transmission from
Xi ∈ Xλ to x ∈W in the presence of the users in Xλ is defined [HJKP15] as

SIR(Xi, x,X
λ) =

`(|Xi − x|)
1
λ

∑
j∈Iλ `(|Xj − x|)

. (2.3)

The denominator of the r.h.s of (2.3) is the interference. See Section 2.4.1 for more details about the
notion of SIR and the normalization term 1/λ in the interference.
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If one wants to optimize the joint routeing of many messages in a multihop telecommunication
network, the first question that arises is what cost function should be minimized. According to [BC12,
Section II.A] and [SPW07], a routeing of trajectories is optimal w.r.t. interference if it minimizes the
sum of the inverses of the SIR values over all hops of all messages. For more details, we refer the
reader to Section 2.4.1.

Now, given a trajectory configuration s = (si)i∈Iλ ∈ Skmax(Xλ), we put

S(s) =
∑
i∈Iλ

si−1∑
l=1

SIR(sil−1, s
i
l, X

λ)−1. (2.4)

Next, congestion is defined as follows. We put

mi(s) =
∑
j∈Iλ

sj−1−1∑
l=1

1{sjl = si0}, i ∈ Iλ, (2.5)

as the number of incoming hops into the user (relay) si0 = Xi of any of the trajectories. For s ∈
Skmax(Xλ) we define

M(s) =
∑
i∈Iλ

mi(s)(mi(s)− 1). (2.6)

Note that mi(s)(mi(s) − 1) is the number of pairs of hops arriving at the relay Xi = si0, and
mi(s)(mi(s)− 1) if mi(s) ∈ {0, 1}, i.e., it only penalizes multiple hops arriving at the same relay.

The central object of study of [KT17] is a Gibbs distribution on the set of collections of trajectories
as follows. For any s = (si)i∈Iλ ∈ Skmax(Xλ) put

Pγ,β
λ,Xλ(s) :=

1

Zγ,βλ (Xλ)

( ∏
i∈Iλ

1

N(λ)s
i
−1−1

)
exp

{
− γS(s)− βM(s)

}
, (2.7)

where γ > 0 is a parameter. This is the Gibbs distribution with a uniform and independent reference
measure (see [KT17, Section 1.2.2] for more details), subject to an exponential weight with the SIR
term in (2.4). Here

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ)

( ∏
i∈Iλ

1

N(λ)r
i
−1−1

)
exp

{
− γS(r)− βM(r)

}
(2.8)

is the normalizing constant, which is referred to as partition function. Note that Pγ,β
λ,Xλ(·) is random

conditional on Xλ, and it is a probability measure on Skmax(Xλ).

[KT17] derived the properties of this system in the high-density limit λ → ∞. Due to the discon-
tinuity of the congestion term in this limit, the case γ, β > 0 is substantially more involved than the
case of no congestion penalization γ > 0, β = 0. As we already mentioned in Section 1.2, for the main
part of the present paper, we will concentrate on the case β = 0 in which congestion is not penalized.
The case β > 0 will occur again in the game-theoretic investigations of Section 6 and in the discussion
of Section 2.4.2 about the relation of our model to Monte Carlo Markov chains.

2.2. The limiting behaviour of the telecommunication system. In this section, we summarize
those results of [KT17] about the behaviour of the model described in Section 2.1 in the high-density
limit λ→∞ that are relevant for the investigations of the present paper. These assertions will allow
us to derive variational characterization of qualitative properties of the network, such as the typical
number, length and shape of the message trajectories, in limits of some of the parameters tending to
infinity. We consider only the case β = 0.
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For k ∈ N, elements of the product space W k = W {0,1,...,k−1} are denoted as (x0, . . . , xk−1). For
l = 0, . . . , k − 1, the l-th marginal of a measure νk ∈ M(W k) is denoted by πlνk ∈ M(W ), i.e.,

πlνk(A) = νk(W
{0,...,l−1} ×A×W {l+1,...,k−1}) for any Borel set A of W .

Indeed, for fixed k ∈ [kmax] and for a trajectory family s ∈ Skmax(Xλ), we define

Rλ,k(s) =
1

λ

∑
i∈Iλ

δ(si0,...,s
i
k−1)1{s

i
−1 = k}, (2.9)

the empirical measures of all the k-hop trajectories, which is an element of M(W k). Since each user
sends out exactly one message, we have for any s ∈ Skmax(Xλ)

kmax∑
k=1

π0Rλ,k(s) = Lλ. (2.10)

This assumption can be relaxed, see Section 2.4.3 for a discussion about this.

Note that (2.4) can be expressed in terms of (Rλ,k(s))k∈[kmax] as follows

S(s) =

kmax∑
k=1

∫
W
Rλ,k(s)(dx0, . . . ,dxk−1)

k∑
l=1

∫
W `(|y − xl|)Lλ(dy)

`(|xl−1 − xl|)
, xk = o. (2.11)

Since Lλ ⇒ µ as λ → ∞ and (2.10) holds for any λ > 0, for S = (Si)i∈Iλ , subsequential limits of
(Rλ,k((S))k∈[kmax] in the coordinatewise weak topology are easily seen to have the form Σ = (νk)k∈[kmax]

with νk ∈M(W k), satisfying
kmax∑
k=1

π0νk = µ. (2.12)

For such Σ, in [KT17, Section 1.6] we have defined the following continuous analogue of (2.11)

S(Σ) =

kmax∑
k=1

∫
W
νk(dx0, . . . ,dxk−1)

k∑
l=1

g(xl−1, xl), xk = o,

with

g(x, y) =

∫
W µ(dz)`(|z − y|)

`(|x− y|)
, (2.13)

moreover the following entropy term that describes counting complexity in the limit λ→∞:

J(Σ) =

kmax∑
k=1

∫
Wk

dνk log
dνk

dµ⊗ k
+ logµ(W )

kmax∑
k=1

(k − 1)νk(W ) ∈ [0,∞], (2.14)

with the understanding that 0 log 0 = 0 log(0/0) = 0 and J(Σ) =∞ whenever νk 6� µ⊗ k for some k.

The key result [KT17, Proposition 1.5, parts (3), (4)] about the limiting behaviour of the telecom-
munication system that we will use this paper is the following.

Proposition 2.1 (Law of large numbers for the empirical measures). Let γ > 0 and kmax ∈ N.

Then, almost surely w.r.t. Xλ, as λ→∞, the distribution of Σλ(S) = (Rλ,k(S))k∈[kmax] under Pγ,0
λ,Xλ

converges coordinatewise weakly to the unique minimizer of the variational formula

inf
Σ=(νk)kmax

k=1 :
∑kmax
k=1 π0νk=µ

(
J(Σ) + γS(Σ)

)
. (2.15)

For kmax > 1, the minimizer is given as Σ = (νk)
kmax
k=1 , where

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)

k−1∏
l=1

µ(dxl)

µ(W )
e−γ

∑k
l=1 g(xl−1,xl), xk = o, k ∈ [kmax], (2.16)
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where the normalizating function A is defined as

1

A(x0)
=

kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µ(dxl)

µ(W )
e−γ

∑k
l=1 g(xl−1,xl), x0 ∈W (2.17)

so that (2.12) holds.

In case kmax = 1, it is easy to see that the unique minimizer of (2.15) is Σ = (ν1) with ν1 = µ, as
this is the unique Σ satisfying (2.12).

Note that the variational formula (2.15) has indeed the form of “entropy plus energy”, as an-
ticipated before. In the minimizer (2.16), the starting points of the k-hop message trajectories,
k ∈ [kmax], are chosen according to the measure µ(dx0)A(x0) and all relaying steps according to
the measure µ(dxl)/µ(W ), l ∈ [k − 1], exponentially weighted by the limiting SIR penalization term

γ
∑k

l=1 g(xl−1, xl).

We refer the reader to [KT17, Section 1.7] for further details about the limiting behaviour of the
system. The proof of Proposition 2.1 is carried out in [KT17, Section 5].

Using the exponential decay of the summands in the denominator of (2.17) in k, it is easy to see
that the measures νk in (2.16) are also well-defined if kmax = ∞. However, the proof techniques of
[KT17] do not allow us to generalize Proposition 2.1 to the case kmax = ∞ or kmax being a function
of λ and tending to infinity as λ→∞.

2.3. Interpretation of the limiting trajectory distribution. It is the purpose of the present
paper to make further qualitative assertions about the “typical” trajectory from a given transmission
site x0 ∈ W to the origin, after having taken the high-density limit λ → ∞. First we need to think
about what quantity we should look at and what properties of the system are reflected in it.

A definition of the “typical” trajectory as a random variable is not immediate, due to the nature
of this setting. One possible definition would be something like the random variable Si0 with i0 ∈ Iλ
such that Si00 is the Poisson point that is closest to x0. Another one would be the sum of the
(random) empirical measure Rλ(S) =

∑
k∈[kmax]Rλ,k(S) on all trajectory families such that Si0 ∈

Bε(x0), properly normalized with the Lλ-mass of the ε-ball Bε(x0) around ε (cf. (2.10)).

However, since we want to start from the limit as λ→∞, we will consider Σ = (νk)k∈[kmax] instead,
the minimizer introduced in Proposition 2.1. Therefore, for fixed x0 ∈ W , we will in this paper
concentrate on the probability measure on

⋃
k∈[kmax]({k} ×W k−1) given by its density

Tx0(k, x1, . . . , xk−1) =
νk(dx0,dx1, . . . ,dxk−1)(∑kmax

k=1 π0νk(dx0)
)
µ(dx1) . . . µ(dxk−1)

=
νk(dx0,dx1, . . . ,dxk−1)

µ(dx0)µ(dx1) . . . µ(dxk−1)
, (2.18)

w.r.t.
∑

k∈[kmax](δk ⊗ µ⊗(k−1)). This measure carries rightfully the interpretation of the distribu-

tion of the “typical” trajectory from x0 to the origin, after the limit λ → ∞ has been taken.
This is the main object of our study in the present paper. We normalized Tx0 in such a way that∑

k∈[kmax]

∫
Wk−1 Tx0(k, x1, . . . , xk−1)µ(dx1) . . . µ(dxk−1) = 1. According to Proposition 2.1,

Tx0(k, x1, . . . , xk−1) = A(x0)µ(W )−(k−1)
k−1∏
l=1

e−γ
∑k
l=1 g(xl−1,xl), (2.19)

where we recall (2.13). We will use the convention that the 0th coordinate of Tx0 is the one corre-
sponding to k and the lth is the one corresponding to xl, for l ∈ {1, . . . , k−1}. This way, the marginal
π0Tx0 is a measure on [kmax].

We note that also the measure M =
∑kmax

k=1

∑k−1
l=1 πlνk carries interesting information about the

system. Indeed, in [KT17, Section 1.3] is was explained that M(dx) is the density of the number of
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incoming messages at a position x ∈ W , the typical number of incoming messages of a user at x is
Poisson distributed with parameter M(dx)/µ(dx), and the total mass M(W ) is the amount of relaying
hops in the entire system, with the understanding that it is zero if every message steps directly into
o without any relaying hop. Part of our analysis will also be devoted explicitly to M , see Section 5.

2.4. Discussion and motivation. In this section, we explain our motivation for several aspects
of the model and for the questions that we address. In Section 2.4.1 we interpret the SIR-related
quantities of the model, in Section 2.4.2 we argue about the relevance of our Gibbsian ansatz, and
in Section 2.4.3 we explain possible extensions of the model via allowing users to send no or multiple
messages.

2.4.1. The SIR term. In this section, we discuss the SIR-related quantities of our model. We comment
on the relevance of our choice of the SIR penalization term S(s) in (2.4), explain the conventional
definition of SIR and its relation to our understanding of SIR, discuss about the continuity of the
path-loss function at 0 and sketch more realistic notions of SIR than the one (2.3).

The SIR term S(s) in (2.4) quantifies the quality of the transmission of the messages when using
the trajectories si from Xi to o. The choice of the reciprocals of the SIRs comes from the fact that the
bandwidth used for a transmission is defined [SPW07] as

R

log2(1 + SIR(·))
, (2.20)

where R is the data transmission rate, and SIR is defined as in (2.3) without the factor of 1/λ in the
denominator of (2.3). This quantity is of order 1/λ for λ large, under the assumption that Lλ ⇒ µ.
In the high-density setting λ→∞ that we study, (2.20) can be approached well by (a constant times)
the reciprocals of the SIR, since log(1 + x) ∼ x as x → 0. [SPW07, Section 3] suggests that in
case of multi-hop communication, the used bandwidth equals the sum of the used bandwidth values
corresponding to the individual hops, which explains our choice of the sum over l in (2.4).

