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Abstract

Rephrasing results by HALL and REGINATTO [9] in the language of Wasserstein geometry leads
to a representation of the Schrödinger flow as a Lagrangian system on the space of probability
measures P(M) of physical space M where the potential field µ → 〈φ, µ〉 is augmented by the
Fisher information functional µ → ~2

8

∫
|∇ lnµ|2dµ.

1 INTRODUCTION

Recent applications of optimal transport theory have demonstrated that certain analytical and geomet-
ric problems on finite dimensional Riemannian manifolds (M, g) or more general metric measure spaces
(X, d,m) can effectively be treated in the corresponding (’Wasserstein’) space of probability measures
P2(X) = {µ ∈ P(X) |

∫
X
d2(x, o)µ(dx) <∞} equipped with the Wasserstein metric

dw(µ, ν) = inf

{∫∫
X2

d2(x, y)Π(dx, dy)
∣∣ Π ∈ P(X2),Π(X × A) = ν,Π(A×X) = µ(A), A ∈ B(X)

}1/2
,

which defines a relaxed version of Monge’s optimal transportation problem on X with c(x, y) = d2(x, y)

inf

{∫
X

c(x, Ty)µ(dx) |T : X → X,T∗µ = ν

}
.

Here T∗µ denotes the image (push forward) measure of µ ∈ P(X) under the map T .

The physical relevance of the Wasserstein distance was highlighted by the works of e.g. BRENIER [4] and
OTTO who established in [15] for the smooth Riemannian case X = M and smooth initial distribution µ

d2
w(µ, ν) = inf

{∫ 1

0

∫
M

|∇φt(x)|2µt(dx)dt

∣∣∣∣ φ ∈ C∞(]0, 1[×M), t→ µt ∈ C([0, 1],P(M))
µ̇t = − div(∇φtµt), t ∈]0, 1[, µ0 = µ, µ1 = ν

}
,

showing that dw is associated to a formal Riemannian structure on P(M) given by

TµP(M) = {ψ : M → R,
∫

M

ψ(x)dx = 0}

‖ψ‖2
µ =

∫
M

|∇φ|2dµ, where ψ = − div(µ∇φ).

In view of the continuity equation
µ̇t = − div(Φ̇tµt)

for a smooth flow (t, x) → Φt(x) on M , acting on a measures µ through push forward µt = (Φt)∗µ0, this
identifies the Riemannian energy of a curve t→ µt ∈ P(M) with the minimal required kinetic energy

E0,t(µ) =

∫ t

0

‖µ̇s‖2
TµsP(M) ds =

∫ t

0

∫
M

|Φ̇(x, s)|2µs(dx)ds.
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A crucial implication of this perspective on P(M) is the dw-gradient flow (’steepest descent’) interpretation
of evolution equations of the form

∂tu = div(ut∇F ′(u)),

where F ′ is the Frechet derivative of some smooth functional F on L2(M,dx), showing that the evolution
is completely determined by the geometric properties of F with respect to dw. A particularly important
example is the Boltzmann entropy F (u) =

∫
M
u lnu dx inducing the heat equation as gradient flow, which

initiated substantial progress in a synthetic theory of generalized Ricci curvature bounds [5, 12, 18, 22].

In this note we propose a second class of dynamical systems associated with the formal Riemannian
structure on P(M) which is given by Lagrangian flows on TP(M) associated to Lagrangians of the form

LF : TP(M) → R; LF (V ) =
1

2
‖ψ‖2

TµP − F (µ) for V = (ψ, µ) ∈ TµP(M)

where the functional F : P(M) → R now plays the role of a potential field for the infinite dimensional
system. We do not aim to develop a full theory here but give an interesting example instead which leads
to a Lagrangian representation of the Schrödinger flow by putting

F (µ) =

∫
M

φ(x)µ(dx) +
~2

8
I(µ), (1)

where

I(µ) =

∫
M

|∇ lnµ|2dµ

is known today as Fisher information functional. - In this form I appears already in the Hamiltonian of
BOHM’s famous 1952 paper [3, eq. (9)] as a consequence of the choice of polar coordinates Ψ = Re

i
~ S

but is not further analysed as such. The first detailed discussion of the meaning of I in the Schrödinger
context seems to be given in [17], using information-theoretic concepts. This was later complemented by
a simplified physical approach in [9].

Mathematically the connection between Wasserstein geometry and the Schrödinger flow is based on the
representation of the latter via a system of a generalized Hamilton-Jacobi and transport equations (4)
which is known since long [13]. (In fact this representation is the nucleus of the de Broglie-Bohm ’causal’
interpretation of the laws of quantum mechanics [6, 3], cf. eg. [7, 10].) The Riemannian Wasserstein
formalism now allows to write this system as a geometric Euler-Lagrange equation (3) induced from LF .

