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with its motion law given by: VN (p) = H(p) + Æf(p); p 2 �(t) (1)where VN and H are the normal veloity and mean urvature of �(t); and Æ is a positive numberwhih measures the strength of the spatial inhomogeneity, represented by f . Without loss ofgenerality, we assume 0 < Æ < 1. The funtion f : Rn+1 ! R satis�es the following onditions:A: ( (i) f is Zn+1-periodi, i.e. f(p+ !) = f(p) for all p 2 Rn+1 and ! 2 Zn+1.(ii) f(�) is twie ontinuously di�erentiable and kfkC2(Rn+1) = F <1:We emphasize that f is not restrited to be either positive or negative.The main ontribution of the present paper is that under the above rather weak assumption forthe foring, together with Æ small enough, we are able to show for any diretion � the existene ofa unique speed � and a number D < 1 suh that the solution of (1) starting from a plane withnormal � stays as a graph over the same plane for all times, and moreover, this graph lies withina distane D from a plane whih has normal � and moves with normal veloity � : This result ismotivated by and extends the geometri arguments of [4℄ whih essentially onsiders a stationaryversion of (1). Using the language of homogenization, we have in fat shown the existene of ahomogenized front | hyperplane with normal � | whih moves with an e�etive speed | � .Furthermore, if � 6= 0; we show that pulsating waves exist. A pulsating wave is a speialsolution de�ned globally in spae and time with the property that a spatial translation that keepsthe periodi environment invariant (lattie translation) orresponds to a translation in time. Morepreisely, ���(t) � Rn+1 : t 2 R	 is a pulsating hypersurfae evolving by (1) with normal diretion� and veloity � 6= 0; if it satis�es the following property (see Figure 1):�(t+ �) = �(t) + z; for all z 2 Zn+1 and � = � � z� : (2)
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t Figure 1. The pulsating wave property:time shift orresponds to lattie trans-lation.
The interest in (1) stems from models for the motions of material interfaes (suh as phaseboundaries) in the over-damped limit, i.e. when inertial e�ets are negleted. Then the time2



evolution is often the negative gradient ow of some underlying energy funtional. Suh modelsshould inorporate heterogeneities, whih may arise from the periodi struture of the material orsubstrate, or impurities present in the material on a very �ne sale. These heterogeneities reatea very osillatory energy landsape and make the analysis of the dynamis very hallenging. Inpartiular, the large sale limit of the energy, obtained for example by means of �-onvergene [10℄and the large-sale limit of the gradient ow dynamis may not ommute, i.e. the gradient owof the limiting energy is not the saling limit of the gradient ows. This is mainly due to the fatthat the dynamial state of the gradient ows often gets stuk in the loal minima reated by theheterogeneities. The ultimate limiting behavior is the result of some nontrivial averaging proessbetween energeti and kinemati e�ets. See [11℄ for some results along these lines. (The work [22℄proves some �-onvergene result in the time dependent ase but the e�et of osillatory energylandsape is not onsidered.)The motion law (1) is motivated by the evolution of phase boundaries [1℄ or defets suh asdisloation lines in a solid [3, 9, 21℄. The \non-osillatory" part of the energy for the gradient owmodel is hosen to be the interfaial energy (area of a hypersurfae). This model thus apturesthe ompetition between the tendeny to derease the interfaial energy | atten the interfae |while at the same time adapting to inhomogeneities on a very small spatial sale. The mathematialanalysis of this simple \physial" model is already hallenging as the interation between thenonlinearities and heterogeneities an be quite intriate.One question of interest is the e�etive front and veloity of �(t) on a large spae-time sale.This an be phrased as follows: Given any diretion � 2 Sn, is there a number � suh that thesolution of (1) starting from a plane with normal � stays within bounded distane from a plane thathas the same normal and moves with normal veloity �?In the framework of homogenization, the above question an be formulated in the followingform. Introdue a small parameter � and resale (1) as:V �N = �H(p) + Æf (p=�) ; p 2 ��(t): (1�)Then questions on the e�etive behavior and quantity are equivalent to investigating the limits ofthe solutions ��(t) of (1�) as � �! 0. Note that the highest order (urvature) term is multipliedby the small parameter whih makes the orresponding homogenization problem singular. In suha saling, the urvature and heterogeneity are oupled together in an elaborate way and hene anlead to interesting phenomena.The above question, though simply stated, is highly nontrivial. Besides the fats that the motionlaw (1) is extremely nonlinear and the equation written in appropriate oordinate is degenerateparaboli, the main tehnial diÆulty in its analysis lies in the fat that the foring f is allowedto hange sign. For a foring whih is positive and satis�es some additional tehnial onditions,the problem on the existene of e�etive speed is solved in [19℄ using the mahinery of visositysolution. This is briey explained here. Let U � : Rn+1 � R+ ! R be a funtion with the propertythat eah of its level sets ���(t) = fx 2 Rn+1 : U �(x; t) = �g evolves by (1�), then U � solves the3



following nonlinear degenerate paraboli equation:U �t = �trh�I � jrU �j�2(rU � 
rU �)�D2U �i+ Æf(X=�)jrU �j: (3)It is onjetured (and proved in [19℄ for ertain f whih remains stritly positive) that the solutionsU � onverge to a solution U of a homogenized problem whih in the level set formulation beomesthe following �rst order equation: U t = rU jrU j�1 jrU j: (4)(See also [2, 3℄ for results related to the above homogenization problem. The work [20℄ studies asemilinear version of (1), but still with positive foring.)Another interesting behavior onerning (1) is the pinning/de-pinning phenomena. To explainthis, introdue an additional parameter h into (1):VN = H(p) + Æ(f(p) + h) (1h)whih models the presene of some external �eld imposed on the dynamis. The relevant questionsin terms of appliation and modeling inlude the de-pinning threshold h de�ned as the smallestfore h required to obtain a nonzero veloity � , and also the relationship between the e�etiveveloity and the exess foring h � h. This question is not addressed in the present paper but isstudied in detail in [11℄ for semi-linear PDEs whih are approximations of (1) when the evolvinghypersurfae is lose to a very \at" graph. We expet that for planes with rational normal diretionand small Æ, the method of [11℄ an be extended to (1), but the estimates will in general not beuniform in the diretion. We remark that, unlike the e�etive veloity � , the de-pinning thresholdh is in general not ontinuous in the diretion � (see Setion 5 for a simple example and also [5℄for some results on a related disrete system.)We now introdue the setting of the present paper. The investigation of e�etive behavior isvery muh tied to the onsideration of plane-like solutions of (1), i.e. there exists a �xed unit vetor� 2 Sn suh that for all t � 0, the solution �(t) satis�es:D(t) := supp;q2�(t) (p� q) � � <1: (5)Furthermore, the existene of e�etive property relies intimately to the fat that D(t) is uniformlybounded in time.In order to inorporate general �, we introdue two oordinate systems for Rn+1 . First, we writeRn+1 as Rn+1 = ( XXn+1 ! : X 2 Rn ; Xn+1 2 R) :Let O� be a positively oriented orthogonal transformation of Rn+1 suh that � = O�((0; : : : ; 0; 1)T ).Introdue the new oordinate system: (x; xn+1), x 2 Rn and xn+1 2 R suh that xxn+1 ! = OT�  XXn+1 ! :4



Observe that the (x; xn+1)-oordinate of � is (0; : : : ; 0; 1). We all the (X;Xn+1)- and (x; xn+1)-oordinate systems the referene and tilted frames respetively (see Figure 2).
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tΓ( ) Figure 2. The original and the tiltedframe. The lattie stands for the periodof the foring.
If �(t) an be written as a graph over the plane xn+1 = 0, i.e. �(t) = f(x; u(x; t)) : x 2 Rn ; u 2 Rg,then u solves the following quasi-linear paraboli di�erential equation:ut = Af (�; x; u) =q1 + jruj2div0� ruq1 + jruj21A+ Æq1 + jruj2f(O�(x; u)T ): (6)The symbol r refers to the gradient operator with respet to the x-variables. Note that (6) isinvariant under the lattie translation in the following senseAf (�; x+ x0; u+ u0) = Af (�; x; u) for all  x0u0 ! 2 OT� Zn+1: (7)Equation (6) plays a fundamental role in this paper. The notation � will sometimes be sup-pressed, unless needed in the presentation. The main diÆulty in the study of (6) is that it isnot uniformly paraboli and beomes degenerate as the gradient blows up. If the foring is large,this an indeed happen in �nite time even if the initial data is smooth. Furthermore, the graphrepresentation might not be preserved in time (Setion 5). However, by a ombination of the peri-odiity of the domain and the smallness of the inhomogeneity of the medium, we are able to deriveseveral useful uniform estimates for the solution of (6) whih allow us to employ many tehniquesfor paraboli PDEs to the study of (1).The restrition to small foring is not just for onveniene (so that we only need to deal withlassial solutions). In fat, if the foring is large, it an lead to quite a di�erent phenomena. First,\pinh-o�" | a portion of the graph beomes detahed from the overall surfae | an happen.Even though this an still be potentially handled by the level-set formulation ([14, 7℄), it involvesa di�erent type of tehniality. Seond, on a more fundamental level of diÆulty, there might noteven be an e�etive front or e�etive behavior due to the possibility of �ngering. How to de�ne amodi�ed notion of homogenized objet and equation is not ompletely lear. Setion 5 gives someexpliit examples of these phenomena. 5



We expet that our results for graph-like pulsating waves an be extended by fairly standardarguments to yield a homogenization result for the level set equation (3). Indeed, using the fatthat our graph-like pulsating wave solution u(x; t) satis�es ut > 0 (Proposition 15), one anonstrut a speial solution for (3) by settingfU(x; xn+1; t) = �g = fu(x; t+ �) = xn+1g:In a rotated and moving frameeU(x; xn+1; t) = U(x; xn+1; t)� xn+1 � �tis a globally bounded solution ofeU �t = trh�I � jreU + P j�2((reU + P )
 (reU + P ))�D2 eUi+ Æf jreU + P j � P ;where without loss of generality, P = � = (0; : : : ; 0; 1). This learly implies a homogenization resultfor plane-like initial data. Note that the above equation is a speial ase of the equation for theso-alled \orretor". As the limit e�etive veloity is ontinuous in the normal (Proposition 11),we expet the extension to more general initial data to be straightforward, but in order to keep thepresent paper foused and of reasonable length, we will not address these issues here.1.1 Outline of PaperSetion 2 proves the key estimates for (6) | uniform osillation and gradient bounds (Theorem4, Corollary 5) | to be used for the rest of the paper. The existene of lassial solution withLipshitz initial data (Theorem 7) and a gradient deay estimate (Theorem 8) are also presented.Setion 3 establishes the existene, uniqueness and Lipshitz ontinuity of the e�etive speed ofpropagation for any normal diretion �. Setion 4 proves the existene, uniqueness and variousstability properties of the pulsating wave solutions. Setion 5 provides some examples for theformation of singularities if the foring is large. The Appendix ontains the proof of Theorems7 and 8 whih are somewhat long and tehnial.2 Estimates for Mean Curvature Flow in Inhomogeneous MediumThe following simple geometri lemma is the starting point for the uniform estimates derivedlater. It essentially shows that starting from a hyperplane, at any �xed time t, if a ube Q is\above(below)" the interfae �(t), so is any \tangential" translates Q+w. This result is motivatedby the work [4℄.1 Lemma. Let f�(t) : t � 0g be a onneted hypersurfae in Rn+1 whih is the unique lassialsolution of (1) with initial datum the hyperplane �(0) = f(X;Xn+1) : (X;Xn+1)T � � = 0g, i.e.xn+1 = 0. Let further ��(t) � Rn+1 be onneted open sets suh that for all t, �(t) = ��+(t) =6