Note that the conventional definition of interference of a transmission from Xi to x is∑
j∈Iλ\{i} `(|Xj − x|), in contrast to our definition in (2.3), where we added a factor of 1

λ , follow-

ing [HJKP15, Section 1]. According to this convention, we should say “total received power” instead
of “interference”, cf. [KB14, Section II.]. As we are interested in the limit λ→∞, where it makes no
difference whether or not we add 1

λ`(|Xi − x|) to the denominator, we will stick to our notions “SIR”
and “interference”. For the same reason, our model does not include noise. However, note also our
additional factor of 1/λ, which we think is appropriate, at least mathematically, to our setting, in
which we consider the high-density limit λ → ∞. We actually scale the “usual” SIR by the density
parameter. Indeed, in order to cope with an enormous number of messages in a system with one base
station and a fixed bandwidth, one can either distribute the messages over a longer time stretch or
decompose the messages into many smaller ones. The factor of 1/λ is a crude approximation of a
combination of these two strategies.

The assumption that the path-loss function ` is continuous at 0 comes from [GT08, HJKP15] and is
unlike the works [GK00, KB14], which make mathematical use of the perfect scaling of the path-loss
function `(r) = r−α, which is for this reason one of the standard choices. However, for small r, this is
an unrealistic choice, cf. [GK00, Section I.A], [GT08, Section I.].

We note that the notion of interference can be made more realistic according to [GK00, Section
I.A] via introducing time dependence in our model. E.g., one introduces kmax discrete time slots,
and for l ∈ [kmax], the lth hop of any message trajectory is assumed to happen at time l. Then, the
interference of a transmission at time l is obtained from the starting points of all hops that happen
at the same time. The SIR is defined analogously to (2.3) but with this notion of interference, which
depends on the entire message trajectories rather than only on the users. Time-dependent versions
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of our model can be set up in various ways; for example, one could allow for messages standing still
or for a longer time horizon and users transmitting multiple messages. The new notion of SIR comes
with significant changes in the behaviour of the system in the high-density limit, and we decided to
defer such investigations to a later work.

2.4.2. Why a Gibbsian ansatz? Let us comment on the relevance of our ansatz of the model as a
Gibbsian probability measure.

In a mathematical description of a telecommunication system, one typically requires that the SIR be
larger than a given threshold τ > 0, in order that the signal can be successfully transmitted. However,
our model is designed in the spirit of a common wealth approach, where we do not want to consider
any single message, but the total quality of transmission in the entire system. This quantity is the
sum of all the reciprocal values of the SIRs of all the (hops of the) messages, which we explained in
Section 2.4.1. It is exponentially weighted with a negative factor, which “softly” keeps all the SIRs at
high values on an average.

One can also modify our Gibbs distribution in such a way that trajectory families exhibiting hops
with SIR SIR(sil−1, s

i
l, X

λ) less than or equal to τ have probability zero, simply by changing the
SIR penalization value (2.4) to ∞ for such families, similarly to [BC12, Section III.A]. For τ large
enough, almost surely, the modified model is well-posed for all λ > 0 sufficiently large. This means
a change from the penalization function x 7→ γ/x (applied to SIR(sil−1, s

i
l, X

λ)) into the function
x 7→ ∞ × 1l[0,τ ](x). We expect that an analogue of Proposition 2.1 in [KT17, Section 5] is valid, but
additional topological problems have to be addressed.

One of our motivations is to explore the physical effect of the punishment of the joint probability
of the random paths, which are a priori randomly picked with equal probability: Does the (soft)
requirement of a good transmission quality force the trajectories already to choose geometrically the
shortest route? What step sizes do they choose? We would like to understand the interplay between
entropy and SIR-energy and the result coming out of this by optimizing their relation.

Another motivation for us to study this model is the fact that one can use it for experimentally
produce optimal routeings in a given wireless telecomunication system by making explicit simulations.
Here we connect up with the theory of finding the (deterministic) optimal message routeing in a given
graph whose bonds are equipped with weights that express the transmission quality. Here we consider
the complete graph, where every two vertices (user locations) are connected with each other, and the
weights are the reciprocals of the SIR-values along that bond. The quality of a routeing is then the sum
of the weights along the trajectory, precisely as in (2.4). This optimization problem searches for the
best routeing of all the messages that are to be delivered to the origin, i.e., for the minimum of S(s)
over s. It becomes much more interesting and relevant if also the congestion term is considered, i.e., if
the term γS(s)+βM(s) is optimized. See Section 6 for a discussion of this problem in game-theoretic
terms.

We think that our model is a good starting point for a numerical realization of this optimum, using
a stochastic algorithm in the spirit of the famous simulated annealing algorithm, see [H02, Section
13], based on running a Monte Carlo Markov chain algorithm. In order to do this, one first has to

determine an explicit Markov chain on the set of trajectory families that has our measure Pγ,β
λ,Xλ in (2.7)

as its invariant distribution (in the best case, satisfying the detailed balance condition). Afterwards,
one needs to determine a suitable cooling strategy, i.e., a recipe how to choose the parameters β and
γ diverging to infinity as a function of the number of Markovian steps carried out so far. We believe
that adapting classical methods such as the Gibbs sampler or the Metropolis algorithm [H02, Section
7] will turn out to be appropriate for this purpose. Then one would have to characterize the speed of
convergence of such a chain to equilibrium, which is an interesting problem on its own.
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2.4.3. Extensions: sending no or multiple messages. One easily sees from the proofs in [KT17, Sections
2–5] that Proposition 2.1 can be extended to the situation where users send no message or multiple
messages. This models the standard situation in which large messages are cut into many smaller ones,
who independently find their ways through the system.

For this, we have to enlarge the trajectory probability space: to each user Xi ∈ Xλ, we attach
the number Pi ∈ N0 of transmitted messages, and for each j ∈ {1, . . . , Pi}, there is an independent
trajectory Xi → o. The empirical trajectory measure Rλ,k(·) must be augmented by these trajectories.

The main additional assumption then is that
∑kmax

k=1 π0Rλ,k(·) converges to some measure µ0 ∈M(W )
with 0 6= µ0 � µ.

The SIR term also has to be changed. The number Pi can be interpreted as a signal power of the
user Xi. Thus, according to [BB09, Sections 2.3.1, 5.1], the SIR of his transmission of a message to
x ∈W should be defined as follows

SIR((Xi, Pi), x, (Xj , Pj)j∈Iλ) =
`(|Xi − x|)Pi

1
λ

∑
j∈Iλ `(|Xj − x|)Pj

.

One could also incorporate (possibly random) sizes of the messages, which would require an additional
enlargement of the trajectory space.

3. Large communication areas with large transmitter–receiver distances

This section is devoted to the analysis of the highly dense telecommunication system described in
Section 2.2 in regime (1), i.e., in the limit of a large communication area coupled with a large distance
of the user from the base station. In Section 3.1, we present our main results. Section 3.2 discusses
these results, and Section 3.3 includes their proofs.

3.1. The typical number, length and direction of hops in a large-distance limit. In this
section, the main object of interest is the shape of the optimal trajectory from a certain site to the
origin, in particular the typical spatial length of any of the hops, the number of hops and the spatial
progress of the trajectory, in particular whether or not it runs along the straight line or how strongly
it deviates from it. We will answer these questions for the special choice that W is a closed ball around
the origin, µ is the Lebesgue measure on W , and the path-loss function ` corresponds to ideal Hertzian
propagation so that b =

∫
Rd `(|x|)dx <∞, that is, `(r) = min{1, r−α} for some α > d.

Furthermore, in order to obtain a pronounced picture and to make a strong assertion, we will have
to assume that the starting site of our trajectory is far away from the origin. In such a setting, it is
plausible to expect that as the radius of the ball tends to infinity, a proportion of users that tends
to one takes the same order of magnitude of number of hops. This also gives information about the
typical size and direction of each hop, already in large but still compact communication areas.

We will see that this setting exhibits the surprising property that the typical number of hops diverges
to infinity as the distance of the user x0 from o tends to infinity, however, in a sublinear way, more
precisely, like the distance divided by a power of its logarithm. Second, using the asymptotics of the
value of this largest summand, one can conclude about the typical size of the hops and about how
much they deviate from the straight line between the transmitter and the receiver o. In our specific
setting, we will be able to give precise and explicit asymptotics for all these effects encountered.

Let us now become more precise. We denote the radius of the communication area W = Br(o) by r,
and we recall that kmax is the maximal hop number. We consider the limit of large r and large kmax.
We consider one user placed at x0 ∈ W with a distance to the origin |x0| = r0 being large, such that
r > r0, but r � r0. Then one can say that x0 is a “typical” location of a user in W , chosen uniformly
at random.
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In our first result, Theorem 3.1, we examine the “typical” number of hops of a trajectory from x0

to o as a random variable under the marginal distribution π0Tx0 on N. According to (2.19), in the
present setting, this is given by

π0Tx0(k) = A(x0)ak(x0) where ak(x0) =

∫
(Br(o))k−1

k−1∏
l=1

(
ωdr
−d e−γg(xl−1,xl) dxl

)
, xk = o,

(3.1)

where ωd is the volume of the unit ball in Rd, and we recall that g(xl−1, xl) =
∫
W dy `(|y−xl|)
`(|xl−1−xl|) . Note

that ak(x0) does not depend on whether k ≤ kmax or k > kmax, so it will be our first task to find its
asymptotics without any reference to kmax. Interestingly, we encounter a large-deviation principle on
a quite surprising scale.

Theorem 3.1 (Large deviations for the hop number). Fix t ∈ (0,∞). Then, in the limit that r0 →∞
with r > r0 = |x0| � r, for any choice of r0 7→ k(r0) ∈ N,

1

r0 log1−1/α r0

log ak(r0)(x0)


= −(dt+ bγt1−α

)
+ o(1),

≤ −bγt1−α + o(1),

≤ −dt+ o(1),

if
k(r0)

r0 log−1/α r0


→ t,

≤ t+ o(1)

≥ t+ o(1),

(3.2)
where we recall that b =

∫
Rd dy `(|y|).

The upper bounds in the second line of (3.2) follow from the convexity of 1/`(| · |) and a comparison
between the functionals (x, y) 7→ g(x, y) and (x, y) 7→ b/`(|x − y|). Theorem 3.1 says that ak(x0)

satisfies, with k(r0) � r0 log−1/α(r0), a large-deviation principle on the scale r0 log1−1/α r0 with explicit
rate function t 7→ dt+ bγt1−α. It is easily seen that this rate function has a unique minimizer:

min
t∈(0,∞)

(
dt+ bγt1−α

)
= dt∗ + bγ(t∗)1−α =

(bγ)1/α

(α− 1)d

[
d+

(
(α− 1)d

)1/α]
, with t∗ =

(bγ(α− 1)

d

)1/α
.

(3.3)
As a consequence, we have the following kind of law of large numbers.

Corollary 3.2. In the limit r0 →∞ with r > r0 = |x0| � r, any maximizer k∗(r0) of N 3 k 7→ ak(x0)
satisfies

k∗(r0) ∼ t∗ r0

log1/α r0

. (3.4)

Further, if kmax ≥ k∗(r0) for at least one such maximizer for all sufficiently large r0 > 0, then we have

1

r0 log1−1/α r0

log
1

A(x0)
→ −(dt∗ + bγ(t∗)1−α). (3.5)

If kmax is smaller than all the minimizers, then the asymptotics of A(x0) depend on those of akmax(x0)
rather than on ak∗(r0)(r0), and (3.5) has to be adapted accordingly. We note that (3.5) requires only
a lower bound on kmax, and in Corollary 3.2, kmax could be equal to +∞ for each r0. (3.5) says that

the asymptotic logarithmic behaviour of 1/A(x0) on scale r0 log1−1/α r0 coincides with the one of the
single maximal summand ak∗(r0)(r0). Formulated in terms of the marginal distribution π0Tx0 of Tx0
on the length k of the path from x0 to o, since the behaviour of the Lebesgue measure restricted to
Br(o) is subexponential in r0 in the large-distance limit that we are considering, we have that

π0Tx0

(
[t∗ − ε, t∗ + ε]c

r0

log1/α(r0)

)
tends to zero exponentially fast on the scale r0 log1−1/α r0. In Section 3.2.1 we give an explanation of
how these scales come about.
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In the proof of the lower bound of (3.4), the consideration of a uniform step distribution was

sufficient, i.e., t∗r0/ log1/α r0 straight steps directed from x0 to o with size r0/k(r0) ∼ 1
t∗ log1/α r0 each.

