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ABSTRACT.- We consider the Green’s function of the Laplace operator
in domains with spherical holes (particles). Under natural assumptions on the
distribution of particles we show that the Green’s function decays exponentially
over distances larger than the screening length. This result is fundamental for
example when deriving effective equations for coarsening systems in unbounded
domains.

1 Introduction

In numerous applications, such as heat diffusion in a material with many in-
clusions, sedimentation [6] or electric fields in the presence of screens [15], one
has to solve the Laplace equation with Dirichlet boundary conditions on many
small holes (particles). It is by now a classical result that for regularly dis-
tributed particles the effective operator in the continuum limit is −∆ + 1

ξ2 Id,

where 1
ξ2 is the capacity density of the particles (cf. e.g. [16, 3, 14, 4] and the

references therein). In the present paper we show that already on the discrete
level the corresponding Green’s function decreases exponentially over distances
larger than ξ. This is done under natural assumptions on the distribution of
particles, which are satisfied in particular by randomly distributed particles.

This result is crucial in order to rigorously derive in arbitrarily large domains
effective equations for particle systems which undergo coarsening by diffusional
mass exchange. We briefly sketch the application of our result to this problem in
Section 2 before we present the proof in Section 3. We concentrate in the present
paper mainly on the three dimensional case. The two-dimensional case, which
is also of importance to applications, can be treated analogously (cf. Section
3.4).

2 Mean-field models for coarsening

We consider the last stage of a first order phase transformation where particles of
a new phase interact by diffusional mass exchange to reduce their total interfacial
energy. In the case when the volume fraction of the particles is small they quickly
become radially symmetric and do essentially not drift in space. Subsequently,
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plutense, 28040 Madrid, Spain.

1



to reduce the surface energy, large particles grow, smaller particles shrink and
disappear, a scenario known as Ostwald Ripening.

In order to predict the statistics of a large system one is interested in deriving
reduced models for this process. A suitable starting point for such a derivation
is a modified version of the Mullins-Sekerka model (see [1, 17] for a justification).
Within this model the particles are given by balls Bi = B(xi, Ri(t)), with small
total volume fraction ε � 1, and number density Nε. The evolution of the
particle radii is given by

Ṙi =
1

|∂Bi(t)|

∫

∂Bi(t)

∂u

∂n
as long as Ri > 0, (2.1)

where for some domain Ω ⊂ R
3,

∆u = 0 in Ω \
⋃

i

Bi(t), (2.2)

u =
1

Ri
on ∂Bi(t), (2.3)

with periodic or Neumann boundary conditions on ∂Ω. Here, u is a diffusion
potential, assumed to be in local equilibrium given the distribution of phases.
Equation (2.3) is the well-known Gibbs-Thomson law of local equilibrium, which
accounts for surface tension. This evolution preserves the total volume fraction
of particles and reduces their total surface area.

The characteristic length scales in this problem are the typical radius rε =

(εNε)
1/3 and the typical distance between particles N

−1/3
ε . However, as has

been observed long ago, there is a crucial intrinsic length scale, the so-called
screening length ξε = 1√

rεNε
, which is the characteristic length over which par-

ticles interact. This will become apparent in the following asymptotic analysis of
(2.1)-(2.3) for small ε. For the solution u of (2.2), (2.3) we choose the following
ansatz:

u (x, t) =
∑

j

(

1 − Rj(t)ū(xj ,t)
rε

)

|x− xj |
(2.4)

where we assume that ū(x, t) is a smoothly varying function in the macroscopic
variable x and rε is a characteristic radius.

The ansatz (2.4) is motivated by an electrostatic analogy. First, the terms
1

|x−xj | are the potentials created by the single particles. On the other hand, in

each particle there is an additional contribution
Rj ū(xj ,t)

rε
which takes the effect

of particles different from xj into account. Here, Rj is the capacity of the parti-

cles, ū/rε is a normalized mesoscopic potential, and thus
Rj ū(xj ,t)

rε
is roughly the

charge induced by particle j on particle i. Due to the large number of particles
we expect that the mesoscopic potential ū varies slowly, that is on length scales
which are much larger than the typical distance between neighboring particles.
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Combining (2.4) with the boundary condition (2.3) we easily obtain to lead-
ing order:

1

Ri
=

(

1− Riū(xi,t)
rε

)

Ri
+

∑

j 6=i

(

1 − Rj ū(xj ,t)
rε

)

|xi − xj |

or equivalently:

0 = −ū (xi, t) + rε
∑

j 6=i

(

1 − Rj ū(xj ,t)
rε

)

|xi − xj |
.