���(t), Rn+1 = �(t) [ �+(t) [ ��(t), and the vetor � points into �+(t). Let z 2 Zn+1 andQ(z) = Int([0; 1℄n+1 + z). Then following statements hold.If Q(z) � �+(t), then Q(z + w) � �+(t) for all w 2 Zn+1 with w � � � 0. Similarly, ifQ(z) 2 ��(t), then Q(z + w) � ��(t) for all w 2 Zn+1 with w � � � 0.Proof. Without loss of generality, we will just prove the �rst statement. Let b�(t) be the solutionof (1) with initial datum �(0) + w and b��(t) be the two open sets similarly de�ned as ��(t) for�(t). By the periodiity of the inhomogeneity and the assumed uniqueness of lassial solutionof (1) starting from �(0), we have that b�(t) = �(t) + w and b�+(t) = �+(t) + w: Moreover asb�(0) � �+(0), the omparison priniple implies that b�+(t) � �+(t): Sine Q(z) � �+(t), we haveQ(z) + w � �+(t) + w = b�+(t) � �+(t)whih proves the laim.2 Remark. Note that in the above and the rest of the paper, we deal only with lassial solutionsof equation (1), by whih we mean smooth hypersurfae evolving aording to (1). Due to the non-degeneray of the equation, even in the homogeneous ase (f � 0), the question of well-posednessis already not trivial (see [12, 13℄). With foring (f 6= 0), in general the gradient an blow up in�nite time. On the other hand, if the foring is small (Æ � 1) and the initial data has boundedgradient and osillation, well-posedness an be established. This and related omments are statedin Remark 6(1,2), Theorems 7 and 8.The following notations are introdued for onveniene:os(�;B; �) := supp;q2�\B(p� q) � � (for B � Rn+1) and os(�; �) := os(�;Rn+1 ; �):If f(x; u(x)) : x 2 Rng is the graph representation of � over Rn ;os(u;B) := supx;y2Rn\B u(x)� u(y) (for B � Rn) and os(u) := os(u;Rn):The previous Lemma immediately leads to the following result.3 Lemma. Let f�(t)gt�0 be as in Lemma 1, in partiular �(0) = f(X;Xn+1) : (X;Xn+1)T �� = 0g,i.e. xn+1 = 0. Let B = �(X;Xn+1) 2 Rn+1 : jXj � 2pn+ 1	. Then for all t � 0,os (�(t);O�(B); �) � os (�(t); �) � os (�(t);O�(B); �) + 4pn+ 1: (8)In the graph setting, �(t) = f(x; u(x; t)) : x 2 Rng, upon introduing B = �x : jxj � 2pn+ 1	, thenit holds similarly thatos (u(�; t); B) � os (u(�; t)) � os (u(�; t); B) + 4pn+ 1: (9)(The quantity pn+ 1 omes from the diameter of the unit ube in Rn+1 .)7



It is ruial for our analysis that os(�(t); �) remains uniformly bounded for all time. For theexistene and uniqueness of the speed as stated in Theorem 9, we ould simply make this as astanding assumption, or we an work in the graph setting in whih suh an assumption an bejusti�ed. The next several results show that this assumption is indeed valid provided the foring issmall ompared with the period. For the larity of presentation, the proofs are postponed till afterthe results are listed.In the following, the symbol C(F ) denotes some universal onstant whih depends on the quan-tity F = kfkC2(Rn+1). The onstant onvention is used: Di�erent onstants are denoted by thesame symbol C(F ); provided they depend only on kfkC2(Rn+1) : In addition, if u(x; t) is a solutionof (6), we denote: z(x; t) :=p1 + jru(x; t)j2 and kz(t)k1 := supx2Rn z(x; t):4 Theorem (Bernstein's Method). Let fu(x; t) : x 2 Rn ; 0 � t � Tg be a lassial solution of (6)with uniformly Lipshitz and bounded initial datum u0(x). Further, let K be a onstant suh thatK > kz(0)k1. Then: supt2[0;TK ℄ kz(t)k1 � kz(0)k1 + �(Æ;K; F ) supt2[0;TK ℄ os(u(t)) (10)where TK := T ^ inf ft � 0 : kz(t)k1 > Kg and �(Æ;K; F ) := C(F )pÆK2.5 Corollary (Uniform Osillation and Gradient Bounds). Let fu(x; t) : x 2 Rn ; 0 � t � Tg be asin Theorem 4. There is a Æ0(F ) > 0 suh that if u0(x) � 0, then for all 0 � Æ � Æ0, the followingtwo estimates hold:supt2[0;T ℄ kz(t)k1 � 1 + C(F )Æ 12  or written di�erently supt2[0;T ℄ kru(t)k1 � C(F )Æ 14! ; (11)supt2[0;T ℄ os(u(t)) � D0 := C(F )(1 + Æ 12 ): (12)For general initial datum u0(x), set M0 := os(u0). Then:supt2[0;T ℄ os(u(t)) � D1(M0) := D0 + [M0℄pn+ 1 (13)(where [r℄ denotes the smallest integer bigger or equal to r). Furthermore, for all K > kz(0)k1and 0 � Æ � Æ1 := C(F ) � K � kz(0)k1K2(D0 + [M0℄pn+ 1)�2, thensupt2[0;T ℄ kz(t)k1 � kz(0)k1 + �(Æ;K; F )D1(M0): (14)6 Remark. 1. The above two results show that the solution has uniform gradient bound inspae and time as long as Æ is small enough. They make equation (6) uniformly paraboliand thus allow us to use standard tehniques for quasilinear equations. In addition, note thatall the estimates are independent of T . Hene by ontinuation in the time variable, we anin fat show that lassial solution exists globally in time. This will be stated more preiselyin Theorem 7. 8



2. In ontrast to the ase of pure mean urvature ow | f � 0, due to the degeneray of theparaboli operator, estimates for solutions of (6) of the form kz(t)k1 � kz(0)k1 ([13, Cor3.1℄) and kz(t)k1 � G�os(u(0)); t)� for some funtion G (see for example [15, Thm. 5.2℄)annot be true. Examples an easily be onstruted suh that an initial graph will not stayas a graph | the gradient an blow up in �nite time (see Setion 5).On the other hand, our results show that a global in time estimate for the gradient is possiblethrough a ombination of small foring and uniform osillation bound. In the present paper,the latter is obtained by means of Lemma 1.3. The dependene of the hoie of Æ on the size of the period | here assumed to be 1 | of thespatial inhomogeneity an be seen by saling. Suppose the f in (6) is P -periodi in the x-and u-variables. Consider the saling:x = P ~x; u = P ~u; t = P 2~t:Then equation (6) written in the ~x; ~u and ~t variables beomes:~u~t =r1 + ��� ~r~u���2fdiv0BB� ~r~ur1 + ��� ~r~u���21CCA+ ÆPr1 + ��� ~r~u���2f(O�(P ~x; P ~u)T ):We need ~Æ = ÆP to be small. More preisely,ÆP � ��kf(P �; P �)kC2� i.e. Æ � 1P ��kfk1 + P kDx;ufk1 + P 2 D2x;uf1�where �(�) is some monotonially dereasing funtion. Qualitatively, small period allowslarger Æ while large period requires small Æ. The results in this paper requires the C2-normof f whih demands a more stringent ondition on the hoie of Æ. It would be interesting tosee if only the dependene on kfk1 is needed.7 Theorem (Existene of Classial Solution of (6)). Let u0(x) be the initial data of (6). Ifkru0k1 = N0 < 1, then there is a T = T (Æ; F;N0) > 0 suh that (6) has a unique lassialsolution for t 2 (0; T ). Moreover, it holds that:D2u(�; t)L1(Rn) � C(N0; F; T ) 1pt : (15)If in addition, ku0k1 = M0 < 1, then for all Æ smaller than some onstant Æ2(F;M0; N0), thereexists a unique lassial solution of (6) for all time. In this ase, the following estimate holds:D2u(�; t)L1(Rn) � C1(N0; F ) 1pt + C2(N0; F ): (16)The following statement, though stritly speaking not needed, is interesting in its own right. Itindiates the paraboli regularization property of (6) and might be useful for other purposes.9



8 Theorem (Gradient Deay Estimate). Let fu(x; t) : x 2 Rn ; 0 � t � Tg be as in Theorem 4.Suppose kz(0)k1 = N0 < 1 and kukL1(Rn�[0;T ℄) � M < 1. Then there exist onstants 0 <Æ3(T;N0;M; F ), and 0 < N1(Æ; T;M;F ) < N2(Æ; T;M;F ) suh that for all 0 < Æ < Æ3,if N1 � kz(0)k1 � N2, then kz(T )k1 � 12 kz(0)k1 :Furthermore, N1 and N2 satisfy limÆ!0N1(Æ; T;M;F ) = N�1 <1 and limÆ!0N2(Æ; T;M;F ) =1.As mentioned earlier, the gradient an blow up in �nite time. Hene an upper bound for kz(0)k1is neessary for suh kind of statement.We now proeed to prove Theorem 4 and Corollary 5 whih are the ore estimates neededfor the rest of the paper. The proofs of Theorems 7 and 8 will be presented in the Appendix.Proof of Theorem 4. Let � > 0 be some positive number (to be determined). We de�ne thefollowing funtion:�(x; t) := z(x; t) + � (u�(t)� u(x; t)) ; u�(t) := supx2Rn u(x; t); ��(t) := supx2Rn�(x; t):Note that by de�nition, 0 � u�(t)�u(x; t) � os(u(t)): Furthermore, the funtion u�(t0)+ Æ kfk1 tis a super-solution of (1) for all t0 and t > 0. Hene, ddtu�(t) � Ækfk1. We will show the existeneof a funtion �(Æ;K; F ) suh that if � > �(Æ;K; F ), thensupt2[0;TK ℄��(t) � ��(0) + � supt2[0;TK ℄ os(u(t)): (17)First note that for all t 2 [0; TK ℄, there exists a sequene fxj(t)gj � Rn with the followingproperty �(xj(t); t) �! ��(t); r�(xj(t); t) �! 0 and limj D2�(xj(t); t) � 0: (18)The last inequality in (18) is understood in the sense that limj 
[D2�(xj(t); t)℄v; v� � 0 for all v 2Rn . (Suh a sequene may be onstruted by onsidering the maxima of the funtions ��j (x; t) :=�(x; t)� �jjxj2 and upon hoosing �j �! 0 appropriately.)Now onsider the above sequene at t = T � 2 [0; TK ℄ where ��(T �) = sup[0;TK ℄��(t). We statefor later use that limj �t(xj(T �); T �) � 0: The following two ases an be distinguished:(i) limj jru(xj(T �); T �)j ! 0:(ii) There exists a subsequene (still denoted by j) xj(t)'s suh thatlimj jru(xj(T �); T �)j exists and is positive. (19)
10