We now show, again in terms of a large-deviation estimate on the scale r0 log1−1/α r0, that macroscopic
deviations from this optimal step size on the scale log1/α r0 have extremely small probability.

Proposition 3.3. For ε, δ > 0 and k ∈ N, let

Dε,δ(k, x0) =
{

(x1, . . . , xk−1) ∈ Br(o)k−1 : ∃I ⊆ [k − 1] : #I ≥ δk,

1

#I

∑
l∈I

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

> ε
}
, xk = o.

(3.6)

Then, in the limit r0 →∞ with r > r0 = |x0| � r, for k(r0) ∼ t∗r0/ log1/α r0,

lim sup
1

r0 log1−1/α r0

log Tx0
(
k(r0), Dε,δ(k(r0), x0)

)
< 0. (3.7)

In words, the probability that there are � k(r0) steps xl− xl−1 in the trajectory of relays such that

their average step length 1
#I

∑#I
i=1 |xli − xli−1| deviates, for any index set I of cardinality � k(r0),

from the optimal step length 1
t∗ log1/α r0 ≈ r0/k

∗(r0) on that scale, decays exponentially fast to zero

on the scale r0 log1−1/α r0.

The proofs of Theorem 3.1, Corollary 3.2 and Proposition 3.3 are carried out in Sections 3.3.1, 3.3.2
and 3.3.3, respectively. A discussion about their relevance and an explanation of the results is found
in Section 3.2.1.

We remarked in [KT17, Section 1.2.4] that the downlink scenario (i.e., messages are transmitted
from o to all the users instead of the other way around) can be handled in an analogous way, as it
concerns the high-density limit of the Gibbsian model. We are also sure that the results of the present
section have an analogue for this setting; we abstain from spelling out the details.

Certainly, our results of this section hold for much more general communication areasW , not only for
balls. Essential for our approach is only that a – in every space dimension diverging – neighbourhood
of the straight line between x0 and o is contained in W in the limit considered. The parameter d
appearing in the rate function goes back to our assumption that the volume of W grows like the
d-th power of r; however, other powers than d in [1, d] are also possible by putting other geometric
assumptions on W .

3.2. Discussion of Section 3. This section discusses the relevance, extensions and possible alter-
native proofs of the results of Section 3.1. In Section 3.2.1 we interpret our large-distance limit,
in Section 3.2.2 we explain how the choice of the path-loss function influences our results and in
Section 3.2.3 we discuss the possibility of alternative large-deviation approaches.

3.2.1. Discussion about the large-distance limit. In Section 3.1, we consider the typical trajectory in
a large homogeneous multi-hop communication system with one base station in the area W , after the
high-density limit has been taken. According to the basic rules in this system, virtually every step
in the area W is homogeneously admitted (even those that do not bring the message any closer to
the base station or even further away), but an exponential interference weight is given to the joint
configuration of all the trajectories. It may appear somewhat absurd to consider a limit of large area,
large distances and many steps, since with an increasing number of hops the technical difficulties and
annoying side-effects become larger, but our work is meant to reveal the basic effects coming from
such a setting, in particular the effect from the interference punishment, and our result in terms of a
large-deviation principle gives also bounds on deviations from the extreme regime in a certain way.
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Since the interference term in particular gives small weights to large steps, it may be expected that
the typical trajectory turns out to follow a straight line with all the steps being of the same size, but
it may also come as a surprise that the typical step size diverges like a power of the logarithm of the
distance. The reason for this is the fact that a priori all the steps (within the area) are admitted
and that, in the distribution Tx0 of the typical trajectory, a very small weight term 1/|W | for each
step appears. This favours a small number of steps. The best compromise between this effect and the
interference effect turns out to be on a logarithmic scale.

One could think of a model in which the search for the next hop is done only in a neighbourhood
of the current location, which would presumably lead to a removal of the small weight term 1/|W |
per hop and finally to a number of hops that is linear in the distance to the origin, but this would
make the decay of the path-loss function ` obsolete and describes a fundamentally different technical
organization of the telecommunication system. Such an organization is found e.g. in the continuum
percolation setting of [YCG11], where the optimal number of hops turns out to be asymptotically linear
in the distance from the user to the origin in a large-distance limit. Further, [YCG11, Theorem 2.1]
claims that the probability of having trajectories of a significantly unusual length decays exponentially
fast, which can be seen as an analogue of our Proposition 3.3.

If one wants to study the large-area limit, another idea might be to pick the intensity measure
µ of the user locations as a finite measure on Rd, e.g., a probability measure, with positive density
throughout Rd. However, in areas that are far out and with very small density, the consideration of
taking first the limit λ → ∞ of a high density and afterwards the limit of a low density makes no
sense.

3.2.2. The role of the choice of the path-loss function. We derived our large-distance statements for
the path-loss function `(r) = min{1, r−α} for α > d, since this ` is thought to describe propagation
of signal strength realistically, see e.g. [BB09, GT08, HJKP15]. However, following the proofs of the
results of Section 3.1 in Section 3.3, we see that analogues of these results hold whenever the path-loss
function ` has the following two properties:

∫
Rd `(|x|)dx < ∞ and 1/` is convex. If ` satisfies these

assumptions, then in our large-distance limit, in the optimal strategy (cf. Section 3.3.1), the user takes
∼ const.× k(r0) hops, where r0 7→ k(r0) satisfies

log(r0) ∼ `
( r0

k(r0)

)
. (3.8)

This shows that the optimal scale depends only on the tail behaviour of `. Thus, for example, the
results of Section 3.1 also hold for the path-loss function `(r) = (K + r)−α, K > 0, α > d. In
general, (3.8) shows that under the two above assumptions on `, the optimal scale diverges to ∞ and
is sublinear. The faster ` decays, the slower r0/k(r0) grows. E.g., if `(r) = e−αr for some α > 0, then
the decisive scale is k(r0) � r0/ log log r0.

3.2.3. Alternative large-deviation approaches. The explicit form of the trajectory distribution Tx0 in
(2.19) seems to suggest a Markovian approach, combined with a large-deviation argument for an
exponential functional of the Markov chain. One might think that a large-deviation principle for
the empirical measure Lk of the k steps xl − xl−1 could be the core of a proof, possibly after some
spatial rescaling and under conditioning on having a fixed integral of the identity with respect to Lk.
The main reasons why such an argument does not work are the following. The state space and the
transition kernel of the chain depend on W and on x0 in a particularly irregular way: they induce two
different scales in the interaction of the chain and therefore also change the scale of the probabilities
in a non-standard way. Another problem, which is not only technical, is that the integration area for
each step is unbounded in the limit W ↑ Rd, and the steps are integrated with respect to the Lebesgue
measure. We found no way to make this route work.
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3.3. Proof of the results of Section 3.1. We prove Theorem 3.1, Corollary 3.2 and Proposition
3.3 in Sections 3.3.1, 3.3.2 and 3.3.3, respectively.

All these three results tell about the limit r0 → ∞ with r > r0 � r, where x0 ∈ W = Br(o) has
Euclidean norm |x0| = r0. Throughout this section, we will use the notation limr,r0 for this limit.

3.3.1. Proof of Theorem 3.1. We start with the lower bound in the first line of (3.2). Let us first
consider k(r0) satisfying just k(r0) = o(r0). Recall (3.1). We obtain a lower bound for ak(r0)(r0) by

restricting the xl-integral to the ball with radius one around (k(r0)−l)
k(r0) x0 for l = 1, . . . , k(r0)− 1. Then

|x0|/k(r0)−2 ≤ |xl−1−xl| ≤ |x0|/k(r0)+2 for l = 1, . . . , k(r0). Note that g(xl−1, xl) ≤ b/`(|xl−1−xl|),
where we recall that b =

∫
Rd dy `(|y|). Hence, for any ε ∈ (0, 1), eventually, g(xl−1, xl) ≤ b|xl−1−xl|α ≤

(1 + ε)brα0 /k(r0)α, since the latter goes to infinity in our current situation. This gives

ak(r0)(x0) ≥ (ωdr
d)−k(r0)+1e−γbk(r0)(1+ε)(r0/k(r0))α ≥ e−(d+ε)k(r0) log r0−γbk(r0)(1+ε)(r0/k(r0))α ,

where the second inequality holds eventually, since r0 � r. Now an elementary optimization on k(r0)

shows that k(r0) � r0 log−1/α r0 is the decisive scale. Then, taking k(r0) ∼ tr0 log−1/α r0 for some
t ∈ (0,∞), carrying out the limit and making ε ↓ 0 afterwards, we have

lim inf
r,r0

1

r0 log1−1/α r0

log ak(r0)(x0) ≥ −
(
dt+ γbt1−α

)
,

which is the lower bound in the first line of (3.2).

Next, we verify the second line of (3.2). We actually show more, namely that if k(r0) ≤ 1
2r0 for all

r0, then

lim sup
r,r0

ak(r0)

e−bγr
α
0 k(r0)1−α

≤ 1. (3.9)

This will imply the second line of (3.2). Indeed, let t > 0 and let r0 7→ k(r0) be such that

k(r0) ≤ (t+ o(1))r0/ log1/α r0 . Then, by (3.9)

lim sup
r,r0

1

r0 log1−1/α r0

log ak(r0)(x0) ≤ lim sup
r,r0

−bγk(r0)1−αrα0

r0 log1−1/α r0

= lim sup
r,r0

−bγ
(k(r0) log1/α(r0)

r0

)1−α
≤ −bγt1−α,

(3.10)

as wanted.

In order to verify (3.9), we will first concentrate on the function (x, y) 7→ b/`(|x − y|) instead of

(x, y) 7→ g(x, y). For any k ∈ N and any x0, . . . , xk ∈ Br(o) satisfying xk = o, using Jensen’s inequality
for the convex function 1/`(| · |) and some elementary estimates, we obtain

1

k

k∑
l=1

1

`(|xl−1 − xl|)
≥ 1

`
(

1
k

∑k
l=1 |xl−1 − xl|

) ≥ (1

k

k∑
l=1

|xl−1 − xl|
)α
≥
(∣∣∑k

l=1(xl−1 − xl)
∣∣

k

)α
=
( |x0 − xk|

k

)α
=
(r0

k

)α
(3.11)

Thus the version of ak(r0) with b/`(|x− y|) instead of g(x, y) can be estimated as follows.∫
Br(o)

k−1

( k−1∏
l=1

dxl

Leb(Br(o))

)
e
−γ

∑k
l=1

b
`(|xl−1−xl|) ≤

∫
Br(o)

k−1

( k−1∏
l=1

dxl

Leb(Br(o))

)
e−γbk

1−αrα0 = e−γbk
1−αrα0 ,

(3.12)
which implies (3.9) for this version.
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We now conclude (3.9), for any k(r0) ∈ N satisfying k(r0) ≤ 1
2r0. For this, we need to approximate

the numerator
∫
W `(|y − xl|) dy by b for sufficiently many l, more precisely to derive, for any ε > 0, a

bound of the form
k(r0)∑
l=1

g(xl−1, xl) ≥ (1− ε)α(b− ε)k(r0)1−αrα0 (3.13)

eventually in our limit. Indeed, then, using this in the definition of ak(r0)(x0) just as in (3.12), carrying
out our limit will imply (3.9), after letting ε ↓ 0.