It is convenient to rescale the radii with the typical radius rε. Namely, we
define R̂j =

Rj

rε
. Using the fact that ξε = 1√

rεNε
we obtain

0 = −ū (xi, t) +
1

(ξε)
2

∑

j 6=i

(

1 − R̂j ū (xj , t)
)

|xi − xj |
· 1

Nε
(2.5)

The spatial volume for a particle is 1
Nε
. Suppose that in the limit ε → 0

the number of particles in the differential of volume x + dx with radius in the
interval [r, r + dr] is given by ν(x, r)dxdr. We can then formally approximate
the sum in (2.5) by means of an integral

0 = −ū (x, t) +
1

(ξε)
2

∫

[ρ (y) − µ (y) ū (y, t)]

|x− y| dy (2.6)

where we have used the assumption that ū (·, t) is smooth and where ρ (y) =
∫ ∞
0 ν(y, r)dr, µ (y) =

∫ ∞
0 rν (y, r) dr. Taking the Laplacian of (2.6) we obtain:

− (ξε)
2 ∆ū+ 4πµū = 4πρ

This equation for the effective potential ū shows that ū varies over length scales
of order ξε. Since in the regime of small volume fraction ξε is much larger than
the typical distance between particles, this justifies a posteriori our assumption
that ū is slowly varying.

To derive the equation for the evolution of the radii we deduce from (2.4)
and (2.1) that

Ṙi =
1

|∂Bi (t)|

∫

∂Bi(t)

∂u

∂n
= −

(

1 − R̂iū (xi, t)
)

R2
i

or, using the natural time scale t̂ = t
r3

ε
,

dR̂i

dt̂
= − 1

R̂i
2 +

ū (xi, t)

R̂i

. (2.7)

In terms of the distribution of radii νt(r, x), equation (2.7) is equivalent to

∂tνt + ∂r

(

( ū(t, x)

r
− 1

r2
)

νt

)

= 0, (2.8)
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where ū(t, x), after rescaling space with respect to ξε, is given for each time t
by

−∆ū+ 4πµū = 4πρ (2.9)

The model (2.8), (2.9) is an inhomogeneous extension of the classical model for
Ostwald ripening, first considered by Lifshitz and Slyozov [7] and by Wagner
[18]. The inhomogeneous extension has first been rigorously derived in [8] in
the case that the system size is of the order of the screening length and for a
regular distribution of particles. In [11, 12], these results are extended to the
more realistic case, that the screening length is much smaller than the system
size and that the particles are randomly distributed. A main technical difficulty
is that the underlying domains become unbounded after rescaling with respect
to the screening length. Thus we cannot use the techniques used in [8], but need
mathematical tools which enable us to localize the analysis. To that aim the
result of the present paper is crucial. It gives that the Green’s function of the
Laplace operator in domains with holes decreases exponentially over distances
larger than the screening length. This allows to make the approach sketched
above rigorous, since, roughly speaking, it avoids diverging sums in the above
ansatz.

We refer to [11, 12] and the references therein for more details and also for
a discussion on further issues in the analysis of models for Ostwald Ripening.

3 The screening property

3.1 Assumptions on the distribution of particles

We first go over to suitably rescaled variables. As we have seen in the previous
section, the relevant length scale is the screening length ξε, which describes the
scale over which particles interact. Hence we introduce the following rescaled
variables:

x̂ =
x

ξε
, r̂ε =

rε
ξε
, R̂i =

Ri

rε
, N̂ε = Nεξ

3
ε ≈ ε−1/2. (3.1)

In the following we will always work with these rescaled variables and thus we
drop the hats for convenience. We also denote by Bi := BrεRi(xi). In addition
we notice for later reference that in these rescaled variables we have rε = N−1