Hence our example (theorem 2.1 below) is interesting in two ways. Physically it shows how the Wasserstein
formalism can provide a unifying framework in which both classical and quantum behaviour of a particle
can be described in a seemingly classical fashion, cf. remark 2.2 ii). Mathematically it directs towards an
important class of dynamics on TP(M) which is worth systematic study.

2 RESULT - SCHRÖDINGER EQUATION FROM A LAGRANGIAN FLOW ON P(M)

The observation below is based on formal Riemannian calculations on the dw-dense subset P∞(M) ⊂
P2(M) of fully supported smooth probability measures as conducted in [15, 16] and extended by LOTT
in [11], ignoring the question of full mathematical generality. (The relevant results from [11, 15] are

summarized in section 3.) In the sequel we shall often identify µ ∈ P∞(M) with its density µ
∧
= dµ/dx.
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Theorem 2.1. For φ ∈ C∞(M) let F : P∞(M) → R defined as in (1). Then any smooth local Lagrangian
flow [0, ε] 3 t→ µ̇t ∈ TP∞(M) associated to LF yields a local solution of the Schrödinger equation

i~∂tΨ = −~2/2∆Ψ + Ψφ (2)

via the Madelung transform

Ψ(t, x) =
√
µ(t, x)e

i
~ S̄(x,t)

where

S̄(x, t) = S(x, t) +

∫ t

0

LF (Sσ, µσ)dσ

and S(x, t) is the velocity potential of the flow µ, i.e. satisfying
∫

M
Sdµ = 0 and µ̇t = − div(∇Stµ).

Proof . The Lagrangian flow (µt)t≥0 is a local critical point of the action functional

Sa,b(γ) =

∫ b

a

[
1

2
‖γ̇‖2

Tµ
− F (γ(t))

]
dt,

defined on the set of smooth curves t→ γt ∈ P(M), i.e µ solves the Euler-Lagrange equations

∇w
µ̇ µ̇ = −∇wF (µ), (3)

where ∇w is the Wasserstein gradient and ∇w
µ̇ µ̇ is the (pulled back on Γ(µ∗TP(M))) covariant derivative

associated to the Levi-Civita connection on TP(M). Let (x, t) → S(x, t) denote the velocity potential of
µ̇ (cf. section 3), then according to [11, proposition 4.24] the left hand side above is computed as

− div

(
µ∇

(
∂tS +

1

2
|∇S|2

))
,

where the right hand side equals (cf. section 3)

div

(
µ∇

(
φ+

~2

8

(
|∇ lnµ|2 − 2

µ
∆µ

)))
.

Since µt is fully supported on M this implies

∂tS +
1

2
|∇S|2 + φ+

~2

8

(
|∇ lnµ|2 − 2

µ
∆µ

)
= c(t)

for some function c(t). To compute c(t) note that due to the normalization 〈St, µt〉 = 0

0 = ∂t〈St, µt〉

= c(t)− 1

2
〈|∇S|2, dµ〉 − F (µ) + 〈S, µ̇〉

= c(t)− 1

2
〈|∇S|2, dµ〉 − F (µ) + 〈|∇S|2, µ〉 = c(t) + LF (St, µt).

Hence the pair t→ (St, µt) with S̄(x, t) = S(x, t) +
∫ t

0
LF (Sσ, µσ)dσ satisfies

∂tS̄ +
1

2
|∇S|2 + φ+

~2

8

(
|∇ lnµ|2 − 2

µ
∆µ

)
= 0

∂tµ+ div(µ∇S) = 0,

(4)

which is computed to provide a solution to Schrödinger’s equation via Ψ(x, t) =
√
µ(x, t)e

i
~ S̄(x,t). �
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Remarks 2.2. i) An equivalent version of theorem 2.1 puts Ψ =
√
µ(x, t)e

i
~ S(x,t) where t→ (− div(∇Stµt), µt)

is a Lagrangian flow for LF and S is chosen to satisfy for all t ≥ 0

〈St, µt〉 − 〈S0, µ0〉 =

∫ t

0

LF (µ̇s)ds.

ii) The case of a classicle particle moving in a potential field φ : M → R is embedded in the Lagrangian
formalism on TP(M) by choosing ~ = 0 for initial condition µ0 = δx0 and ψ0 = − div(ẋ0δx0). The
case of ~ = 0 and an extended initial field p(0, x) ∈ P∞(M) is delicate because of collisions of classical
Hamiltonian trajectories, i.e. after finite time µ̇t will assume values outside TP(M) where the formalism
no longer applies.

iii) In [9] the authors argue that the Madelung transform is part of a unique canonical i.e. symplectic
transformation for the Hamiltonian structure associated with LF under which the new coordinates de-
couple. From such a perspective the familiar complex valued form (2) of the Schrödinger equation would
appear to result from an ingenious choice of coordinates.

iv) The dw-gradient flow of FV gives the nonlinear 4th order ’Derrida-Lebowitz-Speer-Spohn’ or ’quantum
drift-diffusion’ equation, which is thoroughly analysed in [8].

v) Based on NELSON’s stochastic mechanics [14] the paper [20] aims to present a very different approach to
a potential link between (in this case ’stochastic’) optimal transport theory and the Schrödinger equation.