Now we derive (3.13). Let us now define an auxiliary function s : (0,∞) → (0,∞) such that
r − s(r)→∞ and 0 < r − s(r) = o(r) in our limit. Fix ε ∈ (0, 1

4). The idea is to pick r so large that∣∣∣ ∫
Br(o)

`(|y − x|) dy − b
∣∣∣ ≤ ε, ∀x ∈ Bs(r)(o). (3.14)

Let us assume that we are given a trajectory (x0, x1, . . . , xk(r0)−1, xk(r0) = o) with k(r0) ≤ 1
2r0. Let us

define the index of the last step outside Bs(r)(o):

k0(r0) =

{
max{l ∈ {0, 1, . . . , k(r0)− 1} : |xl| ≥ s(r)}, if ∃l{0, 1, . . . , k(r0)− 1} : |xl| ≥ s(r)},
0 otherwise.

(3.15)

Let r0 > 0 be so large that s(r) > (1− ε)r and (3.14) holds. Then we have

k(r0)∑
l=1

g(xl−1, xl) ≥
k(r0)∑

l=k0(r0)+1

g(xl−1, xl) ≥
k(r0)∑

l=k0(r0)+1

b− ε
`(|xl−1 − xl|)

(3.16)

≥ (b− ε)(k(r0)− k0(r0))

`
(

1
k(r0)−k0(r0)

∑k(r0)
l=k0(r0)+1 |xl−1 − xl|

) (3.17)

≥ (b− ε)(k(r0)− k0(r0))

`
(

1
k(r0)−k0(r0)(1− ε)r0

) (3.18)

≥ (1− ε)α(b− ε)(k(r0)− k0(r0))1−αrα0 ≥ (1− ε)α(b− ε)(k(r0))1−αrα0 . (3.19)

Here in (3.16) we used the fact that xk0(r0), . . . , xk(r0)−1, xk(r0) lie in Bs(r)(o) and therefore, for the
numerator of each g(xl−1, xl) with l > k0(r0), (3.14) can be applied. Next, (3.17) is an application of
Jensen’s inequality for 1/`(| · |), and (3.18) uses the following fact. Either k0(r0) = 0, in which case

k(r0)∑
l=k0(r0)+1

|xl−1 − xl| ≥
k(r0)∑

l=k0(r0)+1

(|xl−1| − |xl|) ≥ |x0| = r0 ≥ 2k(r0) ≥ k(r0)− k0(r0), (3.20)

or k0(r0) > 0, and thus

k(r0)∑
l=k0(r0)+1

|xl−1 − xl| ≥
k(r0)∑

l=k0(r0)+1

(|xl−1| − |xl|) ≥ s(r) ≥ (1− ε)r > (1− ε)r0 ≥ k(r0) ≥ k(r0)− k0(r0).

(3.21)
In both cases, the argument in `(| · |) is ≥ 1, and we can write the term in terms of the α-norm and
the first step in (3.19) also follows. Hence, we have derived (3.13).

As for the third line of (3.2), we have the following. Note that for any x ∈ Br(o), we have∫
Br(o)

`(|y − re1|) dy ≤
∫
Br(o)

`(|y − x|) dy,

where e1 = (1, 0, . . . , 0) is the first unit vector of Rd.
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Let us introduce the quantity b0 = limr→∞
∫
Br(o)

`(|y− re1|) dy = supr∈(0,∞)

∫
Br(o)

`(|y− re1|) dy ∈
(0, b). Now, for any k : (0,∞)→ N, in our limit,

Leb(Br(o))
−(k(r0)−1)ak(r0)(x0) =

∫
(Br(o))k(r0)−1

( k(r0)−1∏
l=1

dxl

)
e
−γ

∑k(r0)
l=1

∫
Br(o)

`(|y−xl|) dy
`(|xl−1−xl|)

≤
∫

(Rd)k(r0)−1

k(r0)−1∏
l=1

(
dxl e

−γ b0−o(1)
`(|xl−1−xl|)

)
≤
(∫

Rd
e
−γ b0−o(1)

`(|y|) dy
)k(r0)−1

= O(1)k(r0) = exp
(
o(k(r0) log r0)

)
,

(3.22)
where the first step in the last line follows from an elementary substitution and a reversion of the
order of integration. Now, recall that in our limit r � r0. If t > 0 and k(r0) ≥ (t+ o(1))r0/ log1/α r0,
we have that

Leb(Br(o))
−(k(r0)−1) = exp(−(dt+ o(1))k(r0) log r0)) = exp

(
− (dt+ o(1))r0 log1−1/α r0

)
.

This implies the third line of (3.2).

Next, we shall combine our arguments from the proofs of the upper bounds in the second line and
in the third line of (3.2) in order to obtain the upper bound in the first line of (3.2). Indeed, for t > 0

and k(r0) ∼ tr0/ log1/α r0 and ε > 0, let us write g(xl−1, xl) = εg(xl−1, xl)+(1−ε)g(xl−1, xl), estimate
the first term like in (3.22) and the second term with the help of (3.13). This gives eventually

ak(r0)(x0) ≤
∫
Wk(r0)−1

( k(r0)−1∏
l=1

dxl
Leb(Br(o))

)
e
−εγ

∑k(r0)
l=1

b0−o(1)
`(|xl−1−xl|) e−(1−ε)(1−ε)α(b−ε)γt1−αr0 log1−1/α r0

≤ exp
(
− (dt− ε)r0 log1−1/α r0 − (1− ε)α+1γ(b− ε)t1−αr0 log1−1/α r0

)
. (3.23)

Carrying out our limit and letting ε ↓ 0 implies the upper bound in the first line of (3.2). This finishes
the proof of Theorem 3.1. �

3.3.2. Proof of Corollary 3.2. The equality (3.4) follows immediately from the three lines of (3.2).
As for (3.5), let k∗(r0) be the smallest maximizer of k 7→ ak(x0), and let r0 7→ kmax(r0) satisfy the
assumption of the corollary, i.e., kmax(r0) ≥ k∗(r0). The lower bound easily follows from (3.2) by
estimating 1/A(x0) from below by the single summand ak∗(r0)(x0) and using (3.4). As for an upper
bound, we first write

lim sup
r,r0

1

r0 log1−1/α r0

log
1

A(x0)
≤ lim sup

r,r0

1

r0 log1−1/α r0

log
( b 12 r0c∑

k=1

ak(x0) +
∞∑

k=b 1
2
r0c+1

ak(x0)
)

= max
{

lim sup
r,r0

1
1
2r0 log1−1/α r0

log
( b 12 r0c∑

k=1

ak(x0)
)
, lim sup

r,r0

1

r0 log1−1/α r0

log
( ∞∑
k=b 1

2
r0c+1

ak(x0)
)}
.

Then the bound (3.22) implies that there exists a constant D > 0 such that we have

∞∑
k=b 1

2
r0c+1

ak(x0) ≤
∞∑

k=b 1
2
r0c+1

(Drd0)−k =
(Drd0)−b

1
2
r0c+1

1− 1
Drd0

≤ exp(−(1
2 − o(1))r0 log r0),

wherefore

lim sup
r,r0

1

r0 log1−1/α r0

log
( ∞∑
k=b 1

2
r0c+1

ak(x0)
)

= −∞.
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Moreover, the lower bound on r0 7→ kmax(r0) assumed in Corollary 3.2 and the first line of (3.2)
together yield

lim sup
r,r0

1

r0 log1−1/α r0

log
( b 12 r0c∑

k=1

ak(x0)
)

= lim sup
r,r0

1

r0 log1−1/α r0

log(br0/2c) + lim sup
r,r0

1

r0 log1−1/α r0

log ak∗(x0) = −(dt∗ + γbt∗1−α),

where we recall that t∗ = (bγ(α − 1)/d)1/α is the unique minimizer of t 7→ dt + t1−α on (0,∞), cf.
(3.3). This implies the upper bound between the leftmost and the rightmost side of (3.5). �

3.3.3. Proof of Proposition 3.3. Let ε, δ > 0 be fixed. First, let us note that by the definition of Tx0
and the fact that the behaviour of the Lebesgue measure restricted to Br(o) is subexponential in our
limit, (3.7) is equivalent to

lim sup
r,r0

1

r0 log1−1/α r0

log

∫
Dε,δ(k(r0),x0)

( k(r0)−1∏
l=1

dxl
Leb(Br(o))

)
e−γ

∑k(r0)
l=1 g(xl−1,xl)

< lim sup
r,r0

1

r0 log1−1/α r0

log ak(r0)(x0) = −
(
dt∗ + bγt∗1−α

)
, (3.24)

with k(r0) ∼ t∗r0 log−1/α r0 and xk(r0) = o, where in the last step we used the first line of (3.2). For
this, it suffices to show that there exists ε′ > 0 such that for any choice of x0 7→ (x1, . . . , xk(r0)−1) =
(x1(x0), . . . , xk(r0)−1(x0)) ∈ Dε,δ(k(r0), x0)) writing I = I(x0, x1, . . . , xk(r0)−1) as in (3.6), we have

lim inf
r,r0

∑k(r0)
l=1 g(xl−1, xl)

k(r0) log r0
= lim inf

r,r0

∑k(r0)
l=1 g(xl−1, xl)

t∗r0 log1−1/α r0

≥ bt∗−α + ε′. (3.25)

Indeed, then one can argue analogously to (3.23) to conclude the first inequality in (3.24).

Now we prove (3.25). Similarly to the proof of the second line of (3.2), we will first replace the
functional (x, y) 7→ g(x, y) by (x, y) 7→ b

`(|x−y|) everywhere.

We have, first using Jensen’s inequality for the convex function | · |α, then the definition of
Dε,δ(k(r0), x0) together with the fact that α > 1,

1

#I

∑
l∈I
|xl − xl−1|α ≥

( 1

#I

∑
l∈I
|xl − xl−1|

)α
≥
( 1

#I

∑
l∈I

∣∣|xl| − |xl−1|
∣∣) + ε log1/α r0

)α
≥
( 1

#I

∑
l∈I

∣∣|xl| − |xl−1|
∣∣)α + (ε log1/α r0)α. (3.26)

Similarly, by Jensen’s inequality and the triangle inequality,∑
l∈[k(r0)]\I |xl − xl−1|α

k(r0)−#I
≥
( 1

k(r0)−#I

∑
l∈[k(r0)]\I

|xl−xl−1|
)α
≥

∑
l∈[k(r0)]\I

( 1

k(r0)−#I

∣∣|xl|−|xl−1|
∣∣)α.
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Hence, more applications of Jensen’s inequality yield

1

k(r0)

∑
l∈[k(r0)]

|xl − xl−1|α

=
#I

k(r0)

1

#I

∑
l∈I
|xl − xl−1|α +

k(r0)−#I

k(r0)

1

k(r0)−#I

∑
l∈[k(r0)]\I

|xl − xl−1|α

≥ #I

k(r0)

( 1

#I

∑
l∈I

∣∣|xl| − |xl−1|
∣∣)α +

k(r0)−#I

k(r0)

(∑
l∈[k(r0)]\I

∣∣|xl| − |xl−1|
∣∣

k(r0)−#I

)α
+

#I(ε log1/α r0)α

k(r0)

≥
( 1

k(r0)

∑
l∈[k(r0)]

∣∣|xl−1| − |xl|
∣∣)α + δεα log r0 ≥

( r0

k(r0)

)α
+ δεα log r0

= (t∗−α + δεα) log r0, (3.27)

where in the penultimate step we used that #I ≥ δk(r0).

Now, we turn to `(| · |) instead of | · |−α. Hence, we have to distinguish | · | ≤ 1 and | · | > 1. Let
us define I ′ = I ′(x0, (x1, . . . , xk(r0)−1)) ⊆ [k(r0)] as the set of l ∈ [k(r0)] such that |xl − xl−1| ≤ 1.
Without loss of generality, I ′ is not empty. Then, after passing to a subsequence, if needed, we have
that #I ′ ∼ δ′k(r0) for some δ′ ∈ [0, 1]. Thus,∣∣∣ 1

#I ′

∑
l∈I′

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

∣∣∣ = O(1/ log1/α r0) = o(1). (3.28)

Let us assume for a moment that I ∩ I ′ = ∅ and δ′ < 1. Splitting into I ′ and [k(r0)] \ I ′, we obtain

1

k(r0)

∑
l∈[k(r0)]

1

`(|xl − xl−1|)
≥ 1

k(r0)

(
O(#I ′) +

∑
l∈[k(r0)]\I′

|xl − xl−1|α
)

≥ δ′ − o(1) +
1− δ′ − o(1)

k(r0)−#I ′

∑
l∈[k(r0)]\I′

|xl − xl−1|α.
(3.29)

We want to apply to the last term a lower bound analogous to (3.27), i.e., for the sum over [k(r0)] \ I ′
instead of [k(r0)]. For this, we need that the sum of the ||xl−1| − |xl|| satisfies a lower bound against
≈ r0. Using that I ∩ I ′ = ∅, we indeed see this as follows:∑

l∈[k(r0)]\I′

∣∣|xl−1| − |xl|
∣∣ ≥ −(δ′ + o(1))k(r0) +

∑
l∈[k(r0)]

∣∣|xl−1| − |xl|
∣∣ ≥ r0(1− o(1)).