ε .
We will assume that there exist two sequences dε and lε which satisfy

rε � dε ≤ N−1/3
ε � lε � 1 as ε→ 0, (3.2)

with the following properties.
There exists a constant C0 > 0 such that

(H1) The density of particles is bounded. That is, each cube Q of volume 1 can
be decomposed into disjoint cubes of size lε that will be denoted as Qε

such that
n (Qε) ≤ C0l

3
εNε, (3.3)

where n(Q) denotes the number of particles in a cube Q.
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(H2) Particles are well separated; more precisely

min
i6=j

|xi − xj | ≥
1

C0
dε

(H3) Particles are on average homogeneously distributed. That is, there exists
δε → 0 as ε→ 0 such that for each cube Qε we have

max
Qε

max
xi∈Qε

∑

xj∈Qε, j 6=i

1

|xi − xj |
1

Nε
≤ δε. (3.4)

(H4) The average capacity in regions of the size of the screening length (now
rescaled to one) is bounded below. More precisely, we assume that for any
cube Q with volume 1

1

Nε

∑

xi∈Q

Ri ≥
1

C0
(3.5)

(H5) All particles are of the same order of size. We assume

max
i
Ri ≤ C0. (3.6)

Remark 3.1. Some of the above assumptions on the particles might seem on
first glance a bit arbitrary. However, it is shown in [12] that they are basi-
cally satisfied with high probability for randomly distributed particles. Let us
comment in more detail on each assumption.

(H1) By this assumption we avoid regions with very high particle concentration.
In principle, this uniform assumption could be replaced by an assumption
of integral type. We prefer however not to do so to avoid technicalities
which are not relevant for the scope of this article.

(H2) This assumption mainly enables us to consider different particles as in-
dependent ones, such that – combined with the other assumptions – the
capacity of the particles is basically additive. For randomly distributed
particles assumption (H2) fails for a small fraction of particles (cf. [12]).
However, this is not relevant for the result in this paper, since additional
particles only improve the screening property. It is only crucial that the
subset of particles which satisfies (H2) still satisfies (H4), but this is true
with high probability.

In the context of the full problem (2.1)-(2.3) the particles which overlap
give rise to some technical difficulties. In fact, one has to show that only
very few particles come close during the evolution and that they do not
have a significant impact on the other particles. That this is the case is
again a consequence of the screening property. For details we again refer
to [12].

5



(H3) Assumption (H3) is perhaps the least intuitive. It basically states that
particles in each cube Qε are far enough between themselves. We easily
check that (H3) is satisfied for periodic arrays of particles. In this case

∑

xj∈Qε, j 6=i

1

|xi − xj |Nε
≤ C

∫

Qε

dy

|x− y| ≤ Cδ2ε .

Another way to formulate the meaning of (H3) is again by electrostatic
analogy. (H3) ensures that the electrostatic fields produced by charges
close to a given particle are small compared to the ones generated by par-
ticles within the screening length. In Section 3.3 we will give an example
of a particle distribution which satisfies all assumptions but (H3) and for
which the screening property does not hold.

(H4) This assumptions implies that there are enough particles to ensure the
screening effect in distances of order one. Obviously, this property is
essential and cannot be weakened.

(H5) This assumption avoids that too many large particles are present. It
could probably be relaxed to allow for radii distributions with a tail
which is decaying fast enough. Then, however, we would need a slightly
stronger version of (3.4), since we typically encounter terms of the form
∑

xj∈Qε

Rj

|xj−xi|Nε
which need to be small.

3.2 Exponential screening

This section is the heart of the paper, where we prove the screening property.
For the following we define

Uε := R
3 \

⋃

i

Bi.

We also introduce the capacity density:

µε(x) =
1

Nεl3ε

∑

xi∈Qε

Ri, x ∈ Qε, (3.7)

and notice that assumptions (H1) and (H5) imply:

0 ≤ µε ≤ C2
0 , (3.8)

whereas (H4) yields:
∫

Q

µε (x) dx ≥ 1

C0
(3.9)

Theorem 3.2. Consider a distribution of particles satisfying (H1)-(H5). Let
us denote as G (x, y) the unique solution of the problem

−∆G (·, y) = δ (· − y) in Uε , y ∈ Uε

G (x, y) = 0 , x ∈ ∂Bi
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which satisfies for each y that G (x, y) → 0 as |x| → ∞. Then there exist positive
constants ε0 and γ such that, for any ε ≤ ε0:

G (x, y) ≤ 1

4π

e−γ|x−y|

|x− y| , x, y ∈ Uε. (3.10)

The proof of Theorem 3.2 is a consequence of the following Lemma.

