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with its motion law given by: VN (p) = H(p) + Æf(p); p 2 �(t) (1)where VN and H are the normal velo
ity and mean 
urvature of �(t); and Æ is a positive numberwhi
h measures the strength of the spatial inhomogeneity, represented by f . Without loss ofgenerality, we assume 0 < Æ < 1. The fun
tion f : Rn+1 ! R satis�es the following 
onditions:A: ( (i) f is Zn+1-periodi
, i.e. f(p+ !) = f(p) for all p 2 Rn+1 and ! 2 Zn+1.(ii) f(�) is twi
e 
ontinuously di�erentiable and kfkC2(Rn+1) = F <1:We emphasize that f is not restri
ted to be either positive or negative.The main 
ontribution of the present paper is that under the above rather weak assumption forthe for
ing, together with Æ small enough, we are able to show for any dire
tion � the existen
e ofa unique speed 
� and a number D < 1 su
h that the solution of (1) starting from a plane withnormal � stays as a graph over the same plane for all times, and moreover, this graph lies withina distan
e D from a plane whi
h has normal � and moves with normal velo
ity 
� : This result ismotivated by and extends the geometri
 arguments of [4℄ whi
h essentially 
onsiders a stationaryversion of (1). Using the language of homogenization, we have in fa
t shown the existen
e of ahomogenized front | hyperplane with normal � | whi
h moves with an e�e
tive speed | 
� .Furthermore, if 
� 6= 0; we show that pulsating waves exist. A pulsating wave is a spe
ialsolution de�ned globally in spa
e and time with the property that a spatial translation that keepsthe periodi
 environment invariant (latti
e translation) 
orresponds to a translation in time. Morepre
isely, ���(t) � Rn+1 : t 2 R	 is a pulsating hypersurfa
e evolving by (1) with normal dire
tion� and velo
ity 
� 6= 0; if it satis�es the following property (see Figure 1):�(t+ �) = �(t) + z; for all z 2 Zn+1 and � = � � z
� : (2)
ν
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t+Σ(   τ) = Σ( ) + t z

t Figure 1. The pulsating wave property:time shift 
orresponds to latti
e trans-lation.
The interest in (1) stems from models for the motions of material interfa
es (su
h as phaseboundaries) in the over-damped limit, i.e. when inertial e�e
ts are negle
ted. Then the time2



evolution is often the negative gradient 
ow of some underlying energy fun
tional. Su
h modelsshould in
orporate heterogeneities, whi
h may arise from the periodi
 stru
ture of the material orsubstrate, or impurities present in the material on a very �ne s
ale. These heterogeneities 
reatea very os
illatory energy lands
ape and make the analysis of the dynami
s very 
hallenging. Inparti
ular, the large s
ale limit of the energy, obtained for example by means of �-
onvergen
e [10℄and the large-s
ale limit of the gradient 
ow dynami
s may not 
ommute, i.e. the gradient 
owof the limiting energy is not the s
aling limit of the gradient 
ows. This is mainly due to the fa
tthat the dynami
al state of the gradient 
ows often gets stu
k in the lo
al minima 
reated by theheterogeneities. The ultimate limiting behavior is the result of some nontrivial averaging pro
essbetween energeti
 and kinemati
 e�e
ts. See [11℄ for some results along these lines. (The work [22℄proves some �-
onvergen
e result in the time dependent 
ase but the e�e
t of os
illatory energylands
ape is not 
onsidered.)The motion law (1) is motivated by the evolution of phase boundaries [1℄ or defe
ts su
h asdislo
ation lines in a solid [3, 9, 21℄. The \non-os
illatory" part of the energy for the gradient 
owmodel is 
hosen to be the interfa
ial energy (area of a hypersurfa
e). This model thus 
apturesthe 
ompetition between the tenden
y to de
rease the interfa
ial energy | 
atten the interfa
e |while at the same time adapting to inhomogeneities on a very small spatial s
ale. The mathemati
alanalysis of this simple \physi
al" model is already 
hallenging as the intera
tion between thenonlinearities and heterogeneities 
an be quite intri
ate.One question of interest is the e�e
tive front and velo
ity of �(t) on a large spa
e-time s
ale.This 
an be phrased as follows: Given any dire
tion � 2 Sn, is there a number 
� su
h that thesolution of (1) starting from a plane with normal � stays within bounded distan
e from a plane thathas the same normal and moves with normal velo
ity 
�?In the framework of homogenization, the above question 
an be formulated in the followingform. Introdu
e a small parameter � and res
ale (1) as:V �N = �H(p) + Æf (p=�) ; p 2 ��(t): (1�)Then questions on the e�e
tive behavior and quantity are equivalent to investigating the limits ofthe solutions ��(t) of (1�) as � �! 0. Note that the highest order (
urvature) term is multipliedby the small parameter whi
h makes the 
orresponding homogenization problem singular. In su
ha s
aling, the 
urvature and heterogeneity are 
oupled together in an elaborate way and hen
e 
anlead to interesting phenomena.The above question, though simply stated, is highly nontrivial. Besides the fa
ts that the motionlaw (1) is extremely nonlinear and the equation written in appropriate 
oordinate is degenerateparaboli
, the main te
hni
al diÆ
ulty in its analysis lies in the fa
t that the for
ing f is allowedto 
hange sign. For a for
ing whi
h is positive and satis�es some additional te
hni
al 
onditions,the problem on the existen
e of e�e
tive speed is solved in [19℄ using the ma
hinery of vis
ositysolution. This is brie
y explained here. Let U � : Rn+1 � R+ ! R be a fun
tion with the propertythat ea
h of its level sets ���(t) = fx 2 Rn+1 : U �(x; t) = �g evolves by (1�), then U � solves the3