Now, making a computation analogous to (3.27) for the right-hand side of (3.29), we obtain in our
limit

1

k(r0)

∑
l∈[k(r0)]

1

`(|xl − xl−1|)
≥ δ′ − o(1) + (1− δ′ − o(1))

[( r0

#([k(r0)] \ I ′)

)α
+

δ

1− δ′
εα log r0

]
≥
(

(1− δ′)1−αt∗−α + δεα − o(1)
)

log r0 ≥ (t∗−α + δεα − o(1)) log r0.

(3.30)

The case I ∩ I ′ 6= ∅ can be handled analogously as long as δ′ < 1. Indeed, in this case, (3.28) implies
that lim infr,r0 #(I \ I ′)/k(r0) and lim infr,r0

1
k(r0)

∑
l∈I\I′(|xl−1−xl|− ||xl−1−xl||) are positive. Thus,

a lower estimate on 1
k(r0)

∑
l∈[k(r0)](|xl−1−xl|−||xl−1−xl||) can still be obtained analogously to (3.29),

and we observe that this lower bound tends to infinity as δ′ ↑ 1.

Hence, we have in any case that (3.30) holds with δεα replaced by some positive number. From
this, (3.25) follows for (x, y) 7→ g(x, y) replaced by (x, y) 7→ b

`(|x−y|) for some ε′ > 0.
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In order to conclude (3.25), now we will proceed similarly to the proof of the second part of (3.2),
that is, we use uniform convergence of the interferences to b within Br(o) away from the boundary.
Let us recall the auxiliary function s and the index k0(r0) at (3.15). We essentially show that either a
non-negligible part of the deviations from the straight line induced by the definition of Dε,δ(k(r0), x0)
takes place after the k0(r0)th hop, or the first k0(r0) hops have a very high SIR penalization value,
and in both cases, (3.25) holds.

For each x0 with |x0| = r0, let us choose (x1(x0), . . . , xk(r0)−1(x0)) ∈ Dε,δ(k(r0), x0). We use

the notation τ(r0) = τ(x0, x1(x0), . . . , xk(r0)−1(x0)) for τ(r0) = k0(r0)
k(r0) . Let us further write I(r0) =

I(x0, x1(x0), . . . , xk(r0)−1(x0)) for a choice of a set I according to (3.6). According to (3.30), without
loss of generality we can assume that I ′ = I ′(x0, x1(x0), . . . , xk(r0)−1(x0)) = ∅ for all x0 considered.

In our limit,
∫
Br(o)

`(|z − y|)dz = b − o(1) uniformly in y ∈ Bs(r)(o). Thus, in case τ(r0) = 0,

(3.30) implies that (3.25) holds with some ε′. Hence, in order to conclude (3.25), we can assume that
τ(r0) 6= 0 eventually in our limit. Further, by our assumptions on the function s, for any ε′′ > 0,

eventually s(r) > (1− ε′′)r0. Now, on the one hand, since xl(x0) ∈ Bs(r)(o) for all l > k0(r0), similarly
to (3.30), the convexity of 1/`(| · |) implies the following

1

k(r0)

∑
l∈[k(r0)]

g(xl−1, xl) ≥
1

k(r0)

k(r0)∑
l=k0(r0)+1

g(xl−1, xl) ≥
1

k(r0)

k(r0)∑
l=k0(r0)+1

b− o(1)

`(|xl−1 − xl|)

≥ κ(ε′′)(1− τ(r0))1−α(b− o(1))t∗−α log r0

(3.31)

for some function κ : [0, 1] → R with lim%↓0 κ(%) = 1. Now, taking first our limit and then ε′′ ↓ 0,
we see that if lim infr,r0 τ(r0) > 0, then the proof of our goal (3.25) is finished. Now assume that
lim infr,r0 τ(r0) = 0. After passing to a subsequence, we can assume that limr,r0 τ(r0) = 0.

Let us first consider the case that lim infr,r0
1
r0

∑k(r0)
l=k0(r0)+1(|xl−1| − |xl|) ≥ 1 (observe that the total

sum over all l ∈ [k(r0)] is telescoping and hence equal to r0) and

lim inf
r,r0

1

#I(r0)

∑
l∈I(r0) : l>k0(r0)

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

> 0. (3.32)

Then one can employ an estimate analogous to (3.27) in order to conclude (3.25). Next, we investigate

the case that lim supr,r0
1
r0

∑k(r0)
l=k0(r0)+1(|xl−1| − |xl|) < 1. Then we have

lim inf
r,r0

1

r0

k0(r0)∑
l=1

∣∣|xl−1| − |xl|
∣∣ ≥ lim inf

r,r0

1

r0

k0(r0)∑
l=1

(|xl−1| − |xl|) > ε′′′

for some ε′′′ > 0. Thus, using that
∫
Br(o)

`(|z − y|)dz ≥ b0 − o(1) uniformly for y ∈ Br(o) in our limit

(where b0 was defined before (3.22)), a convexity argument similar to (3.27) yields

lim inf
r,r0

1

k(r0) log r0

∑
l∈[k(r0)]

g(xl−1, xl) ≥ lim inf
r,r0

1

t∗αk(r0)1−αrα0

k0(r0)∑
l=1

g(xl−1, xl)

≥ lim inf
r,r0

ε′′′αt∗−α(b0 − o(1))
(k0(r0)

k(r0)

)1−α
=∞.

(3.33)

Hence, in order to finish the proof of (3.25), it remains to consider the case that

lim infr,r0
1
r0

∑k(r0)
l=k0(r0)+1(|xl−1| − |xl|) ≥ 1 but (3.32) fails. After passing to a subsequence, we can
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assume that limr,r0 w(r0) ≥ ε, where we put

w(r0) =
1

#I(r0)

∑
l∈I(r0)∩[k0(r0)]

|xl−1 − xl| −
∣∣|xl−1| − |xl|

∣∣
log1/α r0

.

Using also that #I(r0) ≥ δk(r0) ∼ δt∗r0 log1/α r0, we have

ε− o(1) ≤ 1

#I(r0)

∑
l∈I(r0)∩[k0(r0)]

|xl−1 − xl|
log1/α r0

≤
( 1

δt∗
+ o(1)

) ∑
l∈I(r0)∩[k0(r0)]

|xl−1 − xl|
r0

.

Thus, a convexity argument similar to (3.27) implies

lim inf
r,r0

1

k(r0) log r0

∑
l∈[k(r0)]

g(xl−1, xl) ≥ lim inf
r,r0

1

k(r0) log r0

∑
l∈I(r0)∩[k0(r0)]

g(xl−1, xl)

≥ lim inf
r,r0

1

k(r0) log r0
(b0 − o(1))

( r0δt
∗ε

#(I(r0) ∩ [k0(r0)])

)α
#(I(r0) ∩ [k0(r0)])

≥ lim inf
r,r0

τ(r0)1−αb0(δε)α =∞.

This shows that (3.25) holds with a suitable choice of ε′ > 0. �

4. Strong punishment for the interference

This section is devoted to regime (2), i.e., the limit of strong penalization of interference. Our main
result corresponding to this, Proposition 4.1, is stated in Section 4.1 and proven in Section 4.2.

4.1. Strong interference punishment makes message trajectories straight. Proposition 3.3
shows that in the large-distance limit, with µ being the Lebesgue measure in a large ball W , the
typical message trajectory from the transmitter x0 to xk = o under Tx0 does not deviate much from
the straight line with high probability. In this proposition, |x0|, k = k(|x0|) and the radius of W are
assumed to tend to infinity in a certain way. From an application point of view, it is also desirable
to see a similar effect for a fixed compact communication area W , a fixed starting site x0 and a fixed
upper bound kmax ∈ N on the hop number. One way to find such an effect is to consider the limit
of a large SIR penalization parameter γ. It is easily seen from (2.19) that this limit should entirely

be determined by the minimizer of W k−1 3 (x1, . . . , xk−1) 7→
∑k

l=1 g(xl−1, xl). Our next result gives
criteria under which this minimizer follows a straight line and we have exponential estimates for
deviations of trajectories from that.

Let us consider the case where W is a closed ball Br(o), r > 0, the path-loss function ` is strictly
monotone decreasing (but satisfies the original condition that it is continuous and positive on [0,∞)).
A typical choice [BB09, Section 22.1.2] is `(r) = (1 + r)−α. Further, let us assume that the intensity
measure is rotationally invariant, i.e., µ ◦ O−1 = µ for any orthogonal d × d matrix O. Under these

conditions, we conclude that any minimizer of W k−1 3 (x1, . . . , xk−1) 7→
∑k

l=1 g(xl−1, xl) is of the
form xl = clx0 for l = 1, . . . , k − 1 with positive constants 1 > c1 > . . . > ck−1 > 0. Moreover, the
total probability mass carried by trajectories deviating from the straight line segment between the
transmitter and o at least by some fixed positive quantity decays exponentially fast as γ →∞.

More precisely, writing [[x, y]] = {αx+ (1− α)y|α ∈ R} for the line through x, y ∈ Rd, we state the
following.

Proposition 4.1. Let r > 0,W = Br(o), kmax ≥ 2, ` and µ be fixed. Let us assume that ` is strictly
monotone decreasing and µ is rotationally invariant.
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(1) For x0 ∈W , let us write

mkmax(x0) = min
k∈[kmax]

min
x1,...,xk−1∈W

k∑
l=1

g(xl−1, xl), xk = o.

Then, for any minimizer k ∈ [kmax] and x1, . . . , xk−1, there exist 1 > c1 > . . . > ck−1 > 0 such
that xl = clx0 for all l ∈ [k − 1].

(2) For k ∈ [kmax] and ε > 0, let us define

Dε
k(x0) = {(x1, . . . , xk−1) ∈W k−1 | ∃l ∈ {1, . . . , k − 1} : dist(xl, [[x0, o]]) > ε}. (4.1)

Then, writing T γx0 = Tx0 for the measure in (2.19) corresponding to γ, we have

sup
x0∈W

sup
k∈[kmax]

lim sup
γ→∞

1

γ
log sup

(x1,...,xk−1)∈Dεk(x0)
T γx0(k, x1, . . . , xk−1) < 0. (4.2)

The proof of the first part of this proposition is based on simple geometric arguments, while the
proof of the second part additionally uses the Laplace method. Note that in the first part, a minimizer
always exists because W is compact and g is continuous. The proof is carried out in Section 4.2.

4.2. Proof of Proposition 4.1. Throughout the proof, given any number of hops k ∈ [kmax], we will
always assume that xk = o.

We start with proving part (1). Let us fix x0 ∈ Br(o). The fact that (x, y) 7→ g(x, y) is bounded
away from 0 implies that for x0 = o, mkmax(x0) is uniquely attained by the 1-hop trajectory from x0

to x1 = o. Thus, we can assume that x0 6= o.

Let now k ∈ [kmax] and (x1, . . . , xk−1) ∈ Br(o)
k−1

. Let us assume that
∑k

l=1 g(xl−1, xl) = mkmax(x0).
We show that there are 1 > c1 > . . . > ck−1 > 0 such that xj = cjx0 for all j ∈ [k − 1], proceeding in
the following steps.

(i) Let H denote the closed half-space of Rd that contains x0 and whose boundary is orthogonal to
the vector from x0 to o and contains o. Then (x1, . . . , xk−1) ∈ Hk−1.

(ii) (x1, . . . , xk−1) ∈ (H∩ [x0, o])
k−1, where we write [x, y] = {αx+(1−α)y : α ∈ [0, 1]} for the closed

segment between x, y ∈ Rd.
(iii) |x0| > |x1| > . . . > |xk−1| > 0.