If T � = 0, then we immediately have:supt2[0;TK ℄��(t) � ��(0) � kz(0)k1 + � os(u(0)):If T � > 0 and ase (i) above holds, thensup[0;TK ℄��(t) � ��(T �) = 1 + � os(u(T �)) � 1 + � sup[0;TK ℄ os(u(T �)):Together, these two ases give (17).We now show that the ase with T � > 0 and ase (ii) above annot happen if we hoose � largeenough. We �rst present a laim whih will be proved later:Claim I. Let V be a vetor in Rn and eGV be the linear funtional on the spae of symmetrin� n matries de�ned as:eGV (S) = tr ��I � V 
 V1 + jV j2�S� = Sii � 11 + jV j2ViVjSij:Then eGV (S) is � (�) 0 for any symmetri semi-positive(negative) de�nite matrix S.Applying the above laim to D2�(xj(T �); T �), we have0 � limj n�t(xj(T �); T �)� eGru(xj(T �)) �D2�(xj(T �); T �)�o :Hene0 � limj �zt(xj(T �); T �)� eGru(xj(T �)) �D2z(xj(T �); T �)�� ��ut(xj(T �); T �)� eGru(xj(T �)) �D2u(xj(T �); T �)��+ � ddtu�(T �)�whih by (64) is equivalent to0 � limj �� ��D2u��2z + hru; rzi2z3 + Æ�hru; rziz f(x; u) + hru; rxf(x; u)i+ jruj2 fu(x; u)���Æf(x; u) + � ddtu�(t)�����(xj(T �);T �) (20)Note that by (18), we have rz(xj(T �); T �) = �ru(xj(T �); T �) + �j (21)for some vetor �j suh that limj �j = 0. Now we make another laim whih will be shown later:Claim II. With ase (ii) above, i.e. (19) holds, we have the following statement:limj ��D2u��2 (xj(T �); T �)z(xj(T �); T �) � limj �2z(xj(T �); T �): (22)11



With the above, starting from (20), we proeed as follows. (The notation (xj(T �); T �) is sup-pressed.)0 � limj ���2z + (�jruj2 + h�j; rui)2z3 + ÆC(F )� j�jruj2 + h�; ruijz + z + z2 + 2���� limj ���2z + �2jruj4z3 + ÆC(F ) ��+ �z + z2��� limj ���2z4 + �2jruj4z3 + ÆC(F ) ��+ �z + z2��� limj ��2(�1� 2jruj2)z3 + ÆC(F ) ��+ �z + z2��� limj ��z2�2z3 + ÆC(F ) ��+ �z + z2��i.e. �2 � ÆC(F ) limj (�z + �z2 + z3):Using ÆC(F )�z � 14�2 + 14Æ2C(F )2z2 and ÆC(F )�z2 � 14�2 + 14Æ2C(F )2z4, we have�2 � C(F )(Æ + Æ2)z4 or equivalently � � C(F )pÆ + Æ2z2 � C(F )pÆK2:The above then leads to a ontradition upon hoosing �(Æ;K; F ) = 2C(F )pÆK2.We now give the proofs of Claims I and II.Proof of Claim I.. Without loss of generality, let S be semi-positive-de�nite. Let also ~G =(gij)1�i;j�n. TheneGV (S) = tr( ~GST ) = tr�hpSp ~Gi hp ~GpSi� = tr�hp ~GpSiT hp ~GpSi� � 0thus proving the laim. (The symbol p ~G refers to the square root of ~G and so forth.)Proof of Claim II. Note that zxi = z�1uxkuxkxi . We re-write (21) as:1z(xj(T �); T �) [D2u℄(xj(T �); T �)ru(xj(T �); T �) = �ru(xj(T �); T �) + �jIn the following we suppress the notation (xj(T �); T �). Let f�lgl=1;:::n be the eigenvalues of D2u.Then �jruj2 + h�j ; rui = 
[D2u℄ru; ru�z � maxl j�ljjruj2zso that �2jruj4 + 2� jruj2 h�j; rui+ h�j ; rui2 � (maxl j�lj)2jruj4z2 � ��D2u��2 jruj4z2 :leading to (22). (Reall that limj jru(xj(T �); T �)j > 0.)12



Proof of Corollary 5. For the ase u0(x) � 0, by (9) of Lemma 3, we haveos(u(t)) � os �u(t); fx 2 Rn : jxj � pn+ 1g�+ 4pn+ 1 � C kz(t)k1 for some C > 0. (23)From (10), let K = 2, we get supt2[0;TK ℄ kz(t)k1 � 1+C�(Æ; 2; F ) supt2[0;TK ℄ kz(t)k1. If Æ is hosensmall enough that C�(Æ; 2; F ) � 12 , thensupt2[0;TK ℄ kz(t)k1 � 11� C�(Æ; 2; F ) � 1 +C(F )Æ 12 :Further, if Æ is small enough that 1+C(F )Æ 12 � 2, the above estimate will hold for all t up to timeT , giving the desired result (11). The estimate (12) is a diret onsequene of (23) and what wehave just proved.For initial data with �nite gradient and osillation bounds, (13) follows by using u+0 � supx2Rn u0(x)and u�0 � infx2Rn u0(x) as omparison data. Statement (14) follows from (10) and upon hoosingsmall enough Æ to ensure that kz(t)k � K for t 2 [0; T ℄.From now on, we will always assume that Æ is taken to be suÆiently small. The smallnessdepends on the initial quantities kru0k1 and os(u0).3 E�etive Speed of Front Propagation9 Theorem. Let u(x; t) be the solution of (6) with initial datum u(x; 0) � 0; and letw(x; t) := u(x; t)� t:Then there exists a unique, �nite value � , suh thatkw�kL1(Rn�R+) � D2 = D0 +pn+ 1 (24)where D0 is the number from Corollary 5(12). Furthermore, j� j � Æ kfk1 and � is a Lipshitzontinuous funtion of � .To failitate the proof, �rst de�neA(t) := supx2Rn w(x; t) and B(t) := infx2Rnw(x; t):Note that both quantities are �nite for eah t > 0; as we an ompare with onstant sub- andsuper-solutions. Furthermore, by Corollary 5(12), we haveA(t)�B(t) = os(u(t)) � D0: (25)The proof of Theorem 9 is divided into two propositions.13



10 Proposition. There exists a unique �nite number � (j� j � Æ kfk1) suh that for all t � 0,�pn+ 1 � A� (t) � D0 +pn+ 1 �or equivalently: �D0 �pn+ 1 � B�(t) � pn+ 1� (26)and limt!+1A(t) �or equivalently: limt!+1B(t)� = ( +1 for  < ��1 for  > � (27)Proof. The uniqueness of � and statement (27) are immediate onsequene of (26). The boundj� j � Ækfk1 also follows easily by using A(0) + Æ kfk1 t and B(0) � Æ kfk1 t as super- andsub-solutions.Take a value of . If for this value of , (26) is satis�ed, then learly (27) is true by taking � = .We show that either (26) is true or A and B diverge at least linearly in time, i.e.suptA(t) > D0 +pn+ 1 =) there exists � > 0; � > 0 s.t. A(t) � �t� �inftA(t) < �pn+ 1 =) there exists �0 > 0; �0 > 0 s.t. A(t) � ��0t+ �0: (28)Consider the �rst statement. (The seond is shown in a similar way.) So suppose there exists t0suh that A(t0) > D0 +pn+ 1. By (25), B(t0) > pn+ 1.In this ase, there exists a onstant h suh that B(t0) > h > pn+ 1 and the planar funtionu(1)0 (x) � h is some upward lattie translate of u0(x) � 0 in the sense thatn(x; u(1)0 (x)) : x 2 Rno = f(x; u0(x)) : x 2 Rng+ (x0n; h)for some x0n 2 Rn whih satis�es OT� (x0n; h)T 2 Zn+1: Let u(1)(x; t) be the solution of (6) withinitial datum u(1)0 (x). By the invariane of (6) under lattie translation and the uniqueness oflassial solutions, then up to a delay in time and a translation of the graph in spae by (x0n; h), thebehavior of u(1)(x; t) is exatly the same as that of u(x; t). Furthermore, as u(x; t0) � u(1)(x; 0), byomparison priniple, we have u(x; 2t0) � u(1)(x; t0) � 2h:By indution, we have: infx2Rn u(x; it0) � ih.Let I0 := inft2[0;t0℄B(t) > �1: By the translational invariane and the omparison prinipleagain, we get B(t) � ih� I0 on [it0; (i + 1)t0℄: The �rst laim of (28) then follows with � = h=t0and � = I0 + h: The seond laim an be proved similarly.Now de�ne � := supn : limt!1A(t) = +1o : (29)(Note that with this de�nition, it follows that limt!1A(t) = +(�)1 for  < (>)� .)If for this value of � , (26) is not satis�ed, using (28), then it holds that eitherlimt!1A0(t) = +1 for 0 = � + 12� (if there exists a t0 suh that A� (t0) > D0 +pn+ 1)or limt!1A0(t) = �1 for 0 = � � 12�0 (if there exists a t0 suh that A� (t0) < �pn+ 1):14