following nonlinear degenerate paraboli
 equation:U �t = �trh�I � jrU �j�2(rU � 
rU �)�D2U �i+ Æf(X=�)jrU �j: (3)It is 
onje
tured (and proved in [19℄ for 
ertain f whi
h remains stri
tly positive) that the solutionsU � 
onverge to a solution U of a homogenized problem whi
h in the level set formulation be
omesthe following �rst order equation: U t = 
rU jrU j�1 jrU j: (4)(See also [2, 3℄ for results related to the above homogenization problem. The work [20℄ studies asemilinear version of (1), but still with positive for
ing.)Another interesting behavior 
on
erning (1) is the pinning/de-pinning phenomena. To explainthis, introdu
e an additional parameter h into (1):VN = H(p) + Æ(f(p) + h) (1h)whi
h models the presen
e of some external �eld imposed on the dynami
s. The relevant questionsin terms of appli
ation and modeling in
lude the de-pinning threshold h
 de�ned as the smallestfor
e h required to obtain a nonzero velo
ity 
� , and also the relationship between the e�e
tivevelo
ity and the ex
ess for
ing h � h
. This question is not addressed in the present paper but isstudied in detail in [11℄ for semi-linear PDEs whi
h are approximations of (1) when the evolvinghypersurfa
e is 
lose to a very \
at" graph. We expe
t that for planes with rational normal dire
tionand small Æ, the method of [11℄ 
an be extended to (1), but the estimates will in general not beuniform in the dire
tion. We remark that, unlike the e�e
tive velo
ity 
� , the de-pinning thresholdh
 is in general not 
ontinuous in the dire
tion � (see Se
tion 5 for a simple example and also [5℄for some results on a related dis
rete system.)We now introdu
e the setting of the present paper. The investigation of e�e
tive behavior isvery mu
h tied to the 
onsideration of plane-like solutions of (1), i.e. there exists a �xed unit ve
tor� 2 Sn su
h that for all t � 0, the solution �(t) satis�es:D(t) := supp;q2�(t) (p� q) � � <1: (5)Furthermore, the existen
e of e�e
tive property relies intimately to the fa
t that D(t) is uniformlybounded in time.In order to in
orporate general �, we introdu
e two 
oordinate systems for Rn+1 . First, we writeRn+1 as Rn+1 = ( XXn+1 ! : X 2 Rn ; Xn+1 2 R) :Let O� be a positively oriented orthogonal transformation of Rn+1 su
h that � = O�((0; : : : ; 0; 1)T ).Introdu
e the new 
oordinate system: (x; xn+1), x 2 Rn and xn+1 2 R su
h that xxn+1 ! = OT�  XXn+1 ! :4



Observe that the (x; xn+1)-
oordinate of � is (0; : : : ; 0; 1). We 
all the (X;Xn+1)- and (x; xn+1)-
oordinate systems the referen
e and tilted frames respe
tively (see Figure 2).