We prove these claims respectively as follows.

(i) Assume that the assertion does not hold, then let us define another trajectory (x′1, . . . , x
′
k−1) ∈

Hk−1 via x′l = xl if xl ∈ H and x′l being the image of xl under reflection across the boundary
hyperplane of H otherwise, for all l ∈ [k − 1]. The rotation invariance of µ and W , combined
with |xl| = |x′l|, implies that∫

W
µ(dy)`(|xl − y|) =

∫
W
µ(dy)`(|x′l − y|), l ∈ [kmax]. (4.3)

But, since |xl−1 − xl| ≥ |x′l−1 − x′l| and ` is strictly decreasing,

`(|xl−1 − xl|) ≤ `(|x′l−1 − x′l|), (4.4)

where equality holds if and only if xl−1, xl are both in H or both in Rd \ H. We conclude

that
∑k

l=1 g(xl−1, xl) >
∑k

l=1 g(x′l−1, x
′
l), which contradicts (x1, . . . , xk−1) being the minimizer

in (4.1).
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(ii) The case d = 1 is trivial. Let us consider the case d ≥ 2. Assume (x1, . . . , xk−1) ∈ Hk−1. Let us
define another trajectory (x′1, . . . , x

′
k−1) ∈ (H∩ [x0, o])

k−1 such that for all l ∈ [k− 1], x′l satisfies
|x′l| = |xl| and x′l ∈ [x0, o]. That is, x′l = x0|xl|/|x0|. Then, the radial symmetry of µ implies that
(4.3) holds. Furthermore, the fact that ` is strictly decreasing but |xl−1−xl| ≥ |x′l−1−x′l| implies
that also (4.4) is true in this case, where equality holds if and only if xl = x′l for all l ∈ [k − 1],
i.e., if xl ∈ [x0, o] for all l ∈ [k − 1].

(iii) Let (x1, . . . , xk−1) ∈ [x0, o]
k−1. In the following argument, we cancel in this trajctory all steps

that increase the distance to o, and we show that the sum of the SIR terms gets smaller by this.
Indeed, let us define i0 = 0 and ij = inf{l ∈ [k] : |xl| < |xij−1 |}, j = 1, . . . , k. Let m be the
largest index j such that ij <∞, then it is clear that 1 ≤ m ≤ k since x0 6= o. Now, let us define
an m-hop trajectory with relay sequence (y1, . . . , ym−1) = (xi1 , . . . , xim−1), writing y0 = x0 and
ym = o. Let us further define ε′ = min

x,y∈Br(o) g(x, y) > 0. Then, since for any j ∈ [m − 1] we

have that |xij−1 − xij | ≥ |xij−1 − xij |, we conclude that

m∑
j=1

g(yj−1, yj) =
m∑
j=1

g(xij−1 , xij ) ≤
m∑
j=1

g(xij−1, xij ) ≤
k∑
l=1

g(xl−1, xl)− (k −m)ε′.

Thus, (x1, . . . , xk−1) can only minimize (4.1) if k = m, that is, if |x0| > |x1| > . . . > |xk−1| > 0.

This finishes the proof of part (1) of Proposition 4.1.

As for part (2), we note that the case d = 1 is trivial since Dε
k(x0) = ∅ for all x0 ∈ Br(o).

Throughout the rest of the proof, let d ≥ 2. First, we fix x0 ∈ Br(o) and k ∈ [kmax], and we verify
that

lim sup
γ→∞

1

γ
log sup

(x1,...,xk−1)∈Dεk(x0)
T γx0(k, x1, . . . , xk−1) < −κ (4.5)

for some κ > 0 that neither depends on x0 nor on k. This will imply (4.2).

Again, it is easy to see that if x0 = 0, then (4.5) holds for some κ > 0, let us therefore assume that
x0 6= o. We first verify that there exists δ = δ(ε) > 0, independent of x0 and k, such that

mε
kmax

(x0) = inf
(x1,...,xk−1)∈Dεk(x0)

k∑
l=1

g(xl−1, xl) ≥ mkmax + δ(ε). (4.6)

In the construction of (x1, . . . , xk−1) 7→ (x′1, . . . , x
′
k−1) in the proof of (i) above, the fact that

dist(xl, [[x0, o]]) = dist(x′l, [[x0, o]]) for all l ∈ [k − 1] and k ∈ [kmax] implies that if (x1, . . . , xk−1) ∈
Dε
k(x0), then (x′1, . . . , x

′
k−1) ∈ Dε

k(x0) ∩ Hk−1. It follows that the infimum in (4.6) can be realized
along sequences of trajectories that have all their relays x1, . . . , xk−1 in H.

Let now (x1, . . . , xk−1) ∈ Dε
k(x0) ∩ Hk−1, and consider the construction of (x1, . . . , xk−1) 7→

(x′1, . . . , x
′
k−1) in the proof of (ii) above. We observe the following. Since x0 ∈ [x0, o] and

(x1, . . . , xk−1) ∈ Dε
k(x0), there exists l1 ∈ [k] such that

dist(xl1 , [[x0, o]]) > dist(xl1−1, [[x0, o]]) +
ε

k
≥ dist(xl1−1, [[x0, o]]) +

ε

kmax
,

where each [[x0, o]] can also be replaced by [x0, o]. One easily sees that this bound holds uniformly in
x0 ∈W and k ∈ [kmax].

Now, the Pythagoras theorem together with the fact that ` is strictly monotone decreasing yields
that in this case there exists δ′(ε) > 0 such that `(|xl1−1 − xl1 |) < `(|x′l1−1 − x′l1 |) − δ

′(ε). Note that

δ′(ε) depends only on `, r and ε but not on k or l1. On the other hand, by the rotational symmetry of
µ, the equality (4.3) holds for all l ∈ [k] for this choice of the relays xl and x′l. Therefore, we conclude
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that there exists a constant δ = δ(ε) > 0 such that for all n ∈ N we have

k∑
l=1

g(xl−1, xl) >
k∑
l=1

g(x′l−1, x
′
l) + δ(ε) ≥ mkmax + δ(ε).

This implies (4.6), and the construction shows that δ(ε) > 0 can be chosen independently of x0 and k.

We now finish the proof of part (2). Let us use the notation Aγ(x0) = A(x0) for the normalization
term in (2.17) corresponding to γ and recall the notation T γx0 = Tx0 from Proposition 4.1. It is clear
from the Laplace method [DZ98, Section 4.3] that we have

Aγ(x0) = eo(γ)+γmkmax (x0) as γ →∞.

For any (x1, . . . , xk−1) ∈ Dε
k, using (2.16) and (4.6), we can estimate

T γx0(k, x1, . . . , xk−1) =
νγk (dx0, . . . ,dxk−1)

µ(dx0)µ(dx1) . . . µ(dxk−1)
≤ eo(γ)+γmkmax (x0)−γmεmax(x0) ≤ eo(γ)−γδ(ε).

We conclude (4.5) (with κ > 0 being independent of x0 ∈ W and k ∈ [kmax]). Thus, part (2) of
Proposition 4.1 follows.

5. High local density of users

This section describes the behaviour of the system in regime (3), i.e., in the limit of a high local
density of users in a subset of the communication area. In Section 5.1, we explain both global and
local aspects of this limit. We formulate a result, Proposition 5.1, about the global aspects, the proof
of which is carried out in Section 5.2.

5.1. Global and local relaying behaviour. We consider the following question about the behaviour
of our model given by (2.16), assuming always that kmax ≥ 2.

Does the density of trajectories increase unboundedly in a densely populated subarea,
or do the messages avoid such area for the sake of having lower interference?

In order to give substance to this question, we replace our user density measure µ by

µa = µ+ aLeb|∆ ∈M(W ), a ∈ (0,∞), (5.1)

where Leb|∆ is the Lebesgue measure concentrated on a compact set ∆ ⊆ W , seen as a measure on
W . We think of ∆ as of a set of very high concentration of users and will consider the behaviour of
the optimal path trajectory in the limit a → ∞. We will from now on label all objects that depend
on µa instead of µ with the index a. We will study the measure

Ma =

kmax∑
k=1

k−1∑
l=1

πlν
a
k , (5.2)

where νak is defined according to (2.16). It receives the interpretation [KT17, Section 1.3] of the
measure of all the incoming messages at a given location (see also Section 2.3). Note that the total
mass Ma(W ) is zero if all messages go directly to the base station without any relaying hop; hence it
is a measure for the total amount of hops. Explicitly, we have

Ma(dx) = µa(dx)

∫
W
µa(dx0)

∑kmax
k=1

∑k−1
l=1

∫
Wk−2

∏
l′∈[k−1]\{l} µ

a(dxl′) e
−γ

∑k
l′=1 g

a(xl′−1,xl′ )
∣∣
xl=x∑kmax

k=1

∫
Wk−1

∏k−1
l=1 µ

a(dxl)e
−γ

∑k−1
l=1 g

a(xl−1,xl)
.

(5.3)
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Now we are interested in the behaviour of the measure Ma as a → ∞. Since (x, y) 7→ `(|x − y|) is
bounded away from 0 on W ×W , we first note that the large-a behaviour of the SIR term is given by

lim
a→∞

1

a
ga(x, y) =

∫
∆ dz `(|y − z|)
`(|x− y|)

=: g∆(x, y), x, y ∈W. (5.4)

The limiting function g∆ measures the SIR only in relation with the interference coming from ∆. This
ratio will turn out to be decisive and the effective SIR term in the limit a→∞.

Our first result is that, when the path-loss function (x, y) 7→ `(|x−y|) does not vary much on W×W ,
the presence of the highly dense area ∆ has a strongly repellent effect anywhere in the system and
suppresses all the relaying hops; indeed, the total mass of the measure Ma tends to zero as a→∞.

Proposition 5.1 (Criterion for exponential decay of the amount of relays). We have

sup
x∈W

lim sup
a→∞

1

a
log

Ma(dx)

dx
< 0 (5.5)

if and only if

min
x0∈W

[
min
x1∈W

(
g∆(x0, x1) + g∆(x1, o)

)
− g∆(x0, o)

]
> 0, (5.6)

Remark 5.2. (i) The condition (5.5) implies an exponential decay of the total mass of Ma, i.e.,

lim sup
a→∞

1

a
logMa(W ) < 0.

(ii) Since µa is clearly subexponential in a→∞, (5.5) is equivalent with an exponential decay of the
density of Ma with respect to µa instead of Leb|W .

(iii) The condition in (5.6) says that the effective SIR for a two-hop trajectory is uniformly worse than
the one of a direct hop to the origin. This criterion involves only one- and two-hop trajectories
and is valid even when kmax is much larger than 2.

(iv) Multiplying with two of the three denominators in (5.6) and using that the map W × W 3
(x, y) 7→ `(|x− y|) is bounded and bounded away from zero, we easily see that (5.6) holds if and
only if

min
x0,x1∈W

[
`(|x1|)

∫
∆
`(|z−x1|) dz+ `(|x0−x1|)

∫
∆
`(|z|) dz− `(|x1|)`(|x0 − x1|)

`(|x0|)

∫
∆
`(|z|)dz

]
> 0. (5.7)

(v) A sufficient criterion for (5.6) to hold is as follows. Let p ∈ (0, 1] be such that p`max = `min, where
we recall that `max and `min are the maximal and minimal values of W ×W 3 (x, y) 7→ `(|x−y|),
respectively. Then, a lower bound for the left-hand side of (5.7) is `2maxLeb(∆)(2p2− 1

p). This is

positive as long as p is larger than 2−1/3 ≈ 0.794.
Similarly, an upper bound on the left-hand side of (5.7) in terms of p is `2maxLeb(∆)(2− p3),

but this is larger than zero for all p ∈ (0, 1], so such a general estimate cannot be used for
disproving (5.7) in any case.

The proof of Proposition 5.1 is carried out in Section 5.2.

In our numerical results in Examples 7.1 and 7.2 with W = ∆, the condition (5.6) does not hold.