Both ases ontradit the de�nition (29) of � and the remark immediately below it. Thus (26)must hold and the Proposition is proved.We now proeed to prove the Lipshitz ontinuity of � .11 Proposition (Lipshitz Continuity of Speed with respet to �). The speed � is a Lipshitzfuntion of �, i.e. there exists a C(F; Æ) > 0 suh that for all �; ~� 2 Sn,j� � ~� j � C j� � ~�j : (30)Proof. Fix �; ~� 2 Sn with j� � ~�j < 0 for a small onstant 0 < 0 = 0(F; Æ)� 1:Consider (6) with �. Reall that in the (x; xn+1)-oordinate system, � = (0; : : : ; 0; 1)T . By hoos-ing an appropriate rotation with respet to the axis �; we an assume ~� = (sin ~�; 0; : : : ; 0; os ~�)Twith 0 < ~� < �2 . The main idea is to onstrut an approximate solution of (6) whih is a plane-likesurfae with e�etive normal vetor ~�. We will show that suh a solution annot have speed muhfaster then � . The onstrution of the approximating solution and its estimates are arried out inseveral steps.Step I { Kink-Like-Solution ~u (Figure 3).
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Let u(x; t) be a solution of (6) with u(x; 0) � 0 and normal vetor �. Let � be the speedobtained by Proposition 10. By (26), we then also have ku(�; t)� �tkL1(Rn) � D2 for all t � 0.Let H1; H2 be two �xed positive onstants satisfying H2 > H1 > 2pn+ 1. Consider two lattietranslates u(1)(x; t) and u(2)(x; t) of u(x; t) suh thatH2 � u(2)(x; t)� u(1)(x; t) � H1 for all x 2 Rn ; t 2 R+ .Further, let M be another �xed and large onstant. Consider eu0(x) whih is a smooth funtioninterpolating between u(2)(x; 0) and u(1)(x; 0) in the following sense:� u(1)(x; 0) � eu0(x) � u(2)(x; 0) for all x 2 Rn and eu0(x) = u(2)(x; 0) for x1 � �M; whileeu0(x) = u(1)(x; 0) for x1 �M ; 15



� keu0kC2(Rn) � CH2M�2kukC2(Rn), where C is a universal onstant whih does not depend onf; M or �.Now de�ne eu(x; t) as the lassial solution of (6) with initial datum eu0(x): By Theorem7, eu(x; t) exists globally in time and satis�es eu; eut;Deu;D2euL1(Rn�R+) < C(Æ; F;M;H2); withlimM!1C(Æ; F;M;H2) = C(Æ; F ):Next we show that eu(x; t) onverges to u(i)(x; t) exponentially as jx1j �! 1. Consider '(x; t) =~u(x; t)� u(1)(x; t). Then '(x; t) solves a linear, uniformly paraboli equation:'t = Af (�; x; ~u)�Af (�; x; u(1))= Xij aij(x; t)'xixj (x; t) +Xj bj(x; t)'xj (x; t) + (x; t)'(x; t) (31)where kaijkC0 + kbjkC0 + kkC0 � C(Æ; F;M;H2): From now on the dependene on Æ and F willnot be written expliitly.It is straightforward to verify that if A(M;H2); B(M;H2) are two large enough onstants, thenAe�x1eBt is a super-solution of (31). Hene 0 � ~u(x; t) � u(1)(x; t) = '(x; t) � Ae�x1eBt for allx 2 Rn and t � 0. Similar argument leads to 0 � u(2)(x; t) � ~u(x; t) � Aex1eBt. Note that A is oforder eMH2. Combining these estimates gives:maxnu(2)(x; t) �Aex1eBt; u(1)(x; t)o � ~u(x; t) � minnu(1)(x; t) +Ae�x1eBt; u(2)(x; t)o : (32)The above gives the following statement for eu whih justi�es it to be alled a \kink-like" solution:Let D1 := D1(H2) be the bound on the osillation as in (13). Thenu(1)(x; t) � eu(x; t) � u(1)(x; t) + D14 for x1 � Bt+ ln 4AD1u(1)(x; t) � eu(x; t) � u(2)(x; t) for �Bt� ln 4AD1 � x1 � Bt+ ln 4AD1u(2)(x; t)� D14 � eu(x; t) � u(2)(x; t) for x1 � �Bt� ln 4AD1 (33)Note that the \width" of the region where eu interpolates between u(1) and u(2) grows at mostlinearly with speed B.Step II { Plane-Like Approximation (Figure 4).
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Let �u(i)(x; t)	1i=�1 be a sequene of solutions of (6) whih are lattie translates of eah othersuh that u(i)(x; 0) � �iH with some �xed onstant H > 3D2, where D2 is the L1 -bound in the16



moving frame as in (24). By Proposition 10, we haveu(i)(x; t) + iH � �tL1(Rn;R+) � D2:For the remaining proof, the above H and the M (used in the previous step) will be kept �xed.Let L be a large onstant (�M) whih is to be determined.De�ne ~u(i)(x; t) to be the kink-like solution whih interpolates between u(i+1) and u(i) as in StepI but now \entered" at iL, i.e. eu(i)(x; 0) = u(i+1)(x; 0) for x1 � iL �M , eu(i)(x; 0) = u(i)(x; 0)for x1 � iL +M , and so forth. Now path the �~u(i)	i together by means of a partition of unity:�(x; t) =P1�1 ~u(i)(x; t)�i(x) where the ��i	i is a sequene of smooth funtions satisfying:�i(x) � 0; �i(x) = ( 1 x1 2 [iL� L4 ; iL+ L4 ℄0 x1 2 (�1; iL� 3L4 ℄ [ [iL+ 3L4 ;1) and Xi �i(x) � 1:The �(x; t) thus onstruted has the following properties:1. Using (33), �(x; t) approximates a tilted plane in the following sense: for all i 2 Z:� For x 2 Rn : (i� 1)L+Bt+ ln 4AD1 � x1 � iL�Bt� ln 4AD1 :u(i�1)(x; t) + D14 � eu(x; t) � u(i�1)(x; t)� D14 (34)� For x 2 Rn : iL�Bt� ln 4AD1 � x1 � iL+Bt+ ln 4AD1 :u(i�1)(x; t) + D14 � eu(x; t) � u(i)(x; t)� D14 (35)The above struture is valid if (i� 1)L+Bt+ ln 4AD1 � iL�Bt� ln 4AD1 , i.e.0 < t < TL := L2B � 1B ln 4AD1 : (36)Note that as A and B (whih are de�ned through M and H) are �xed, we get 0 < TL if L issuÆiently large.2. The upward normal vetor of the tilted hyperplane approximated by �(�; t) (for 0 < t < TL)is given in the (x; xn+1)-oordinate system by� HpL2 +H2 ; 0; : : : ; 0; LpL2 +H2�T :whih an be set to equal ~� = (sin ~�; 0; : : : ; 0; os ~�)T upon hoosing:L = H ot ~�: (37)i.e. L � H~� as ~� �! 0. 17



3. � solves (6) exatly for all t � 0 and x 2 Rn suh that x1 2 Si[iL� L4 ; iL+ L4 ℄.4. Now statement (32) ombined with the properties of the �i and paraboli regularity gives aonstant C = C(M;H) suh thatsupi �(�; t)� u(i)(�; t)C2(fx:iL+L4�x1�iL+ 3L4 g) � Ce�L4 eBt: (38)Step III { Approximation of Speed.This step shows that the normal speed of propagation of the tilted plane approximated by �(x; t)annot be muh bigger than � .In fat, by (34){(35), there exists a C1 > 0 suh that for all (x; t) 2 Rn � [0; TL℄:�(x; t) � �(tan ~�)x1 + �� +B tan ~�� t+ C1:(The extra fator B tan ~� omes from the linear spread of the width of kink in the plane-likeapproximation | see (33) and (34){(35).) The above shows that �(x; t) an be bounded fromabove by a hyper-plane moving with normal speed � os ~� + B sin ~�, at least on the time interval[0; TL℄:Next we show that � di�ers from the atual solution of (6) by a very small error. >From (38),it follows that � satis�es the following equation:�t = Af (�; x;�) + g(x; t)where g(x; t) is supported on S1i=�1 �x : iL+ L4 � x1 � iL+ 3L4 	 and kgkC0 � Ce�L2 eBt. Lete�(x; t) be the solution of (6) with initial data e�(x; 0) = �(x; 0). The funtion  (x; t) = e�(x; t) ��(x; t) solves a linear paraboli equation similar to (31): t =Xij aij(x; t) xixj (x; t) +Xj bj(x; t) xj (x; t) + (x; t) (x; t) � g(x; t);  (x; 0) � 0:Using e	� =  � R t0 kg(s; �)kC0ds as a omparison funtion gives k (�; t)kL1(Rn) � Ce�L4 eBt. Henefor 0 � t � TL; we havee�(x; t) � �(x; t) + Ce�L2 eBt � �(tan ~�)x1 + (� +B tan ~�)t+ C1 + Ce�L2 eBt:Similarly, by de�nition, e� an be bounded from below by some plane-like solution with normal ~�and speed ~� . Thus:�(tan ~�)x1 + ~�tos ~� � C2 � �(tan ~�)x1 + (� +B tan ~�)t+ C1 + Ce�L4 eBtwhih gives: (~� � � os ~�)t � B(sin ~�)t+ C3 + C4e�L4 eBt: (39)18



Now hoose t = TLP for some P > 1 whih is admissible aording to (36). Furthermore, by (37),t = 1P � L2B � 1B ln 4AD1 � = 1P "H ot ~�2B � 1B ln 4AD1# :Then (39) beomes:~� � � os ~�P "H ot ~�2B � 1B ln 4AD1#� B sin ~�P "H ot ~�2B � 1B ln 4AD1#+ C3 + C4 exp"�H ot ~�4 + H ot ~�2P � 1P ln 4AD1#If we hoose P = 3 (> 2) and onsider the regime j~�j � 1, we obtain: ~� � � os ~� � C(A;B;H)~�i.e. ~� � � � C(A;B;H)~� +O(~�2) � C(A;B;H)~�:The lower bound � � ~� � �C ~� an be proved similarly. The Lipshitz ontinuity of � is thusestablished.4 Pulsating WaveIn this setion, we look for a speial type of solutions of (6) whih is invariant under appropriatespae-time translation (see equation (2) and Figure 1):u(x+ x0; t+ t0) = �t0 + u(x; t) for all (x0; t0)T suh that O�(x0; �t0)T 2 Zn+1. (40)If � 6= 0, the above ondition is equivalent to the following representation of u:u(x; t) = �t+ U(O�(x; �t)T ) (41)where U : ! = (!1; : : : ; !n+1) 2 Rn+1 �! Rn+1 is a one-periodi funtion of its argument, i.e.U(! + p) = U(!) for all ! 2 Rn+1 and p 2 Zn+1. We all U the transformed funtion of u and !the transformed variable. We will show the existene and uniqueness of U and present its variousstability properties. The resulting funtion u and the orresponding U will be alled a pulsatingwave for (6). We often identify u with U .For � 6= 0, we an relate the gradients of u to those of U . Introduing:! = O�((x; � t)T ) and O� = (aij)1�i;j�n+1;then �1� ut � 1 = n+1Xk=1 ak;n+1�!kU and �xiu = n+1Xk=1 ak;i�!kU:19