x

X

X

n+1x

n+1

ν

tΓ( ) Figure 2. The original and the tiltedframe. The latti
e stands for the periodof the for
ing.
If �(t) 
an be written as a graph over the plane xn+1 = 0, i.e. �(t) = f(x; u(x; t)) : x 2 Rn ; u 2 Rg,then u solves the following quasi-linear paraboli
 di�erential equation:ut = Af (�; x; u) =q1 + jruj2div0� ruq1 + jruj21A+ Æq1 + jruj2f(O�(x; u)T ): (6)The symbol r refers to the gradient operator with respe
t to the x-variables. Note that (6) isinvariant under the latti
e translation in the following senseAf (�; x+ x0; u+ u0) = Af (�; x; u) for all  x0u0 ! 2 OT� Zn+1: (7)Equation (6) plays a fundamental role in this paper. The notation � will sometimes be sup-pressed, unless needed in the presentation. The main diÆ
ulty in the study of (6) is that it isnot uniformly paraboli
 and be
omes degenerate as the gradient blows up. If the for
ing is large,this 
an indeed happen in �nite time even if the initial data is smooth. Furthermore, the graphrepresentation might not be preserved in time (Se
tion 5). However, by a 
ombination of the peri-odi
ity of the domain and the smallness of the inhomogeneity of the medium, we are able to deriveseveral useful uniform estimates for the solution of (6) whi
h allow us to employ many te
hniquesfor paraboli
 PDEs to the study of (1).The restri
tion to small for
ing is not just for 
onvenien
e (so that we only need to deal with
lassi
al solutions). In fa
t, if the for
ing is large, it 
an lead to quite a di�erent phenomena. First,\pin
h-o�" | a portion of the graph be
omes deta
hed from the overall surfa
e | 
an happen.Even though this 
an still be potentially handled by the level-set formulation ([14, 7℄), it involvesa di�erent type of te
hni
ality. Se
ond, on a more fundamental level of diÆ
ulty, there might noteven be an e�e
tive front or e�e
tive behavior due to the possibility of �ngering. How to de�ne amodi�ed notion of homogenized obje
t and equation is not 
ompletely 
lear. Se
tion 5 gives someexpli
it examples of these phenomena. 5



We expe
t that our results for graph-like pulsating waves 
an be extended by fairly standardarguments to yield a homogenization result for the level set equation (3). Indeed, using the fa
tthat our graph-like pulsating wave solution u(x; t) satis�es ut > 0 (Proposition 15), one 
an
onstru
t a spe
ial solution for (3) by settingfU(x; xn+1; t) = �g = fu(x; t+ �) = xn+1g:In a rotated and moving frameeU(x; xn+1; t) = U(x; xn+1; t)� xn+1 � 
�tis a globally bounded solution ofeU �t = trh�I � jreU + P j�2((reU + P )
 (reU + P ))�D2 eUi+ Æf jreU + P j � 
P ;where without loss of generality, P = � = (0; : : : ; 0; 1). This 
learly implies a homogenization resultfor plane-like initial data. Note that the above equation is a spe
ial 
ase of the equation for theso-
alled \
orre
tor". As the limit e�e
tive velo
ity is 
ontinuous in the normal (Proposition 11),we expe
t the extension to more general initial data to be straightforward, but in order to keep thepresent paper fo
used and of reasonable length, we will not address these issues here.1.1 Outline of PaperSe
tion 2 proves the key estimates for (6) | uniform os
illation and gradient bounds (Theorem4, Corollary 5) | to be used for the rest of the paper. The existen
e of 
lassi
al solution withLips
hitz initial data (Theorem 7) and a gradient de
ay estimate (Theorem 8) are also presented.Se
tion 3 establishes the existen
e, uniqueness and Lips
hitz 
ontinuity of the e�e
tive speed ofpropagation for any normal dire
tion �. Se
tion 4 proves the existen
e, uniqueness and variousstability properties of the pulsating wave solutions. Se
tion 5 provides some examples for theformation of singularities if the for
ing is large. The Appendix 
ontains the proof of Theorems7 and 8 whi
h are somewhat long and te
hni
al.2 Estimates for Mean Curvature Flow in Inhomogeneous MediumThe following simple geometri
 lemma is the starting point for the uniform estimates derivedlater. It essentially shows that starting from a hyperplane, at any �xed time t, if a 
ube Q is\above(below)" the interfa
e �(t), so is any \tangential" translates Q+w. This result is motivatedby the work [4℄.1 Lemma. Let f�(t) : t � 0g be a 
onne
ted hypersurfa
e in Rn+1 whi
h is the unique 
lassi
alsolution of (1) with initial datum the hyperplane �(0) = f(X;Xn+1) : (X;Xn+1)T � � = 0g, i.e.xn+1 = 0. Let further ��(t) � Rn+1 be 
onne
ted open sets su
h that for all t, �(t) = ��+(t) =6