We give now a discussion of spatial statements saying that the quality of service (SIR penalization
with interference coming only from ∆) is significantly worse for messages relaying through a neigh-
bourhood of ∆ than through an area sufficiently far away from ∆. For simplicity, we do this only for
kmax = 2, a very small set ∆ and a special choice of the path-loss function. We will give arguments
that suggest that, for any large a, it is strictly suboptimal to relay through a neighbourhood of ∆ as
opposed to circumventing ∆ sufficiently far.
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Analogously to (5.10)–(5.11), the large-a limit for the mass of all relaying hops from x0 into a set
A ⊂W (assumed nice, e.g., being equal to the closure of its interior) and further to o is given by

− lim
a→∞

1

a
log T ax0(2, A) = γ

[
Ξx0(A)−min

{
g∆(x0, o),Ξx0(W )

}]
, (5.8)

where

Ξx0(A) = min
x1∈W∩A

[g∆(x0, x1) + g∆(x1, o)].

We want to discuss under what circumstances Ξx0(A) is smaller for sets A that are bounded away
from ∆ than for A being a neighbourhood of ∆. For simplicity, let us do that for W = Rd and very
small sets ∆ = Br(y0) with r � 1 only, i.e., we approximate

g∆(x, y) ≈ |∆|`(|y − y0|)
`(|y − x|)

, x, y ∈ Rd. (5.9)

Hence, we will put ∆ = {y0} and discuss the function

fx0,y0(ε) = min
x1∈W : |x1−y0|=ε

[ `(|x1 − y0|)
`(|x0 − x1|)

+
`(|y0|)
`(|x1|)

]
, ε ≥ 0.

This is an approximation of Ξx0(∂Bε(y0)). We will see that, under quite general conditions, fx0,y0(ε) <
fx0,y0(0) for all ε ∈ [0, ε0] for some ε0 > 0. This means that, for all sufficiently large a, the probability
weight for trajectories x0 → Bε0−δ(y0) → o is exponentially smaller than the one for trajectories
x0 → Bε0(y0)c → o for any ε0 > δ > 0.

To do this, use the triangle inequality and the monotonicity of ` to see that

fx0,y0(ε) ≤ f̃x0,y0(ε) :=
`(ε)

`(|x0 − y0|+ ε)
+

`(|y0|)
`(|y0|+ ε)

.

Note that f̃x0,y0(0) = fx0,y0(0) and that

f̃ ′x0,y0(0) =
`′(0)

`(|x0 − y0|)
− `(0)`′(|x0 − y0|)

`(|x0 − y0|)2
− `′(|y0|)
`(|y0|)

.

Note that for the choice `(r) = (1 + r)−α for some α > 0, this is negative as soon as |x0 − y0|(1 +
|x0 − y0|)α−1 > (1 + |y0|)−1, i.e., as soon as y0 is sufficiently far away from o, given the distance of
the transmission site x0 from y0. This proves the announced conclusion that a two-hop transmission
from x0 to the origin is strictly not optimal if the relaying step uses a neighbourhood of y0; here
we used no information about the spatial relation of the three sites x0, y0 and o, but the fact that
`′(0) < 0. However, for the path-loss function `(r) = min{1, r−α}, this argument does not work, since

f̃ ′x0,y0(0) > 0 (because `′(0) = 0).

5.2. Proof of Proposition 5.1. We analyze the behaviour of the left-hand side of (5.5). Taking the
limit a→∞, we obtain for fixed x, x0 ∈W for the numerator of (5.3)

lim
a→∞

1

a
log
[ kmax∑
k=1

k−1∑
l=1

∫
Wk−2

∏
l′∈[k−1]\{l}

µa(dxl′) exp
(
− γ

k∑
l′=1

ga(xl′−1, xl′)
∣∣∣
xl=x

)]

= −γ min
k∈[kmax]\{1}

min
l∈[k−1]

min
x1,...,xl−1,xl+1,...,xk−1∈W

k∑
l′=1

g∆(xl′−1, xl′)
∣∣∣
xl=x

.

(5.10)
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On the other hand, for the denominator of (5.3) for x0 fixed, we have

lim
a→∞

1

a
log
[ kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µa(dxl) exp
(
− γ

k−1∑
l=1

ga(xl−1, xl)
)]

= −γ min
k∈[kmax]

min
x1,...,xk−1∈W

k∑
l=1

g∆(xl−1, xl).

(5.11)

These two assertions follow from the Laplace method [DZ98, Section 4.3] in a standard way, since
the a-dependence of the integrating measure µa is clearly subexponential. Hence, we obtain that

lim
a→∞

1

a
logMa(dx) = −γ min

x0∈W

[
min

k∈[kmax]\{1}
min
l∈[k−1]

min
x1,...,xl−1,xl+1,...,xk−1∈W

k∑
l′=1

g∆(xl′−1, xl′)
∣∣∣
xl=x

− min
k∈[kmax]

min
x1,...,xk−1∈W

k∑
l=1

g∆(xl−1, xl)
]
.

(5.12)

Note that after taking supremum over x ∈W on the right-hand side of (5.12), we obtain a negative
number if and only if

min
x0∈W

[
min

k∈[kmax]\{1}
min

x1,...,xk−1∈W

k∑
l=1

g∆(xl−1, xl)− g∆(x0, o)
]
> 0. (5.13)

Now, assume that the condition (5.6) does not hold. Then we may pick x′0, x
′
1 ∈W with (g∆(x′0, x

′
1) +

g∆(x′1, o)− g∆(x′0, o)) ≤ 0. But this implies that (5.13) is false, as is shown by taking k = 2, x0 = x′0
and x = x′1. We conclude that (5.5) does not hold.

Conversely, let us assume that (5.5) is not satisfied and let us conclude that (5.6) also does not hold.
Using (5.5) and (5.12), we can choose x0 ∈W , k ∈ [kmax] \ {1} and x1, . . . , xk−1 ∈W such that

k∑
l=1

g∆(xl−1, xl) ≤ g∆(x0, o), xk = o. (5.14)

Let k be minimal for x0 with this property. We show that there exists x′0, x
′
1 ∈W such that g∆(x′0, x

′
1)+

g∆(x′1, o) ≤ g∆(x′0, o), wherefore (5.6) does not hold. Indeed, if this is not the case for x′0 = xk−2 and
x′1 = xk−1, then we have

k−2∑
l=1

g∆(xl−1, xl) + g∆(xk−2, o) ≤
k∑
l=1

g∆(xl−1, xl) ≤ g∆(x0, o) <

k−2∑
l=1

g∆(xl−1, xl) + g∆(xk−2, o),

where in the last step we used the minimality of k for x0. This is a contradiction, and thus (5.6) has
been disproven. The proposition follows. �

6. Game-theoretic interpretation of the optimization problem

In Section 2.4.2 we explained how our model that we introduced in Section 2.1 can be employed for
obtaining a numerical simulation algorithm for finding minimizer(s) s of γS(s)+βM(s), i.e., including
the congestion term. In this section, we give a more thorough discussion of this optimization problem
from a game-theoretical point of view. In particular, we explain in which sense our model is selfish or
not selfish and give a number of explicit examples for illustration. Note that in the term S(s) there
is no interaction between the trajectories (only with the users), but in the term M(s). We therefore
keep both β > 0 and γ > 0 fixed.
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Let Xλ = {X1, . . . , Xn} be fixed, where n ∈ N. For the rest of this section, we simplify the notation
as follows. We write S = Skmax(Xλ) and for i ∈ [n], Si = Sikmax

(Xλ). Let now s = (si)ni=1 ∈ S be a

collection of message trajectories. For i ∈ [n], let us write ki(s) = si−1 for the number of hops taken

by the ith trajectory si sent out from Xi to o. Then, in terms of interference and congestion, the
individual cost Ci(s) of si w.r.t. the entire family s is the individual interference penalization of si,
together with the congestion penalization at all the relays that si uses:

Ci(s) = γ

ki(s)∑
l=1

SIR−1(sil−1, s
i
l, X

λ) + β

ki(s)−1∑
l=1

n∑
j=1

(mj(s)− 1)1{sil = j}. (6.1)

The total cost of the telecommunication system is defined as

C(s) =

n∑
i=1

Ci(s) = γS(s) + βM(s) = γ

n∑
i=1

ki(s)∑
l=1

SIR−1(sil−1, s
i
l, X

λ) + β

n∑
j=1

mj(s)(mj(s)− 1).

We say that s is system-optimal if C(s) ≤ C(s′) for all s′ ∈ S.

For a collection s = (si)ni=1 of trajectories we write s = si(s
i, s−i), where s−i = (sj)j∈[n],j 6=i. Now,

given i and s−i = (sj)j 6=i with sj ∈ Sj for all j 6= i, a best response of the ith user for s−i is ui ∈ Si
such that Ci(si(u

i, s−i)) ≤ Ci(si(si, s−i)) = Ci(s) for all si ∈ Si. We say [NRTV07, Section 1.3.3] that
s = (si)ni=1 is a pure Nash equilibrium if si is a best response for s−i = (sj)j 6=i for all i ∈ [n].

Claim 6.1. For β, γ, λ > 0, given Xλ (with n > 0), a pure Nash equilibrium always exists.

Proof. The claim follows from the well-known result [NRTV07, Theorem 18.12] that unweighted atomic
congestion games always have a pure Nash equilibrium. Indeed, the cost functions Ci, i ∈ [n], and C
are the individual respectively total costs in an unweighted atomic congestion game (atomic instance)
[NRTV07, Section 18], which is defined as follows. For each i ∈ [n], the set of all possible paths si ∈ Si
of length at most kmax from Xi to o via users in Xj ∈ Xλ without visiting the same Xj twice can
be seen as the set of the strategies of the ith user (player) Xi. Each user uses precisely one of its
strategies, i.e., the game is unweighted, and each user has a finite number of strategies. Indeed, for
the sake of optimization of individual and total costs, we can neglect trajectories with loops since
removing any loop from the trajectory of the ith user strictly decreases Ci and does not increase Cj
for j 6= i, neither C.

The cost function in this game is defined as follows. Each hop from Xi to Xj has a constant cost

equal to γSIR−1(Xi, Xj , X
λ), and each used relay Xj has a linear cost equal to β(mj(s)−1), depending

on the trajectory configuration s. This way, by (6.1), the cost of the strategy of Xi corresponding to
s ∈ S equals Ci(s). Thus, the claim follows. �

Now, if there exists a system-optimal s ∈ S such that C(s) < C(s′) for all Nash equilibria s′, then
we call s a non-selfish optimum, since there exists i ∈ [n] such that si is not the best response of
the ith user for the remaining coordinates of the trajectory collection. Example 6.2 shows a two-
dimensional example that has a non-selfish optimum, and Remark 6.4 tells more about the relation of
the individual and the total costs.

Example 6.2. Let d = 2, λ = 1 and kmax = 2, and let Xλ = X1 = {X1, X2, X3}, ` and γ > 0 be
chosen in the following way. X1, X2, X3 and o,X2, X3 are vertices of two equilateral triangles with
X1 being in the interior of the latter triangle, so that |X1 − X2| = |X1 − X3| and |X2| = |X3|, so
that γSIR−1(X1, o,X

1) = γSIR−1(Xi, X1, X
1) = 1 and γSIR−1(Xi, o,X

1) = 1 + q for all i ∈ {2, 3} for
some q > 0 (see Figure 1).

The boundedness of `(| ·− · |) away from 0 on W ×W implies that for any β > 0 and i ∈ {2, 3}, any
si ∈ Si that uses some Xj with j ∈ {2, 3} as a relay is suboptimal both w.r.t. total and individual costs.
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q1+

q
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o

X1

X3X2

Figure 1. SIR weights per hop in Example 6.2. In the relevant cases, the congestion
at X1 is βy(y−1), where y is the number of elements of {X2, X3} relaying through X1.

Number of hops of s2 Number of hops of s3 C2(s) C3(s) C(s)

1 1 2 + q 2 + q 5 + 2q

2 1 2 2 + q 5 + q

2 2 2 + β 2 + β 5 + 2β

Table 1. Individual and total costs in standard representatives of the relevant cases in Example 6.2.

Indeed, leaving out this relay and moving on to the next step of the same trajectory instead decreases
Ci(s) without increasing any Cm(s), m 6= i. Using analogous arguments, one easily concludes that in
any optimal trajectory and also in any Nash equilibrium, X1 submits directly to o, and the two users
X2, X3 use either the direct link to o or the two-hop path via X1 to o. Table 1 shows the individual
costs and the total cost in some standard representatives of these cases.