Lemma 3.3. Suppose that Q is a cube of volume 1 in R
3. Assume that the

particles in Q satisfy (H1)-(H5). Let us consider a solution of the boundary
value problem

∆ϕε = 0 in Q ∩ Uε

ϕε = 1 on ∂Q ∩Q ∩ Uε,

ϕε = 0 on ∂Bi ∩Q, if Bi ⊂ Q.

Then, there exists ν0 > 0 and ε0 > 0 such that for 0 < ε ≤ ε0:

ϕε (x0) ≤ 1 − ν0

where x0 is the center of Q.

Proof. We assume in the following that the functions ϕε, as well as other
functions which satisfy a constant Dirichlet condition on ∂Bi, are extended by
the respective constant in the particles.

For the proof we argue by contradiction. Suppose that there are sequences
of particles {(xi,ε, Ri,ε)} satisfying (H1)-(H5) and

lim sup
ε→0

ϕε (x0) = 1 (3.11)

We claim that under the assumptions of Lemma 3.3 there exist subsequences
such that (with µε as in (3.7)):

µε ⇀ µ in L2 (Q) , (3.12)

ϕε ⇀ ϕ in H1 (Q) , (3.13)

where ϕ is a weak solution of

−∆ϕ+ 4πµϕ = 0 in Q, (3.14)

ϕ = 1 on ∂Q (3.15)

Assume for the moment that (3.12)-(3.15) hold true and let us continue. By
(3.8) and (3.9) it holds 0 ≤ µ ≤ C2

0 and
∫

Q
µ dy ≥ 1/C0. Then it follows that

µ ≥ 1
2C0

> 0 in a set of positive measure, whence by the maximum principle
we obtain ϕ (x0) < 1. Furthermore, by the maximum principle we can assume
that there are no particles in 1

4Q. Then the functions ϕε are harmonic in 1
4Q.

Using classical regularity theory for elliptic equations as well as (3.13) we obtain
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ϕε → ϕ uniformly in 1
8Q. Then limε→0 ϕε (x0) = ϕ (x0) < 1 in contradiction

with (3.11), whence the proof of Lemma 3.3 follows.
Therefore, in order to conclude, it only remains to show (3.12)-(3.15). The

proof is well-known for regular distributions of particles (see e.g. [3] for a peri-
odic array). However, for less regular distributions as considered in this paper,
only abstract results exist.

Before we start the proof we notice that we can assume without loss of
generality that

all particles are at a distance larger than dε/2 from ∂Qε. (3.16)

Otherwise we define a new family of domains Q̂ε by

Q̂∗
ε =

(

Qε ∪
⋃

{xi∈Qε}
B 1

2
dε

(xi)
)

,

Q̂ε = Q̂∗
ε \

(

⋃

Q̂ε′ 6=Q̂ε

Q̂ε′

)

That is, we enlarge the cubes Qε adding balls of radii 1
2dε centered at the

particles that are close enough to the boundaries of the cubes Qε and then sub-
tract the portions that belong to other domains obtained in the same manner.
Taking into account assumption (H2) it follows that the domains Q̂ε cover com-
pletely the original cube Q and the intersection of two different domains Q̂ε is
empty. The we could work with Q̂ε instead of Qε in the following.

Thus, let us assume that (3.16) holds. We proceed – similarly as in [3] – by
testing the equation for ϕε with a suitable test function which in the present
case is just the capacity potential in the cubes Qε. More precisely, we define a
family of continuous functions wε piecewise in Qε by

−∆wε = 0 in Qε \
⋃

i

Bi (3.17)

wε = 1 on ∂Bi (3.18)

wε = 0 on ∂Qε. (3.19)

We first prove

∣

∣

∣

∫

Qε

|∇wε|2dx− 4π

Nε

∑

xi∈Qε

Ri

∣

∣

∣
≤ C

(

δε +
rε
dε

)

∫

Qε

|∇wε|2dx . (3.20)