Furthermore, U satis�es the following equation:� + � n+1Xk=1 ak;n+1�!kU =q1 + j ~rU j2 nXi=18<:n+1Xk=1 ak;i�!k 0�Pn+1k=1 ak;i�!kUq1 + j ~rU j2 1A9=;+ Æq1 + j ~rU j2f(! +O�((0; : : : ; 0; U)T )): (42)where j ~rU j2 =Pni=1 �Pn+1k=1 ak;i�!kU�2.We �rst establish the following existene result.12 Theorem (Existene of Pulsating Wave). For any � 2 Sn, there exists a ontinuous funtionu : Rn �R ! R whih solves (6) and satis�es (40) for the � given by Proposition 10. Moreover,the transformed funtion U satis�es:kUkL1(Rn+1) � D3 := 3(D2 +pn+ 1)(where D2 is the onstant from Theorem 9) so that the pulsating wave is bounded in its movingframe.There are several methods to establish the existene result. A standard approah is to useShauder Fixed Point Theorem. This an be aomplished by the gradient deay estimate (The-orem 8) whih produes a ontration map in an appropriate funtion spae. Here we employ adi�erent, but more elementary method. It uses the omparison priniple in its full apaity.The urrent proof onsists of several steps. First we prove the Theorem for rational normaldiretion � and the ase of � 6= 0. This is aomplished by onstruting sub- and super-solutionsof (6). These objets satisfy uniform Lipshitz bounds in x, t independent of �. It turns out thatthey are in fat solutions and hene are atually pulsating waves. The ases of irrational diretionand � = 0 are handled by approximation using the previous ase.4.1 Proof of Theorem 12First onsider a rational normal diretion � | the oordinates of � are all rational numbers | andassume � > 0. Then in the (x; xn+1)-oordinate system, the inhomgeneity is periodi with someperiod P = P (�). In ontrast to the one-periodiity of the inhomogeneity, we all this periodiity\�titious" as the period depends on the normal diretion and it an be extremely large.Step I { Constrution of \Pulsating" Sub- and Super-solutionsLet fu�(x; t)gx2Rn;t2R+ be a solution of (6) starting from u�(x; 0) � �2(D2 + pn+ 1) whereD2 is the number from (24). De�ne:U+(x; t) := lim infjIj!1 �u+(x� xI ; t+ tI)� �tI	 (43)U�(x; t) := lim supjIj!1 �u�(x� xI ; t+ tI)� �tI	 (44)20



where u�(�; r) = �1 if r < 0 and �I 2 Zn+1	 is a �xed sequene whih enumerates the set�(xJ ; tJ) : O�(xJ ; �tJ) 2 Zn+1; tJ > 0	 :Note that U�(�; �) are de�ned on all of Rn�R. Furthermore, they satisfy the following properties:(i) They are both pulsating funtions, i.e. they satisfy (40). In partiular, they are P -periodiin x.(ii) kU�(�; �) � �tkL1(Rn�R) < D2; and0 < 2(D2 +pn+ 1) < infx2Rn;t2RU+(x; t)� supx2Rn;t2RU�(x; t) < 6(D2 +pn+ 1): (45)(iii) They are uniformly Lipshitz on Rn � R.(iv) U+(�; �) is a super-solution and U�(�; �) a sub-solution of (6).Proof. (i): We will only fous on U+: For all (xK ; tK) suh that O�(xK ; �tK) 2 Zn+1,U+(x� xK ; t+ tK) = lim infjIj!1 u+(x� xK � xI ; t+ tK + tI)= lim infjI0j!1 u+(x� xI0 ; t+ tI0)= U+(x; t)sine O�(xK +xI ; �(tK + tI)) 2 Zn+1 if both O�(xK ; �tK) and O�(xI ; �tI) belong to Zn+1. Notethat the lim inf and lim sup of a sequene are not hanged under �nite shifts of the sequene.(ii): This follows from Theorem 9(24) whih yields���[u�(x1 � xJ ; t+ tJ)� �tJ ℄� �t� 2(D2 +pn+ 1)��� � D2 +pn+ 1;and hene the estimates as laimed.(iii): By Corollary 5, the kru�(x; t)kL1(Rn�R+) are bounded. Theorem 7 implies thatu�t (x; t)L1(Rn�[1;1)) is also bounded. Therefore u� is uniformly Lipshitz ontinuous in spaeand time. As the lim inf and lim sup of uniformly Lipshitz ontinuous funtions are also uniformlyLipshitz (with the same onstant), the U�(�; �) satisfy the same property.(iv): The fat that lim inf and lim sup are super- and sub-solutions respetively, follows froma standard argument (see [8, Lemma 6.1℄). Note that we need no monotoniity of f(x; u) withrespet to u; beause u� are uniformly bounded (in the moving frame) and f(x; u) is uniformlyLipshitz. The lemma an be applied instead to ~u�y;� (x; t) = e�Mt[u�(x � y; t + �) � �� ℄ on abounded neighborhood of t0; for some large onstant M .Step II { Existene of Pulsating Wave for Rational Slope21



We show that in fat U�(x; t) are lassial solutions of (6) and thus are pulsating waves.First de�ne: T� := sup�� > 0 : infx2Rn �U+(x; 0) � U�(x; �)� � 0� (46)| the �rst time U�(�; t) touhes U+(�; 0) from below. By property (ii), the U� is bounded ina frame moving with veloity 0 < � so that T� < 1. By property (iii), the U� are uniformlyontinuous in x and t. The periodiity in x then implies the existene of an x0 2 Rn suh thatU�(x0; T�) = U+(x0; 0):Now onsider the lassial solutions V � of (6) with the Lipshitz initial data V +(x; 0) = U+(x; 0)and V �(x; 0) = U�(x; T�): These solutions are globally de�ned (Theorem 7) and stay uniformlyLipshitz (Corollary 5). By property (iv) and weak omparison priniple, we haveU�(x; t+ T�) � V �(x; t) � V +(x; t) � U+(x; t) for (x; t) 2 Rn � R+ . (47)On the other hand, by property (i), there exists T� > 0 suh thatU�(x0; T� + T�) = U�(x0; T�) = U+(x0; 0) = U+(x0; T� + T�);leading to V �(x0; T�) = V +(x0; T�):Let eV := V +(x; t) � V �(x; t). As V � are C2;1(Rn � R+); the di�erene eV satis�es a linearparaboli PDE of the form (similar to (31)):�t eV =Xi;j aij(x; t)eVxixj +Xj bj(x; t)eVxj + (x; t)eVwith ontinuous oeÆients. As f and V � are uniformly Lipshitz in spae-time, the above equationis uniformly paraboli with bounded oeÆients. Note that eV � 0 and eV (x0; 0) = eV (x0; T�) = 0.Classial strong maximum priniple (see for example [16℄) implies that eV (�; t) � 0 for all t 2 (0; T�).Therefore V + � V �: (By the same reasoning as in Step I(iv), we an apply the strong maximumpriniple without a sign ondition on (x; t).)As a last step, note that V �(x; 1=n)! V �(x; 0) (pointwise), we obtain U+(�; t) = U�(�; T� + t)for t 2 [0; T� ℄; and therefore this funtion is both super- and subsolution, i.e. a visosity solution.By the omparison priniple for visosity solutions it must equal V � and thus is a lassial solution.We have thus established the existene of pulsating waves for rational slopes with � 6= 0.Step III { Existene of Pulsating Wave for Irrational SlopeThe following argument extends the existene result to irrational slopes.Let �n (rational slopes) ! �. By the ontinuity of the speed in the normal, we have n ! � 6= 0.Further, let un be the orresponding pulsating waves in the frame O�n . They satisfy uniformlyLipshitz bounds in x, t independent of �.Using the transformation (41), we thus obtain a family of funtions Un(!) whih are 1-periodiin Rn+1 and are solutions of (42). As n > �2 > 0, the hange of variables ! = O�n(x; nt)T are22



invertible for eah n with uniform bounds for the inverse. Therefore, the Un's also satisfy uniformLipshitz and (by paraboli regularity of the un's) C2;� estimates on [0; 1℄n+1. Hene we an extrata onvergent subsequene leading to a U whih solves (42) with the limiting normal diretion �.The Theorem is thus proved for the ase � 6= 0.Step IV { Existene of \Pulsating Wave": Stationary (� = 0) Case.Again, we onsider separately the ase of rational and irrational diretion.For rational diretion, the evolution equation desribed by (6) in fat is the negative gradientow of the following energy funtional:E(u) = Z[0;P ℄n �p1 + jruj2 � ÆF (x; u)� dxn; where F (x; u) = Z u0 f(x; s) ds (48)(\ut = �p1 + jruj2 ÆEÆu (u)"). As � = 0, we have two solutions of (6): u�(x; t) < u�(x; t) whih areP -periodi in x and are uniformly Lipshitz and bounded in x and t. Hene any solution u(x; t)of (6) with u�(x; 0) � u(x; 0) � u�(x; 0) satis�es u�(x; t) � u(x; t) � u�(x; t). Furthermore, thefollowing energy identity holds:E(u(�; t)) + Z t0 Z[0;P ℄n u2tp1 + jruj2 dxn dt = E(u(�; 0)):The uniform osillation and gradient bounds from Corollary 5 lead to supt�0 jE(u(�; t))j < 1.Moreover, the uniform gradient bound implies that u2t �p1 + jruj2��1 � Cu2t . Thus we haveZ 10 Z[0;P ℄n u2t dxn dt <1:A standard appliation of paraboli regularity implies that �tu(�; t) is uniformly ontinuous on[0; P ℄n; and hene �tu(�; tj) �! 0 for some subsequene tj �!1. A further subsequene gives thatthe limit �u(x) = limtjk!1 u(x; tjk) exists and it solves the stationary solution for (6). Furthermore,the P -periodiity of �u(�) automatially implies (40).For irrational diretion, the same argument an be applied with the modi�ation that the domain[0; P ℄n is replaed by a sequene of monotonially inreasing balls Bj suh that Bj �! Rn . Thefuntion u is required to satisfy the Dirihlet boundary ondition: u = C on �Bj (where u� � C �u�). Then for eah j, we obtain a stationary solution uj as before. From the uniform gradientestimates Corollary 5, we an extrat a subsequene whih onverges (on ompat subsets) to astationary solution on the whole spae. (Note that the result of Corollary 5 stated for Rn , anbe extended to bounded domains suh as balls Bj's by onstruting suitable barrier funtions withuniformly bounded gradient at the boundary. By the smallness of the foring and the apriori L1bound, suh barriers an be onstruted quite easily.)Finally, for irrational slope, any stationary solution of (6) automatially satis�es (40) as there isno x0 2 Rn suh that the ondition O�(x0; 0)T 2 Zn+1 is ful�lled. The whole Theorem 12 is thusproved. 23