The positive parameters q and β can be chosen such that the following holds. Given that X2 uses
its two-hop path X2 → X1 → o, the best response of X3 is to also use its two-hop path X3 → X1 → o
and vice versa, so that both users using their two-hop paths forms the unique Nash equilibrium, but
the system optima are the trajectory configurations in which only one of them relays via X1 and the
other one submits directly to o. According to Table 1, this holds if q > 0 and β ∈ (q/2, q). Thus, in
such cases, the optimum is non-selfish.

Similar effects occur in all dimensions d ≥ 2, with d + 1 users X1, X2, . . . , Xd+1 situated so that
|Xj − X1| = |Xi − X1| and |X1| < |Xi| = |Xj | for all i, j ≥ 2. In such cases, one can choose the
parameters in such a way that for all j ≥ 2, knowing that X1 transmits directly to o and each Xi,
j 6= i ≥ 2 relays through X1, the best response of Xj is to use also the relayed link via X1, but w.r.t.
total costs it would be better if Xj transmitted directly to o. Note that if this holds, it may still
happen that neither of these two joint strategies is system-optimal. �

Remark 6.3. In the setting of our Gibbsian model, Nash equilibria are not necessarily unique.
Consider Example 6.2 in the boundary case β = q. Then one easily checks that the system exhibits
three different Nash equilibria, namely the three ones that appear in Table 1. Also for β > q, there
are two Nash equilibria, namely the ones where exactly one of s2, s3 transmits directly to o and the
other one via X1, by the symmetry between X2 and X3.

Remark 6.4. A situation opposite to Example 6.2 is not possible. I.e., if plugging in an additional
relay to a trajectory decreases the total cost, it also decreases the individual cost of the transmitter
of that trajectory.

Indeed, consider Figure 2 with λ > 0, Xi, Xh ∈ Xλ and x ∈ Xλ∪{o}, where the direct hop from Xi

to x has SIR penalization p0 > 0, while the two-hop path via Xh has SIR penalization p1 + p2 with
p1, p2 > 0. Now, if s−i = (sj)j 6=i is given and the number of incoming messages at Xh coming from
all trajectories but the one of Xi equals m ≥ 0, then the direct link from Xi to x has individual cost
p0 +K and the Xi → Xh → o relayed link has individual cost m+ p1 + p2 +K for some K ≥ 0. On
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p2

p1
p0

x

Xh

Xi

Figure 2. A situation opposite to Example 6.2 is not possible.

the other hand, the total cost of the configuration with the Xi → x direct link is 2m+ p1 + p2 +K ′,
and the one with the Xi → Xh → x relayed link is p0 +K ′ for some K ′ ≥ 0. So if plugging in the relay
Xh increases the individual cost Ci, then it also increases the total cost C. This implies the claim.

7. Numerical studies

In this section, we give numerical illustrations of various properties of the minimizer (νk)k∈[kmax] of
(2.16), which describes the limiting empirical trajectory measure according to Proposition 2.1. We
consider kmax = 2, d = 1, 2, ` satisfying `(r) ∼ r−4 as r → ∞, W being a ball sufficiently large
such that both direct communication and two-hop communication are non-negligible, and µ being the
Lebesgue measure on W . We do not consider congestion, i.e., we put β = 0. One of our questions is
how strongly the effects that we proved in Sections 4 in the limit γ → ∞ emerge. We will see that
they are already very pronounced for γ = 1. We will not only look at the areas where one-hop and
two-hop communication dominate, respectively, and the approximation of a straight line of the latter
trajectories, but we will also see further effects.

First, let us choose `(t) = min{1, t−4}. Let W = Br(o) be a ball around the origin o. We will
pick r so large that the effect of the path-loss function ` is strong enough in the sense that we can
study areas in W from which a direct hop to o is preferred and areas from which a two-hop trajectory
is preferred. We are interested in seeing how sharp the transition between these two areas is. By
rotational invariance, we expect that the first area is a centred ball and the second the complement
of a ball in W . Hence, we do not lose much when going to d = 1. We expect the transition close to
the point where the interference term gives the transition from optimality of one-step trajectories to
two-step trajectories, i.e., at the radius |x0|, where the number

g(x0, o)− min
x1∈W

(
g(x0, x1) + g(x1, o)

)
(7.1)

switches the sign. Let r∗0 denote that point. Our main question is whether already for moderate
values of γ, we see a pronounced transition in the measures ν1(dx0) and π0ν2(dx0) of the form that
ν1(dx0) ≈ µ(dx0) for all x0 with |x0| smaller than r∗0 and π0ν2(dx0) ≈ µ(dx0) for all x0 with |x0|
significantly larger than r∗0, with a fast change around r∗0.

In the following one-dimensional numerical example, the answer is yes, already for γ = 1. The plots
presented here were created using Wolfram Mathematica.

Example 7.1. Let kmax = 2, d = 1, W = [−5, 5] = B5(o) ⊂ R, and `(r) = min{1, r−4}. According to
Proposition 2.1, the minimizing measures Σ = (ν1, ν2) are given as follows. With

1

A(x0)
= exp

(
− γ

∫ 5
−5 `(|y|)dy
`(|x0|)

)
+

1

10

∫ 5

−5
dx1 exp

(
− γ
(∫ 5
−5 `(|y − x1|)dy
`(|x0 − x1|)

+

∫ 5
−5 `(|y|)dy
`(|x1|)

))
, (7.2)

we have

ν1(dx0) = dx0A(x0) exp
(
− γ

∫ 5
−5 `(|y|)dy
`(|x0|)

)
(7.3)
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Figure 3. The graphs of x0 7→ ν1(dx0)/dx0 as in Example 7.1 for γ = 0, 0.001, 0.01, 0.1, 0.4, 0.7, 1,∞.

Figure 4. The graphs of (x0, x1) 7→ log(ν2(dx0,dx1)/dx0 dx1) as in Example 7.1 for
γ = 1 from two different views.

Figure 5. The graph of x0 ∈ W , mapped to a maximizer x∗1(x0) ∈ W of x1 7→
ν1(dx0,dx1)/dx0 dx1 in Example 7.1. The function ceases to be noisy shortly after x0

enters the regime where (7.1) switches sign.

and

ν2(dx0,dx1) =
1

10
dx0dx1A(x0) exp

(
− γ
(∫ 5
−5 `(|y − x1|)dy
`(|x0 − x1|)

+

∫ 5
−5 `(|y|)dy
`(|x1|)

))
. (7.4)

All integrals are numerically tractable for γ ∈ [0, 1]. As seen in Figure 3, already for γ = 1, the density
of ν1 is very close to the step function with a jump at the point r∗0 where (7.1) switches its sign. Also
the density of two-hops paths, ν2(dx0, dx1)/(dx0dx1), is extremely small for |x0 − x1| large, already
for γ = 1, so that we prefer to plot it on a logarithmic scale, see Figure 4.

Now we ask the question which x∗1 maximizes x1 7→ ν2(dx0, dx1)/dx0 dx1 for given x0 ∈ W . In
Figure 5, we see one approximate maximizer x∗1(x0) mapped to each x0 ∈ W . For x0 with |x0| not
exceeding the critical distance r∗0 ∈ (1.45, 1.5) significantly, the picture is very noisy. Due to multiple
approximate maximizers, the numerical plot is even not symmetric to 0, although it is clear that
ν2(dx0, dx1) = ν2(−dx0,−dx1) must hold for any x0, x1 ∈ W (cf. [KT17, Section 1.7.3]). When |x0|
becomes large enough so that it leaves the noisy area, the function becomes close to linear in x0 with
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x0 x∗1(x0) (7.1)
x coord. y coord. x coord. y coord. positive for x0?

0 0 8.92× 10−11 6.80× 10−11 no

0.1 0 0.05002 4.44× 10−13 no

0.4 0 0.20007 7.37× 10−13 no

0.6 0.2 0.30001 0.10003 yes

1 0 0.50010 −5.68× 10−9 yes

3 4 1.49893 1.99859 yes

5 0 2.49823 1.94× 10−8 yes

Table 2. In Example 7.2, the optimal relay x∗1(x0) of transmitter x0 is close to x0/2.
For |x0| large, using this relay is more favourable than the direct link towards o.

slope 1, followed by two symmetrically located breakpoints around |x0| ≈ 2.5 and afterwards, the
function continues to be approximately linear but with a slope smaller than 1. We observe that in the
steeper linear part, only the length of the second hop increases, and the optimal first step always has
length equal to 1, which is the maximal distance for which ` takes its maximal value `max = 1. This
eventually ceases to be the optimal strategy for |x0| ≈ 2.5, and after this breakpoint, the path-loss
causes a slow, continuous increase in the length of the first hop as well. For further details about what
we expect instead of the picture shown in Figure 3 for larger γ and/or higher numerical precision in
this example, see Example 7.2.

�

In the next, two-dimensional example, we illustrate the large-γ limit of Section 4. We choose a
rotationally invariant intensity µ and a strictly monotone decreasing path-loss function `. We observe
that the density ν2 concentrates very strongly on the straight line already for γ = 1.

Example 7.2. We choose d = 2, kmax = 2, W = B5(o) ⊂ R2, µ = Leb|W , `(r) = (1 + r)−4 and
γ = 1. Now, the one-hop trajectory measure ν1 is a measure on W ⊂ R2 and the two-hop one ν2 is a
measure on W 2 ⊂ R4; they are defined as in (2.16), analogously to the concrete case (7.2)–(7.4), with
a suitable adaptation to the new parameters.

We observe that for any user x0 ∈W , the map x1 7→ ν2(dx0, dx1)/dx0 dx1 is maximized in x∗1(x0) ≈
x0/2 with a very high accuracy, even for x0 close to o for which the optimal trajectory towards o is the
direct one. This implies in particular that ν2(dx0, ·) is strongly concentrated on the straight line [x0, o]
for any x0 ∈ W . The critical distance r∗0 = |x0| from o at which (7.1) switches sign is in (0.4, 0.45).
We note that, approximately, the same x∗1(x0) minimizes the SIR penalization term on the right-hand
side of (7.1). Thus, in this example with γ = 1, the qualitative behaviour of the system is already
close to the one described in Section 4 for large γ. Table 7.2 shows x∗1(x0) as a function of x0.

Note that in this example 1/`(| · |) is convex, and for two-hop trajectories of the form W 3 x0 →
x0/2→ o, the interference at x0/2 is almost the same as the one at o (at o it is about 0.970 and at x0

with |x0| = 2.5 it is about 0.937). Consequently, optimizing the SIR penalty over 2-hop trajectories
is almost the same as optimizing 1/` over the same trajectories, and the latter optimization clearly
leads to an optimal trajectory with two equal-sized hops. Similar properties also hold for ` in the
setting of Example 7.1. However, the constant part of the path-loss function makes the SIR landscape
much more disordered, at least when it comes to the numerical approximations such as the one in
Figure (5). For larger γ and/or better numerical precision, we expect that also in Example 7.1,
νk(dx0, ·) concentrates around x0/2.

The properties of ` (and µ = Leb on the rotationally symmetric W ) in this second example have
a strong regularizing effect on the trajectories; otherwise, the cutoff phenomenon in ν1(dx0) around
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the values of x0 satisfying |x0| = r∗0 is less strong for γ = 1 than in Example 7.1. Indeed, on the one
hand, for |x0| small, the proportion of one-hop trajectories ν1(dx0)/µ(dx0) is further away from 1;
indeed, even for x0 = o, a non-negligible amount 0,18% of the messages takes a two-hop trajectory,
and for |x0| = 0.4 < r∗0, already 2,82%. On the other hand, for |x0| = 0.5 > r∗0, still only 8,67% of
the messages goes via two hops, and for |x0| = 0.8, still only 94,86%. In comparison, in the setting of
Example 7.1, we have 1.45 < r∗0 < 1.5, and for |x0| = 1.4, already only 0.07% of the messages takes a
two-hop path and for |x0| = 0, less than 0.01%. For |x0| = 1.5, already 11,91%, and for |x0| = 1.7, an
overwhelming proportion 99.83%. �
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