8



To this end, we integrate by parts and use (3.17)-(3.19) to find

∫

Qε

|∇wε|2dx = −
∑

xi∈Qε

∫

∂Bi

∂wε

∂n
dS

= −
∑

xi∈Qε

∫

∂Bi

∂wε

∂n

Ri

Nε|x− xi|
dS

= −
∑

xi∈Qε

∫

Qε

∇wε · ∇
( Ri

Nε|x− xi|
)

dx

+
∑

xi∈Qε

∑

j 6=i

∫

∂Bj

∂wε

∂n

Rj

Nε|x− xi|
dS

−
∫

∂Qε

∂wε

∂n

∑

xi∈Qε

Ri

Nε|x− xi|
dS.

Since

∑

xi∈Qε

∫

Qε

∇wε · ∇
( Ri

Nε|x− xi|
)

dx = −
∑

xi∈Qε

∫

∂Bi

∂

∂n

(

Ri

Nε|x− xi|

)

dS

=
4π

Nε

∑

xi∈Qε

Ri

we find

∣

∣

∣

∫

Qε

|∇wε|2dx− 4π

Nε

∑

xi∈Qε

Ri

∣

∣

∣
=

∣

∣

∣

∑

Xi∈Qε

∑

j 6=i

∫

∂Bj

∂wε

∂n

Rj

Nε|x− xi|
dS

−
∫

∂Qε

∂wε

∂n

∑

xi∈Qε

Ri

Nε|x− xi|
dS

∣

∣

∣
.

(3.21)

For x ∈ ∂Qε let xj be such that |x−xj | = mini |x−xi|. Then |x−xi| ≥ 1
2 |xj−xi|

for all i 6= j and we find with (3.16), recalling Nε = 1/rε,

1

Nε

∑

xi∈Qε

1

|x− xi|
≤ 2

Nεdε
+

2

Nε

∑

xi∈Qε

i6=j

1

|xi − xj |
≤ 2

( rε
dε

+ δε

)

. (3.22)

Consequently, since − ∂wε

∂n ≥ 0, we find

∑

xi∈Qε

∫

∂Qε

(

− ∂wε

∂n

) Ri

Nε|x− xi|
dS ≤ C

(

δε +
rε
dε

)

∫

∂Qε

(

− ∂wε

∂n

)

dS

= C
(

δε +
rε
dε

)

∫

Qε

|∇wε|2 dS.
(3.23)
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On the other hand, using again (H3) and (H5) it follows that

∑

xi∈Qε

∑

j 6=i

∫

∂Bj

∂wε

∂n

Rj

Nε|x− xj |
dS ≤ Cδε

∑

xj∈Qε

∫

∂Bj

(

− ∂wε

∂n

)

dS

= Cδε

∫

Qε

|∇wε|2 dS.
(3.24)

Thus using (3.22)-(3.24) in (3.21) we obtain (3.20). Combining (3.20), (H1) and
(H5) we find

∫

Q

|∇wε|2dx ≤ C

Nε

∑

xi∈Q

Ri ≤ C (3.25)

Finally, using Poincare’s inequality in each domain Qε and adding the dif-
ferent contributions, we easily obtain the bound

∫

Q

|wε|2dx ≤ Cl2ε

∫

Q

|∇wε|2 dx → 0 (3.26)

as ε→ 0. By comparison, estimate (3.25) also implies for ϕε that
∫

Q

|∇ϕε|2 dx ≤
∫

Q

|∇ (1 − wε)|2 dx ≤ C (3.27)

On the other hand by the maximum principle 0 ≤ ϕε ≤ 1. A standard compact-
ness argument shows that, for suitable subsequences (3.12), (3.13) hold, where ϕ
satisfies (3.15). It only remains to check that (3.14) is satisfied. To this end we
multiply the equation for ϕε by the test function η (1 − wε) where η ∈ C∞

0 (Q).
Then

∫

Q

(1 − wε)∇ϕε · ∇η dx−
∫

Q

∇ϕε · ∇wεη dx = 0 (3.28)

Using (3.13) and (3.26) we easily obtain:
∫

Q

(1 − wε)∇ϕε · ∇η dx →
∫

Q

∇ϕ · ∇η dx as ε→ 0. (3.29)