���(t), Rn+1 = �(t) [ �+(t) [ ��(t), and the ve
tor � points into �+(t). Let z 2 Zn+1 andQ(z) = Int([0; 1℄n+1 + z). Then following statements hold.If Q(z) � �+(t), then Q(z + w) � �+(t) for all w 2 Zn+1 with w � � � 0. Similarly, ifQ(z) 2 ��(t), then Q(z + w) � ��(t) for all w 2 Zn+1 with w � � � 0.Proof. Without loss of generality, we will just prove the �rst statement. Let b�(t) be the solutionof (1) with initial datum �(0) + w and b��(t) be the two open sets similarly de�ned as ��(t) for�(t). By the periodi
ity of the inhomogeneity and the assumed uniqueness of 
lassi
al solutionof (1) starting from �(0), we have that b�(t) = �(t) + w and b�+(t) = �+(t) + w: Moreover asb�(0) � �+(0), the 
omparison prin
iple implies that b�+(t) � �+(t): Sin
e Q(z) � �+(t), we haveQ(z) + w � �+(t) + w = b�+(t) � �+(t)whi
h proves the 
laim.2 Remark. Note that in the above and the rest of the paper, we deal only with 
lassi
al solutionsof equation (1), by whi
h we mean smooth hypersurfa
e evolving a

ording to (1). Due to the non-degenera
y of the equation, even in the homogeneous 
ase (f � 0), the question of well-posednessis already not trivial (see [12, 13℄). With for
ing (f 6= 0), in general the gradient 
an blow up in�nite time. On the other hand, if the for
ing is small (Æ � 1) and the initial data has boundedgradient and os
illation, well-posedness 
an be established. This and related 
omments are statedin Remark 6(1,2), Theorems 7 and 8.The following notations are introdu
ed for 
onvenien
e:os
(�;B; �) := supp;q2�\B(p� q) � � (for B � Rn+1) and os
(�; �) := os
(�;Rn+1 ; �):If f(x; u(x)) : x 2 Rng is the graph representation of � over Rn ;os
(u;B) := supx;y2Rn\B u(x)� u(y) (for B � Rn) and os
(u) := os
(u;Rn):The previous Lemma immediately leads to the following result.3 Lemma. Let f�(t)gt�0 be as in Lemma 1, in parti
ular �(0) = f(X;Xn+1) : (X;Xn+1)T �� = 0g,i.e. xn+1 = 0. Let B = �(X;Xn+1) 2 Rn+1 : jXj � 2pn+ 1	. Then for all t � 0,os
 (�(t);O�(B); �) � os
 (�(t); �) � os
 (�(t);O�(B); �) + 4pn+ 1: (8)In the graph setting, �(t) = f(x; u(x; t)) : x 2 Rng, upon introdu
ing B = �x : jxj � 2pn+ 1	, thenit holds similarly thatos
 (u(�; t); B) � os
 (u(�; t)) � os
 (u(�; t); B) + 4pn+ 1: (9)(The quantity pn+ 1 
omes from the diameter of the unit 
ube in Rn+1 .)7