13 Remark. 1. Our result for the ase � 6= 0 is related to the result in [4℄ on the existene ofplane-like minimizers: If the foring is small and suÆiently regular, then stationary solutionsof (1) not only stay lose to a plane, but are even graphs over that plane.2. Note that there may be solutions that stay bounded in a frame with � = 0; but are notstationary, for example a \traveling kink" or asades of many kink strutures.4.2 Properties of the Pulsating WaveIn this setion, we present the uniqueness result and some stability properties for the pulsatingwave.14 Proposition (Uniqueness of Pulsating Wave). For all �, the speed � is unique. If � 6= 0, thenthe shape U of the pulsating wave is also unique.Proof. The uniqueness of � is already proved in Theorem 9, in partiular, Proposition 10.When � 6= 0 and the diretion � is rational, the uniqueness of the pulsating wave follows exatlyfrom the same argument as in [11, Proposition 6℄. When � is irrational, we proeed similarly, butwith the following additional onsideration. (Without loss of generality, assume � > 0.)Let U and V be two pulsating waves solving (42). First, onsider u0(x) = U(O�(x; 0)T ). Seond,let v(x; t) be the solution of (6) with initial data �v(x; 0) = �h+V (O�(x; 0)T ) for some large positiveonstant h suh that �v is some lattie translation of V (O�(x; 0)T ). Similar to (46), de�ne:T� = sup�� > 0 : infx2Rn (u(x; 0)� �v(x; �)) � 0� :Note that T� < 1 as � > 0. Now let ~u(x; t) and ~v(x; t) be the solution of (6) with initial datau0(x) and �v(x; T�). As ~v(x; 0) � ~u(x; 0), weak maximum priniple (in the whole spae) implies that~v(x; t) � ~u(x; t) for all x 2 Rn and t � 0. Consider the following two ases.1. Suppose there exists an x� suh that ~u(x�; 0) = ~v(x�; 0). By the pulsating wave ansatz,~u(x� + x0; �t0) = ~v(x� + x0; �t0) for some (x0; �t0) suh that t0 > 0 and O�(x0; �t0) 2 Zn+1.This would ontradit the strong omparison priniple (in unbounded domain) unless U isidentially equal to V .2. Suppose there exists xi suh that jxij �! 1 and ~u(xi; 0)� ~v(xi; 0) �! 0+. By the pulsatingansatz again, we have ~u(xi + x0i; �t0i) � ~v(xi + x0i; �t0i) �! 0+ for some (x0i; �t0i) satisfyingO�(x0i; �t0i)T 2 Zn+1. As � 6= 0, we an always hoose the x0i and t0i's suh that the (xi +xi; ti)'s lie in a ompat subsets of Rn+1 . Hene, there exists an x� and t� suh that ~u(x�; t�) =~v(x�; t�). Thus the situation is the same as the previous ase.
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For the ase � = 0, we do not expet uniqueness to be true as there ould be many stationarysolutions orresponding to the loal minimizers of the energy funtional (48). These solutionsannot be related to eah other as in the � 6= 0 ase.The next result leads to a form of stability property of the pulsating waves. It is similar in spiritto the Krein-Rutman type of statement.15 Proposition (Monotoniity in Time for the Pulsating Wave). Let u be a pulsating wave of (6)with � > 0. Then ut > 0 for all x 2 Rn and t 2 R.Proof. We �rst prove the result for rational diretion so that the pulsating wave is spae-timeperiodi in a tilted frame with some period P = P (�). The ase for irrational diretion an bededued by a limiting proedure together with the strong maximum priniple.Consider u(x; 0) and de�ne:T� = sup ft � 0 : u(x; t) � u(x; 0) for some x 2 Rng :As � > 0 and u is bounded in its frame, we have 0 � T� < 1. By the ontinuity of u(x; t)in the x- and t-variables and the ompatness of the domain (as u is P -periodi), we must haveu(x; T�) � u(x; 0) for all x 2 Rn and u(x�; T�) = u(x�; 0) for some x�. Now onsider the solutionsof (6) with initial data u(x; T�) and u(x; 0); respetively. The pulsating wave ansatz implies thatu(x�; T� + T�) = u(x�; T�) for some T� > 0, ontraditing the strong maximum priniple unlessu(�; T�) � u(�; 0): As � > 0; this an only happen if T� = 0. Hene u(x; t) > u(x; 0) for allt > 0 giving ut � 0. The fat that ut > 0 follows from strong maximum priniple for ut: (Notethat ut solves a linear paraboli equation (by taking the time derivative of (6)) with boundedoeÆients.)The above result immediately leads to the following orollary.16 Corollary. Let � be a rational diretion and u be the pulsating wave of (6) with � 6= 0. Thenthere exist 0 < C1(�; F ) < C2(F ) <1 suh that for all x 2 Rn , t; s 2 R, it holds thatC1 jt� sj � ju(x; t) � u(x; s)j � C2 jt� sj :The next exponential onvergene result is a onsequene of the above monotoniity property.17 Theorem (Stability Property of Pulsating Wave). If � is a rational diretion and � 6= 0, thenthe pulsating wave u satis�es the following stability property.Let fv(x; t) : x 2 Rn ; t � 0g be a lassial solution of (6) whih is a P -periodi funtion (whereP = P (�)). Then there exists t� 2 R, � > 0 and a onstant C whih might depend on P suh thatkv(�; t) � u(�; t� + t)kL1(Rn) � Ce��t:25



Proof. Without loss of generality, we an assume the initial ondition v(x; 0) is smooth and v(x; 0) >NP for some suÆiently large integer N so that v(x; 0) � u(x; 0) for x 2 Rn .Now let u(x; t) be the pulsating wave of (6). De�ne:s�0 = inf ft > 0 : u(x; t) = v(x; 0) for some x 2 Rngand t�0 = sup ft > 0 : u(x; t) = v(x; 0) for some x 2 Rng(Qualitatively, s�0 is the �rst time u(x; t) touhes v(x; 0) from below and t�0 is the last time u(x; t)touhes v(x; 0) from above. The above de�nitions make sense as we are working in the ompatdomain and u and v are periodi funtions with uniform Lipshitz bound.) By Proposition 15,we have s�0 < t�0 and u(x; s�0) � v(x; 0) � u(x; t�0) for all x 2 Rn with the equalities valid at somex00; x000 2 Rn .By omparison priniple, we have for all x 2 Rn that u(x; s�0+T ) � v(x; T ) � u(x; t�0+T ) where�T = P . The pulsating wave ansatz gives:u(x; s�0) � v(x; T ) � �T � u(x; t�0):Now the strong maximum priniple together with Proposition 15 imply the existene of s�1 andt�1 suh that s�0 < s�1 < t�1 < t�0 and u(x; s�1) � v(x; T ) � �T � u(x; t�1) with the equalities valid atsome x01; x001 2 Rn . By indution, there exist s�n�1 < s�n < t�n < t�n�1 suh thatu(x; s�n) � v(x; nT )� �nT � u(x; t�n); x 2 Rn (49)and the equalities hold at some x0n; x00n 2 Rn .De�ne: ��n = t�n � s�n. We laim the existene of a positive number � < 1 independent of n suhthat ��n+1 � ���n: (50)Granted the above laim, then there exists a t� < 1 suh that t� � s�n and t�n � t� � �n.Furthermore, from (49), we have:u(x; t�) + u(x; s�n)� u(x; t�) + �nT � v(x; nT ) � u(x; t�) + u(x; t�n)� u(x; t�) + �nT:Hene, Corollary 16 giveskv(�; nT ) � u(x; t� + nT )kL1(Rn) � ku(�; s�n)� u(�; t�)kL1(Rn) + ku(�; t�n)� u(�; t�)kL1(Rn) � 2C2�nwhih will lead to the stated exponential onvergene.Now we proeed to prove (50).Consider the time interval: [nT; nT + T2 ℄. Applying the same argument as that leading to (49),we obtain the following statement:u(x; s�n + T2 + �1) � v(x; nT + T2 )� �nT � u(x; t�n + T2 � �2); for all x 2 Rn26



for some �1; �2 > 0 suh that s�n+ T2 + �1 � t�n+ T2 � �2 and the equalities hold at some x0; x00 2 Rn .Let 0 < � < 1 be some �xed number (to be determined later). Consider the following two ases.Case One. If �1 + �2 � ���n, then applying strong omparison priniple to (6) on the interval[nT + T2 ; (n+ 1)T ℄, we haveu(x; s�n + T + �1) < v(x; (n+ 1)T )� �nT < u(x; t�n + T � �2) for all x 2 Rn .Hene s�n + �1 � s�n+1 � t�n+1 � t�n � �2 whih leads to��n+1 = t�n+1 � s�n+1 � t�n � �2 � (s�n + �1) � (1� �)��n:Setting � = 1� � gives the desired result.Case Two. If �1 + �2 � ���n, then either �1 � �2 ��n or �2 � �2 ��n. Consider the seond ase (the�rst an be treated similarly.)Let  (x; t) = v(x; nT + t)� u(x; s�n + t)� �nT . It solves a linear paraboli equation similar to(31) with smooth bounded oeÆients. Then  has the following properties:1.  (�; 0) � 0 and hene  (�; t) > 0 for all t > 0.2. 0 �  (x; 0) = v(x; nT )� u(x; s�n)� �nT � u(x; t�n)� u(x; s�n) � C2��n. Hene,k (�; 0)kL1(Rn) � C2��n; and r ��; T2 �L1(Rn) � C3(T ) k (�; 0)kL1(Rn) � C3(T )��n(51)where the �rst estimate omes from Corollary 16 and the seond is a onsequene ofparaboli regularity | reall that  (�; t) is periodi in x 2 Rn .Now the de�nition and assumption of �2 implies the existene of some x00 2 Rn suh that (x00; T2 ) = v(x00; nT + T2 )� u(x00; s�n + T2 )� �nT= u(x00; t�n + T2 � �2)� u(x00; s�n + T2 )= u(x00; t�n + T2 )� u(x00; s�n + T2 ) + u(x00; t�n + T2 � �2)� u(x00; t�n + T2 )� C1��n � C2�2 ��n (by Corollary 16)� (C1 � C2�2 )��n:Upon hoosing � small enough, we get  (�; T2 )L1 � C3��n. This and the gradient bound in(51) implies the existene of a C4(T ) suh that for all x 2 Rn , it holds that  (x; T ) � C4(T )��n.Without loss of generality, C4(T ) an be hosen to be some small number. This leads to thefollowing sequene of statements:v(x; nT + T )� u(x; s�n + T )� �nT � C4��n (for all x 2 Rn)v(x; (n+ 1)T )� u(x; s�n)� �(n+ 1)T � C4��nv(x; (n+ 1)T )� �(n+ 1)T � C4��n + u(x; s�n):27