The second term in (3.28) equals after an integration by parts
∫

Q

ϕε∇wε · ∇η dx −
∑

Qε

∫

∂Qε

ϕεη
∂wε

∂n
dS. (3.30)

Due to (3.13), (3.26) the first term in (3.30) vanishes as ε→ 0. For the following
we denote by ϕεη the average of ϕεη over ∂Qε. We find

−
∑

Qε

∫

∂Qε

ϕεη
∂wε

∂n
dS

=
∑

Qε

ϕεη

∫

∂Qε

(

− ∂wε

∂n

)

+
∑

Qε

∫

∂Qε

(ϕεη − ϕεη)
(

− ∂wε

∂n

)

dS.

(3.31)
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Now we use (3.7), (3.12), (3.13) and (3.20) to obtain

∑

Qε

ϕεη

∫

∂Qε

−∂wε

∂n
dS = 4π

∫

Q

ϕεηµε dx+ o(1)

→ 4π

∫

Q

ϕηµ dx as ε→ 0.

(3.32)

Furthermore (3.20), (H1) and (H5) imply that

∫

∂Qε

−∂wε

∂n
dS =

∫

Qε

|∇wε|2 dx ≤ C|Qε| (3.33)

Using then (3.33) as well as the boundedness of µε it follows that:

∣

∣

∣

∫

∂Qε

(ϕεη − ϕεη) ·
(

− ∂wε

∂n

)

dS
∣

∣

∣
≤ C‖ϕεη − ϕεη‖L∞(∂Qε)|Qε| (3.34)

It only remains to estimate the oscillation of ϕεη on each ∂Qε. Due to the
presence of the cutoff η it is enough to restrict our attention to cubes Qε in
the interior of Q. Given Qε we can take a cube with size L times larger and
concentric with it and denote it by Q̃ε. We can assume that Q̃ε ⊂ Q due to the
cutoff η. By the maximum principle 0 ≤ ϕε ≤ 1, in particular also on ∂Q̃ε. We
construct a harmonic function ψ in Q̃ε which has as boundary data the same
values as ϕεη. Furthermore let ζ be a harmonic function in Q̃ε\∪iBi taking the
value 1 at the boundaries of all the holes in Q̃ε. Using the maximum principle
we immediately obtain the inequalities: ψ−ζ ≤ ϕεη ≤ ψ. Assumption (H3) and
(3.16) imply that |ζ| ≤ C(L3δε + rε

dε
) on ∂Qε. In particular, due to (3.2), this

contribution approaches zero as ε→ 0. Then, if we denote as oscΩ the difference
between the maximum and the minimum of a function in a given set Ω, we easily
obtain: osc∂Qεϕεη ≤ osc∂Qεψ+C(L3δε + rε

dε
). The Classical Harnack inequality

for Laplace equation implies osc∂Qεϕεη ≤ C
L + C(L3δε + rε

dε
). Taking then the

limits ε → 0, L → ∞, we easily obtain that limε→0 osc∂Qεηϕε = 0. Therefore
(3.28)-(3.34) imply

∣

∣

∣

∫

∂Qε

(ϕεη − ϕεη) ·
∂wε

∂n
dS

∣

∣

∣
� |Qε|

as ε→ 0, and also:
∫

Qε

∇ϕε · ∇wε dx = −4π

∫

Qε

µεϕεη dx+ o(|Qε|) as ε→ 0.

Combining this expression with (3.12), (3.13), (3.28), (3.29) we finally obtain:

∫

Q

∇ϕ · ∇η dx + 4π

∫

Q

ηµϕ dx = 0,

which proves (3.14) and thus concludes the proof of Lemma 3.3. �
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Using Lemma 3.3 we can easily prove Theorem 3.2.
Proof of Theorem 3.2. Comparison with the Green’s function for the

Laplace equation in R
3 yields:

G (x, y) ≤ 1

4π |x− y| (3.35)

In particular (3.35) impliesG (x, y) ≤ 1
4π for |x− y| ≥ 1. CoveringB3/2\B1(x)

with suitable unit cubes and using Lemma 3.3 implies G (x, y) ≤ 1
4π (1 − ν0) for

|x− y| ≥ 5
4 . Iterating the argument we obtain:

G (x, y) ≤ 1

4π
(1 − ν0)

n
for |x− y| ≥

(

1 +
n

4

)

and this implies (3.10) with γ ∼ − ln(1 − ν0).�

Remark 3.4. It is not very difficult to adapt the ideas of the proof of Theorem
3.2 to obtain the corresponding result for the Green’s function with periodic
boundary condition in a (before rescaling) bounded domain. The only change
occurs in the proof of the a priori estimate (3.35), where instead of the funda-
mental solution one needs to compare with the Green’s function of the Laplace
operator with periodic boundary conditions. However, the construction and es-
timate of such a periodic Green’s function is rather standard. We neglect the
details here.