It is 
ru
ial for our analysis that os
(�(t); �) remains uniformly bounded for all time. For theexisten
e and uniqueness of the speed as stated in Theorem 9, we 
ould simply make this as astanding assumption, or we 
an work in the graph setting in whi
h su
h an assumption 
an bejusti�ed. The next several results show that this assumption is indeed valid provided the for
ing issmall 
ompared with the period. For the 
larity of presentation, the proofs are postponed till afterthe results are listed.In the following, the symbol C(F ) denotes some universal 
onstant whi
h depends on the quan-tity F = kfkC2(Rn+1). The 
onstant 
onvention is used: Di�erent 
onstants are denoted by thesame symbol C(F ); provided they depend only on kfkC2(Rn+1) : In addition, if u(x; t) is a solutionof (6), we denote: z(x; t) :=p1 + jru(x; t)j2 and kz(t)k1 := supx2Rn z(x; t):4 Theorem (Bernstein's Method). Let fu(x; t) : x 2 Rn ; 0 � t � Tg be a 
lassi
al solution of (6)with uniformly Lips
hitz and bounded initial datum u0(x). Further, let K be a 
onstant su
h thatK > kz(0)k1. Then: supt2[0;TK ℄ kz(t)k1 � kz(0)k1 + �(Æ;K; F ) supt2[0;TK ℄ os
(u(t)) (10)where TK := T ^ inf ft � 0 : kz(t)k1 > Kg and �(Æ;K; F ) := C(F )pÆK2.5 Corollary (Uniform Os
illation and Gradient Bounds). Let fu(x; t) : x 2 Rn ; 0 � t � Tg be asin Theorem 4. There is a Æ0(F ) > 0 su
h that if u0(x) � 0, then for all 0 � Æ � Æ0, the followingtwo estimates hold:supt2[0;T ℄ kz(t)k1 � 1 + C(F )Æ 12  or written di�erently supt2[0;T ℄ kru(t)k1 � C(F )Æ 14! ; (11)supt2[0;T ℄ os
(u(t)) � D0 := C(F )(1 + Æ 12 ): (12)For general initial datum u0(x), set M0 := os
(u0). Then:supt2[0;T ℄ os
(u(t)) � D1(M0) := D0 + [M0℄pn+ 1 (13)(where [r℄ denotes the smallest integer bigger or equal to r). Furthermore, for all K > kz(0)k1and 0 � Æ � Æ1 := C(F ) � K � kz(0)k1K2(D0 + [M0℄pn+ 1)�2, thensupt2[0;T ℄ kz(t)k1 � kz(0)k1 + �(Æ;K; F )D1(M0): (14)6 Remark. 1. The above two results show that the solution has uniform gradient bound inspa
e and time as long as Æ is small enough. They make equation (6) uniformly paraboli
and thus allow us to use standard te
hniques for quasilinear equations. In addition, note thatall the estimates are independent of T . Hen
e by 
ontinuation in the time variable, we 
anin fa
t show that 
lassi
al solution exists globally in time. This will be stated more pre
iselyin Theorem 7. 8



2. In 
ontrast to the 
ase of pure mean 
urvature 
ow | f � 0, due to the degenera
y of theparaboli
 operator, estimates for solutions of (6) of the form kz(t)k1 � kz(0)k1 ([13, Cor3.1℄) and kz(t)k1 � G�os
(u(0)); t)� for some fun
tion G (see for example [15, Thm. 5.2℄)
annot be true. Examples 
an easily be 
onstru
ted su
h that an initial graph will not stayas a graph | the gradient 
an blow up in �nite time (see Se
tion 5).On the other hand, our results show that a global in time estimate for the gradient is possiblethrough a 
ombination of small for
ing and uniform os
illation bound. In the present paper,the latter is obtained by means of Lemma 1.3. The dependen
e of the 
hoi
e of Æ on the size of the period | here assumed to be 1 | of thespatial inhomogeneity 
an be seen by s
aling. Suppose the f in (6) is P -periodi
 in the x-and u-variables. Consider the s
aling:x = P ~x; u = P ~u; t = P 2~t:Then equation (6) written in the ~x; ~u and ~t variables be
omes:~u~t =r1 + ��� ~r~u���2fdiv0BB� ~r~ur1 + ��� ~r~u���21CCA+ ÆPr1 + ��� ~r~u���2f(O�(P ~x; P ~u)T ):We need ~Æ = ÆP to be small. More pre
isely,ÆP � ��kf(P �; P �)kC2� i.e. Æ � 1P ��kfk1 + P kDx;ufk1 + P 2 

D2x;uf

1�where �(�) is some monotoni
ally de
reasing fun
tion. Qualitatively, small period allowslarger Æ while large period requires small Æ. The results in this paper requires the C2-normof f whi
h demands a more stringent 
ondition on the 
hoi
e of Æ. It would be interesting tosee if only the dependen
e on kfk1 is needed.7 Theorem (Existen
e of Classi
al Solution of (6)). Let u0(x) be the initial data of (6). Ifkru0k1 = N0 < 1, then there is a T = T (Æ; F;N0) > 0 su
h that (6) has a unique 
lassi
alsolution for t 2 (0; T ). Moreover, it holds that:

D2u(�; t)

L1(Rn) � C(N0; F; T ) 1pt : (15)If in addition, ku0k1 = M0 < 1, then for all Æ smaller than some 
onstant Æ2(F;M0; N0), thereexists a unique 
lassi
al solution of (6) for all time. In this 
ase, the following estimate holds:

D2u(�; t)