Now from Corollary 16, we dedue that s�n+1 � s�n + Æ�n for some Æ�n > C4C2 ��n. So we have:��n+1 = t�n+1 � s�n+1 � t�n � s�n � Æ�n � ��n � C4C1 ��n = �1� C4C1� ��n:(Reall that C4 an be hosen to be as small as possible.)Finally, (50) follows upon hoosing � = min�12 ; C1C2� and � = max�1� �; 1� C4C1�. (It is learthat the hoie of all the onstants are independent of n.)For general L1 initial data de�ned on the whole spae, the stability issue an be quite om-pliated. On the other hand, for ompatly supported initial perturbation, analogous stabilityproperty might still be true. Due to length, we do not pursue to make this statement preise in theurrent paper.The next result indiates the stability of the pulsating wave with respet to the underlyingmedium. Due to the availability of the additional equation (42), the result is stronger in the aseof � 6= 0.18 Proposition (Stability of Pulsating Wave with respet to the Inhomogeneity). Consider asequene of inhomogeneous mediums fi's and f satisfying ondition A. Suppose kfi � fkC2 �! 0.Let Ui and U be the pulsating waves for fi and f with speed i and  (and the same normal diretion�). Then the following onvergene statements hold.(i) i �! .(ii) If  6= 0, then Ui �! U uniformly in Rn � R.(iii) If  = 0, then there exists a subsequene uij (x; t) = Uij (OT� (x; � t)) onverging uniformly onompat subsets of Rn � R to a solution of (6) for f .Proof. (i): The onvergene of the speed follows easily by onsidering the equation satis�ed byui � u: ddt(ui(x; t) � u(x; t)) = Afi(�; x; ui)�Af (�; x; u)= Af (�; x; ui)�Af (�; x; u) +Afi(�; x; ui)�Af (�; x; ui)= [DuAf ℄(�; x; u�)(ui � u) + [DfAf ℄f�(�; x; ui)(fi � f)where DuA and DfA are the derivatives of Af with respet to the arguments u and f . (In theabove, we have used the mean value theorem for �rst order Taylor expansion.) Gronwall's inequalitygives kui(�; t)� u(�; t)kL1(Rn) � C kfi � fk1 eCt where the onstant C depends on the C2-normsof the f and fi's. Hene for any large, but �xed T , we have kui(�; T ) � u(�; T )kL1(Rn) �! 0 whihimplies the onvergene of the i's.(ii): If  6= 0, working diretly in the transformed equation (42) shows that any limit of the Ui'ssatis�es the same equation as that for U . Uniqueness of U implies the result.28



(iii): If  = 0, working instead in the original equation (6) implies that up to a sub-sequene,the ui's onverges uniformly in ompat subsets in spae-time and the limiting funtion satis�es(6) for the inhomogeneity funtion f .5 Examples of Fingering and PinhingHere we give some examples in R2 of the formation of singularities for the mean urvature owwith foring (1) when the foring is not small.5.1 Fingering with \Laminate" EnvironmentBy a laminate environment we mean a foring of the form f(x; u) = g(x). Even though simple, itan provide examples amenable to expliit omputations whih an still apture some interestingfeatures. Note that after a rotation by �2 , the foring in the new frame is desribed by a funtionwhih depends only on the u-variable. This already indiates that questions on e�etive behaviorsan depend ruially on the diretion of the front.Here we give an example that, in ontrast to the e�etive speed � , the pinning threshold h asmentioned in page 4 varies disontinuously with respet to the normal diretion. Consider (after arotation of the axis by �2 ) f(x; u) = sin(u) + �+ h where 0 < � < 1. If h = 0, then any onstantfuntion u = u� where u� solves sin(u�) + � = 0 with fu(�; u�) = os(u�) < 0 is a stable stationarysolution so that h must be stritly positive for this diretion. On the other hand, fronts with anyother diretions will always have non-zero speed (unless h = ��) as they an be approximated bytraveling kinks (see Figure 5). (See also [5℄ for a similar result on a related disrete system.)Another interesting phenomena is \�ngering". A preise analysis of suh a situation has beenarried out in details in [6℄ so we will just briey explain the terminology. If f(x; u) equals someperiodi funtion g(x) suh that its amplitude is suÆiently large ompared with the period, thenthe solution u(x; t) starting from u(x; 0) � 0 remains as a graph, but it an happen thatlim inf[0;1℄n u(x; t)! �1 as t!1; lim sup[0;1℄n u(x; t)! +1 as t!1:(See Figure 6.) The solution in a sense an be desribed by a asade of a series of translationalinvariant solitons, or \grim-reapers". In this ase, it is not apriori lear what the \e�etive front"should be.
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Figure 5. Pinned horizontal diretion andtraveling tilted diretion. g > 0 g > 0
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Figure 6. Fingering in a laminate: Thevertial lines denote the period of g(x).5.2 Pinhing with \Hard" ObstalesThis setion provides an example for the formation of another form of singularities. It an lead tothe \pinh-o�" of a portion of the surfae, reminisent to the so-alled Orowan loops in disloationdynamis [21, pp 624℄.We onsider strong, almost \hard" irular obstales. Consider three positive onstants �� 1,and A and B � 1. Choose a smooth funtion f(x; u) whih satis�esf(x; u) := ( �B for x2 + u2 � �2;A for x2 + u2 > (2�)2(and is extended periodially in both the x and u-diretions with period two). Let the initial databe u0(x) � �1. Now onsider two types of evolving irles. (See Figure 7.)Outer Barrier. Consider the obstale S� := f(x; u) : x2 + u2 � �2g and the shrinking ballS�(t) entered at (0; 0) with radius r�(t) solvingddtr�(t) = � 1r�(t) +B; r�(0) = �:Now S�(t) ats as barrier for the geometri problem, hene also as a barrier for the graph equation(6). The shrinking of S�(t) an be made arbitrarily slow if B is hosen appropriatedly (B � 1� ).Inner Barrier. Consider a sequene of expanding irles entered at (1; i) with i 2 [�1; 1℄and radius denoted by Ri(t). The enters are arranged in suh a way that 1 < 2 < � � � . Theseirles are used as inner barriers to the evolving solution u(x; t). Their radii solveddtRi(t) = � 1Ri(t) +A; for t 2 [ti�1; ti)whih are further related by Ri(ti�1) = Ri�1(ti�1)�(i�i�1) so that only the i-th irle is \ative"as a barrier during the time interval [ti�1; ti℄. If the onstant A and the initial Ri's are large enough,then the irles will expand. The ti's are hosen suh that the i-th irle is allowed to ontinue to30



expand until it touhes S�(t) at ti. At this moment, a new irle with parameters i+1 and Ri+1�ts inside Ri(t) and is used as initial datum for a new ative barrier.
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Figure 7. The solid lines show the ex-peted behavior of the solution u(x; t)at di�erent times, the dashed linesdenote the outer- (S�(t)) and inner-(Ri(t)) barriers.
Sine A is suÆiently large, eah of the Ri is growing with speed bounded from below. Thusthere exists a ertain time T� suh that for some i, the Ri will touh its periodi extension on thevertial line x � 0. If the motion of the outer barrier S�(t) is so slow that r�(T�) > 0; then thesolution annot remain as a graph, leading to an example of pinhing.The above pinhing phenomena an ertainly be handled by the level-set formulation as in (3).On the other hand, this example is not too muh di�erent from the �ngering example. If thedetahed portion around the obstale S�(t) persists for a long time, it an be viewed as a part of\detahed" �ngers. In order to show a homogenization result for suh kind of situation, in a sensewe still need a solution whih remains bounded in some appropriate moving frame. This provideswork for further investigation.A Classial Estimates for Mean Curvature Flow with ForingThis appendix proves Theorems 7 and 8. Sine we already have spae-time uniform gradientestimates, we ould in priniple invoke well-known results for quasilinear paraboli equations, inpartiular, the interior Shauder estimates to prove the existene of lassial solutions starting fromLipshitz initial data. However, in order to take advantage of the struture of the equation andsee how the onstants are omputed in the estimates, we will use a more geometri approah as in[17, 12, 13℄. As the overall strategy is already presented quite learly in the ited referenes, weonly outline here the main steps needed in extending the results to handle equation (6).
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Let ��(t) � Rn+1 : t � 0	 be parameterized as �(p; t) so that its motion law is given by (1), i.e.��t�(p; t) = VN� (� is the unit normal of �(t)).The following notations (with Einstein onvention) will be used:gij = � ���pi ; ���pj� (�rst fundamental form)� h�; �i = standard inner produt in Rn+1 �gij = inverse of (gij), i.e. gikgkj = Æijhij = �� �2��pi�pj ; �� = � ���pi ; ���pj� (seond fundamental form)H = gijhij (mean urvature)jAj2 = gijgklhikhjlr� = gradient operator on the tangent spae of �� r�' = gij [�pi'℄�pj� �4� = Laplae Beltrami operator on the tangent spae of �� 4�' = 1pg�pi �pggij�pj'� �where ' is an arbitrary funtion de�ned on � and g = det(gij).Let �t = f(x; u(x; t)) : x 2 Rng so that it has a graph representation over a hyperplane withnormal vetor � = (0; : : : ; 0; 1), then we have the following expliit formulas: (r is the gradientoperator with respet to x 2 Rn)� = 1z (�ru; 1); gij = Æij + uxiuxj ; gij = Æij � �i�j ; hij = �1zuxixj (52)where z =q1 + jruj2 = h�; �i�1 and � = uxiz . Furthermore,H = �1z �Æij � �i�j�uxixj and jAj2 = 1z2 gijgkluikujl:We further remark that up to tangential di�eomorphism, the geometri evolution (1) is equivalentto the graph equation (6) (see [13, pp 549℄) whih is written again here in the following form:ut = gijuxixj + Æq1 + jruj2f(O�(x; u)T ): (53)For simpliity, we set Æ = 1. As seen in the following derivation, this will not a�et the result,as the smallness of Æ is only used in deriving the gradient bound in Theorem 4. One this is doneor assumed, Æ does not play a role in deriving higher regularity.We now write down the evolution equations for the important geometri quantities relevant forour estimates. In the following, the symbol C(�) denotes some general onstant whih might dependon its argument(s). Reall that F = kfkC2(Rn+1).32