3 APPENDIX - FORMAL RIEMANNIAN CALCULUS ON P(M)

Let P2(M) denote the set of Borel probability measures µ on a smooth closed finite dimensional Riemannian
manifold (M, g) having finite second moment

∫
M
d2(o, x)µ(dx) < ∞. As argued in [11] the subsequent

calculations make strict mathematical sense on the dw-dense subset of smooth fully supported probabilities

P∞(M) ⊂ P2(M) which shall often be identified with the corresponding density µ
∧
= dµ/dx.

3.1 Vector Fields on P(M) and Velocity Potentials

A function φ ∈ C∞c (M) induces a flow on P(M) via push forward

t→ µt = (Φ∇φ
t )∗µ0,

where t→ Φt is the local flow of difformorphisms on M induced from the vector field ∇φ ∈ Γ(M) starting
from Φ0 = IdM. The the continuity equation yields the infinitesimal variation of µ ∈ P(M) as

µ̇ = ∂t|t=0µt = − div(∇φµ) ∈ Tµ(P).

Hence the function φ induces a vector field Vφ ∈ Γ(P(M)) by

Vφ(µ) = − div(∇φµ),

acting on smooth functionals F : P(M) → R via

Vφ(F )(µ) = ∂ε|ε=0F (µ− ε div(∇φµ)) = ∂t|t=0F ((Φ∇φ
t )∗µ)
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with Riemannian norm

‖Vφ(µ)‖2
TµP =

∫
M

|∇φ|2(x)µ(dx).

Conversely, each smooth variation ψ ∈ Tµ(P) can be identified with

ψ = −Vφ(µ) with φ = Gµψ,

where Gµ is the Green operator for ∆µ : φ → − div(µ∇φ) on L2
0(M,dx) = L2

0(M,dx) ∩ {〈f, dx〉 = 0}.
Hence, for each ψ ∈ TµP there exists a unique φ ∈ C∞ ∩ L2(M,dx) such that

ψ = − div(µ∇φ) and 〈φ, µ〉 = 0,

which we call velocity potential for ψ ∈ TµP(M).

3.2 Riemannian Gradient on P(M)

The Riemannian gradient of a smooth functional F : Dom(F ) ⊂ P(M) → R is computed to be

∇wF|µ = −∆µ(DF|µ),

where x→ DF|µ(x) is the L2(M,dx)-Frechet-derivative of F in µ, which is defined through the relation

∂ε|ε=0F (µ+ εξ) =

∫
M

DFµ(x)ξ(x)dx,

for all ξ chosen from a suitable dense set of test functions in L2(M,dx). The following examples are easily
obtained.

Linear case: F (µ) =
∫

M
φ(x)µ(dx) ∇wF|µ = Vφ(µ) = − div(∇φµ)

Boltzmann entropy: F (µ) =
∫

M
µ log µdx ∇wF|µ = − div(µ∇ log µ) = −∆µ

Renyi entropy: F (µ) =
∫

M
µpdx ∇wF|µ = −p(p− 1) div(µp−1∇µ)

Fisher information: F (µ) =
∫

M
|∇ lnµ|2dµ ∇wF|µ = − div(µ∇(|∇ lnµ|2 − 2

µ
∆µ)).

Here ∆ denotes the Laplace-Beltrami operator on (M, g). As a consequence, the Boltzmann entropy
induces the heat equation as gradient flow on P(M), and the information functional is the norm-square
of its gradient, i.e. ∥∥∇wEnt|µ

∥∥2

TµP
= ‖− div(µ∇ log µ)‖2

TµP =

∫
M

|∇ log µ|2dµ = I(µ).

3.3 Covariant Derivative

The Koszul identity for the Levi-Civita connection and a straightforward computation of commutators
show [11] for the covariant derivative ∇w associtated to dw that

〈∇w
Vφ1
Vφ2 , Vφ3〉Tµ =

∫
M

Hessφ2(∇φ1,∇φ2)dµ.

For a smooth curve t→ µ(t) with µ̇t = Vφt this yields

∇w
µ̇ µ̇ = V∂tφ+ 1

2
|∇φ|2 .
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[2] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability
measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005.
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