Furthermore, one can easily obtain the corresponding result of Theorem 3.2
for the continuum limit; for details we refer to [10].

3.3 A counterexample

In order to further illustrate the importance of assumption (H3) we now con-
struct particle configurations where (H3) fails and as a consequence the screening
property is lost.

For that we introduce a new length l̂ε such that N
−1/3
ε � l̂ε � lε. We

recall that by assumption ξε = 1. We place new cubes Q̂ε of size l̂ε at the
centers of the cubes Qε and assume that all particles of Qε are in Q̂ε, and sit,
say, on a periodic lattice. Then, the number of particles in Q̂ε is Nεl

3
ε and the

distance between particles is dε = l̂ε
lεN

1/3

ε

. We choose the ansatz dε = N−1+α
ε

and lε = N
−1/3+β
ε for some positive constants α, β. To ensure that dε � N

−1/3
ε

we need α < 2/3 and to ensure that lε � 1 we need β < 1/3.
We are now going to argue that Lemma 3.3 does not hold if we choose

α < 2β. In fact, we can construct a subsolution ϕε to the auxiliary potential
ϕε as defined in Lemma 3.3, which satisfies ϕε → 1 as ε → 0. The function ϕε

is just defined to be zero in
⋃

Q̂ε, to be one on ∂Q and harmonic in Q\
⋃

Q̂ε.

The capacity of each Q̂ε in Q is of order l̂ε such that the total capacity of
⋃

Q̂ε

in Q is estimated by l̂εl
−3
ε = N

1/3
ε dεl

−2
ε = Nα−2β

ε → 0. Thus, arguing as in the
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proof of Lemma 3.3 we find ϕε → 1 as ε→ 0 and the conclusion of Lemma 3.3
fails. With similar arguments we can also conclude that Theorem 3.2 fails to
hold for the above particle configuration. We omit details here.

Let us now investigate, when (H3) for such a particle configuration holds.
In fact, for xi ∈ Qε we find

∑

xj∈Qε

j 6=i

1

|xi − xj |Nε
∼ 1

Nεd3
ε

∫

Qε

1

|x− y| dy ∼ l̂2ε
Nεd3

ε

∼ N4/3+2β−3α
ε .

Hence, (H3) is satisfied if 2β − 3α < −4/3. But if α < 2β, this would require
α > 2/3 which is not possible.

3.4 The case of two space dimensions

Our result can be easily extended to the case of two space dimension. This is
often of interest in applications, for example if one studies the coarsening of
thin droplets on a substrate, and has attracted also some mathematical interest
[2, 9]. Typically, the two-dimensional case is considered to be technically slightly
more difficult, due to the logarithmic divergence of the Green’s function.

However, as we will point out now, our result transfers with no further
difficulties to two dimensions. First, we recall (cf. e.g. [9]) that the screening

length in two dimensions is given by ξε ∼ 1
Nε

ln
(

1√
Nεrε

)

.

Then, after rescaling with respect to ξε, the appropriate definition of µε in
(3.7) is µε(x) = 1

Nεl2ε

∑

xi∈Qε
1 for x ∈ Qε, whereas (H1), (H3) and (H4) change

to

(H1-2d)
n(Qε) ≤ C0l

2
εNε.

(H3-2d)

max
Qε

max
xi∈Qε

∑

xj∈Qε, j 6=i

ln
( 1√

Nε|x− xi|

) 1

Nε
≤ δε.

(H4-2d)
1

Nε

∑

xi∈Q

1 ≥ 1

C0
.

With these adapted assumptions the proofs of Lemma 3.3 and Theorem 3.2
transfer apart from obvious changes.
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