���t = gij ����t ; ���pi� ���pj = �gij ��; ��pi ����t �� ���pj= �gij ��; ��pi (VN�)� ���pj = �gij �VN�pi ���pj = �r�VN = r�H �r�f (54)�gij�t = � ��pi ����t �; ���pj�+� ���pi ; ��pj ����t ��= � ��pi (VN�); ���pj�+� ���pi ; ��pj (VN�)� = VN � ���pi ; ���pj�+ VN � ���pi ; ���pj�= 2VNhij = (�2H + 2f)hij (55)�gij�t = �gik �gkl�t glj = �2VNgikgljhkl = (2H � 2f)gikgljhkl (56)�hij�t = � ��t � �2��pi�pj ; �� = � �2�pi�pj �����t �; ���� �2��pi�pj ; ���t �= � �2�pi�pj (�VN�); ���� �2��pi�pj ; �r�VN�= � �2�pi�pj (H�); ���� �2��pi�pj ; r�H��� �2�pi�pj (f�); ��+� �2��pi�pj ; r�f�= 4�hij � 2Hglmhilhmj + jAj2 hij �� �2�pi�pj (f�); ��+� �2��pi�pj ; r�f� (57)� jAj2�t = ��t(gikgjlhijhkl) = gik;t gjlhijhkl + gikgjl;t hijhkl + gikgjl(hij);thkl + gikgjlhij(hkl);t= 4� jAj2 � 2 jr�Aj2 + 2 jAj4 + (I) + (II) (58)where (I) = �2fhikgjlhijhkl � 2fhjlgikhijhkl so that j(I)j � C(F ) jAj3(II) = gikgjlhkl��� �2�pi�pj (f�); ��+� �2��pi�pj ; r�f��+gikgjlhij ��� �2�pk�pl (f�); ��+� �2��pk�pl ; r�f��Note that � �2�pk�pl (f�); �� = � �2f�pk�pl� + �f�pk ���pl + �f�pl ���pk + f �2��pk�pl ; ��= �2f�pk�pl � f � ���pk ; ���pl�33



so that j(II)j � C(F ) jAj+ C(F ):Hene we have: � jAj2�t � 4� jAj2 � 2 jr�Aj2 + 2 jAj4 + C(F ) jAj3 + C(F ): (59)Finally, we need the evolution equation for z:�z�t = ��t h�; �i�1 = �z2 h�t�; �i = z2 h�r�H; �i+ z2 hr�f; �i (60)so that �z�t � 4�z � jAj2 z � 2z jr�zj2 + C(F )z2: (61)We are now ready to prove the stated Theorems.A.1 Proof of Theorem 7 { Existene of Classial SolutionThe main point here is that the initial data is only assumed to be Lipshitz. In order to prove theexistene of lassial solution, we need apriori estimates for the seond derivatives or equivalently,the seond fundamental form. This is provided by the following lemma on the interior in timeestimate for the urvature.19 Lemma. Let f�t : t � 0g be a lassial solution of (6) suh that kzkL1(Rn�R+) � N� < 1.Then, for all T > 0, there exists a onstant C(N�; F; T ) suh that for 0 � t � T ,jAj2 (�; t)L1(Rn) � C(N�; F; T )1t : (62)Proof. The proof follows very muh the strategy of [13, Theorem 3.1℄. Hene only the key stepswill be outlined.Let ' be a positive inreasing funtion (to be determined). Then(�t �4�) hjAj2 '(z2)i= jAj2 '0(z2)2zzt + '(z2)(jAj2)t �r� �jAj2'0(z2)2zr�z + '(z2)r�(jAj2)�= jAj2 '0(z2)2z [zt �4�z℄ + '(z2) h(jAj2)t �4�jAj2i�4'0(z2)z 
r�jAj2; r�z�� jAj2 '00(z2)4z2 jr�zj2 � jAj2 '0(z2)2 jr�zj2� 2 �'(z2)� '0(z2)z2� jAj4 � 2'(z2) jr�Aj2 � (6'0(z2) + 4'00(z2)z2) jAj2 jr�zj2�2 
r�jAj2; r�'(z2)�+ C(F )z3'0(z2) jAj2 +C(F )'(z2) hjAj3 + 1i� 2(' � '0z2) jAj4 � '�1 Dr�'; r�(jAj2 ')E� (6'0(1� '�1'0z2) + 4'00z2) jAj2 jr�zj2+C(F )z3'0 jAj2 + C(F )'(z2) hjAj3 + 1i :34



Upon hoosing '(s) = s1� ks where k is some small positive number (to be determined), we have:(�t �4�) hjAj2 'i � �k hjAj2 'i2 � '�1 Dr�'; r�(jAj2 ')E+C(F )z3'0 jAj2 + C(F )' hjAj3 + 1i :As kzk1 � N� < 1, we an hoose k = k(N�) small enough that '(z2) and its derivativesare all uniformly bounded. Note that '(z2) is also bounded from below as z � 1. The preseneof �k hjAj2 'i2 is ruial. It is the reetion of the fat that the equation is uniformly paraboli(as the gradient is assumed to be uniformly bounded). It an be used to absorb the jAj2 and jAj3terms. By introduing B = jAj2 '(z2) and hanging the onstants, we thus arrive at:(�t �4�)B � �kB2 � '�1 hr�'; r�Bi+ C(F;N�):Now onsider the equation satis�ed by the quantity tB:(�t �4�)(tB) = t(�t �4�)B +B � �ktB2 � t'�1 hr�'; r�Bi+ tC(N�; F ) +B:Furthermore, the quantity '(z2) satis�es:(�t �4�)' � �2z2'0 jAj2 + C(N�; F )z3'0:Thus we have:(�t �4�)(tB + ') � �ktB2 +B � '�1 hr�'; r�(tB + ')i+ C(N�; F )(jAj2 + 1) + tC(N�; F )� �ktB2 + C(N�; F )B � '�1 hr�'; r�(tB + ')i+ tC(N�; F )� �kB [tB � C(N�; F )B℄� '�1 hr�'; r�(tB + ')i+ tC(N�; F )(where in the above we have made used of the fat that jr�'j2 � C(N�) jAj2).Now suppose supt2[0;T ℄[tB+'(z2)℄ equals some onstantM > 0. Assume that the sup is attainedat p� and t�. Then we have0 � �k�M � '(z2)t � �M � '(z2)� C�+ TC����(p�;t�)whih leads to a ontradition upon hoosing M = M(N�; T; F ) large enough. The argument anbe loalized in spae as done in [13℄ or we an also use the similar devie as in page 10 by hoosingappropriate (p(j)� ; t(j)� )'s suh that tB+' onverges to the sup. The same proof then goes through.The desired interior in time estimate (62) is thus established.With the above apriori bounds, Theorem 7 an be proved using approximation of the initialdata. For smooth initial data, the result follows by Shauder Fixed Point Theorem. The estimatesof Corollary 5 lead to uniform gradient bound whih then gives a urvature bound whih dependsonly on the gradient. The loal in time existene and uniqueness of lassial solutions then followeasily from standard arguments. The global in time existene follows from the ombination ofuniform osillation and gradient bounds as explained in Remark 6(1).35



A.2 Proof of Theorem 8 { Gradient Deay EstimateThe tehnique is initiated by [18℄ for the ellipti ase. The omputation here follows losely to thatof [15, Theorem 5.2℄, making use of the graph equation (6) (or (53)).We �rst reall the notations of (52). Furthermore, let D2u2 =Pij u2xixj . Then (60) takes thefollowing analogous form:zt = gijzxixj � 1z gijgkluxkxiuxlxj � 2z gij�k�luxixkuxjxl + �k (Æzf )xk (63)or more ompatly written as:zt = gijzxixj�D2u2z +hru; rzi2z3 +Æ�hru; rziz f(x; u) + hru; rxf(x; u)i+ jruj2 fu(x; u)� :(64)Furthermore, the symmetri matrix ~G = (gij) satis�es:~G = I � � 
 � = (1� j�j2)I + j�j2�I � �j�j 
 �j�j� � (1� j�j2)I = 1z2 I (65)so that ~G is positive de�nite with its smallest eigenvalues equal to 1z2 .Now we proeed to prove the Theorem. Without loss of generality, we restrit our attention to
R;T = f(x; t) : 0 � jxj � R; 0 < t < Tg. By adding a onstant to u, we an assume �3M � u ��M < 0 so that kukL1(R�R+) � 3M . Let u(0; T ) = �m < 0.De�ne h(x; t) = �(x; t)z(x; t) where�(x; t) = eK�(x;t) � 1 and �(x; t) = �u(x; t)2m + tT �1� jxj2R2 ��+and the onstant K is to be determined.Consider the expression Lh = gijhxixj � ht whih equals �Lz+ zL�+2(�)xizxi � �i�j(�)xizxj ��i�j(�)xj zxi . As (�)xi = hxi��zxiz , we have:Lh� 2gijz zjhi = ��Lz � 2gijz zizj�+ zL�:Now estimate: Lz � 2gijz zxizxj and L�. Using (63) and (65), the former is estimated as:Lz � 2gijz zxizxj = 1z gijgkluxkxiuxlxj + 2z gij�k�luxixkuxlxj � �k (Æzf)k � 2gijz �k�luxkxiuxlxj� 1z5 D2u2 � Æ h
[D2u℄�; �� f + hru; rxfi+ jruj2 fui :Furthermore, as ��
[D2u℄�; ���� � kD2ukjruj2z2 = kD2ukz5=2 jruj2z 12 , we have Æ 
D2u�; �� f � 12 kD2uk2z5 +12Æ2z5C(F ) whih givesLz � 2gijz zizj � 12 D2u2z5 � C(F )Æz2(1 + Æz3): (66)36



For L�, we haveL� = K2eK�gij(�)xi(�)xj +KeK� �gij(�)xixj � (�)t�� K2eK�z2 jr(�)j2 +KeK� �gij(�)xixj � (�)t� (from (65)):Note that (�)xi = uxi2m � 2txiTR2 ; (�)xixj = uxixj2m ; (�)t = ut2m + 1T �1� jxj2R2 � :Hene L� � K2 eK�z2 ����ru2m � 2txTR2 ����2 +KeK� ��Æzf2m � 1T �1� jxj2R2 �� : (67)Combining (66) and (67), we sequentially estimate Lh from below:Lh� 2gijz zjhi� zL�� �C(F )Æz2(1 + Æz3)� �� K24m2z2 �jruj2 � 16m2R2 ��K �ÆzC(F )2m + 1T �1� jxj2R2 ��� ÆC(F )z(1 + Æz3)�De�ne the set D = �(x; t) 2 
R;T : z2(x; t) � 2�1 + 16m2R2 �� : (68)On D, we have:Lh� 2gijz zjhi � zeK�� K28m2 �K �ÆzC(F )2m + 1T �� ÆC(F )z(1 + Æz3)�� zeK�� K216m2 � 4Æ2z2C(F )� 16m2T 2 � ÆC(F )z(1 + Æz3)� :Let z� = supt2[0;T ℄ kz(t)k1. If we hoose:K � 4mp3 �4mT + C(F )pÆz� + C(F )Æz� +C(F )Æz�2�then Lh� 2gijz zjhi � 0.Observe that (0; T ) 2 spt�. Assume (0; T ) 2 D, otherwise z(0; T ) � p2 �1 + 4mR �. By maximumpriniple, we have h(0; T ) � max(x;t)2�D h(x; t), i.e.�eK(� 12+1) � 1� z(0; T ) � max(x;t)2�D0�eK� u2m+ tT �1� jxj2R2 ��+ � 11A z(x; t) � �eK � 1�p2�1 + 4mR �leading toz(0; T ) � p2�1 + 4mR ��exp�2mp3 �4mT + C(F )pÆz� +C(F )Æz� + C(F )Æz�2��+ 1� (69)37
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