L1(Rn) � C1(N0; F ) 1pt + C2(N0; F ): (16)The following statement, though stri
tly speaking not needed, is interesting in its own right. Itindi
ates the paraboli
 regularization property of (6) and might be useful for other purposes.9



8 Theorem (Gradient De
ay Estimate). Let fu(x; t) : x 2 Rn ; 0 � t � Tg be as in Theorem 4.Suppose kz(0)k1 = N0 < 1 and kukL1(Rn�[0;T ℄) � M < 1. Then there exist 
onstants 0 <Æ3(T;N0;M; F ), and 0 < N1(Æ; T;M;F ) < N2(Æ; T;M;F ) su
h that for all 0 < Æ < Æ3,if N1 � kz(0)k1 � N2, then kz(T )k1 � 12 kz(0)k1 :Furthermore, N1 and N2 satisfy limÆ!0N1(Æ; T;M;F ) = N�1 <1 and limÆ!0N2(Æ; T;M;F ) =1.As mentioned earlier, the gradient 
an blow up in �nite time. Hen
e an upper bound for kz(0)k1is ne
essary for su
h kind of statement.We now pro
eed to prove Theorem 4 and Corollary 5 whi
h are the 
ore estimates neededfor the rest of the paper. The proofs of Theorems 7 and 8 will be presented in the Appendix.Proof of Theorem 4. Let � > 0 be some positive number (to be determined). We de�ne thefollowing fun
tion:�(x; t) := z(x; t) + � (u�(t)� u(x; t)) ; u�(t) := supx2Rn u(x; t); ��(t) := supx2Rn�(x; t):Note that by de�nition, 0 � u�(t)�u(x; t) � os
(u(t)): Furthermore, the fun
tion u�(t0)+ Æ kfk1 tis a super-solution of (1) for all t0 and t > 0. Hen
e, ddtu�(t) � Ækfk1. We will show the existen
eof a fun
tion �(Æ;K; F ) su
h that if � > �(Æ;K; F ), thensupt2[0;TK ℄��(t) � ��(0) + � supt2[0;TK ℄ os
(u(t)): (17)First note that for all t 2 [0; TK ℄, there exists a sequen
e fxj(t)gj � Rn with the followingproperty �(xj(t); t) �! ��(t); r�(xj(t); t) �! 0 and limj D2�(xj(t); t) � 0: (18)The last inequality in (18) is understood in the sense that limj 
[D2�(xj(t); t)℄v; v� � 0 for all v 2Rn . (Su
h a sequen
e may be 
onstru
ted by 
onsidering the maxima of the fun
tions ��j (x; t) :=�(x; t)� �jjxj2 and upon 
hoosing �j �! 0 appropriately.)Now 
onsider the above sequen
e at t = T � 2 [0; TK ℄ where ��(T �) = sup[0;TK ℄��(t). We statefor later use that limj �t(xj(T �); T �) � 0: The following two 
ases 
an be distinguished:(i) limj jru(xj(T �); T �)j ! 0:(ii) There exists a subsequen
e (still denoted by j) xj(t)'s su
h thatlimj jru(xj(T �); T �)j exists and is positive. (19)
10



If T � = 0, then we immediately have:supt2[0;TK ℄��(t) � ��(0) � kz(0)k1 + � os
(u(0)):If T � > 0 and 
ase (i) above holds, thensup[0;TK ℄��(t) � ��(T �) = 1 + � os
(u(T �)) � 1 + � sup[0;TK ℄ os
(u(T �)):Together, these two 
ases give (17).We now show that the 
ase with T � > 0 and 
ase (ii) above 
annot happen if we 
hoose � largeenough. We �rst present a 
laim whi
h will be proved later:Claim I. Let V be a ve
tor in Rn and eGV be the linear fun
tional on the spa
e of symmetri
n� n matri
es de�ned as:eGV (S) = tr ��I � V 
 V1 + jV j2�S� = Sii � 11 + jV j2ViVjSij:Then eGV (S) is � (�) 0 for any symmetri
 semi-positive(negative) de�nite matrix S.Applying the above 
laim to D2�(xj(T �); T �), we have0 � limj n�t(xj(T �); T �)� eGru(xj(T �)) �D2�(xj(T �); T �)�o :Hen
e0 � limj �zt(xj(T �); T �)� eGru(xj(T �)) �D2z(xj(T �); T �)�� ��ut(xj(T �); T �)� eGru(xj(T �)) �D2u(xj(T �); T �)��+ � ddtu�(T �)�whi
h by (64) is equivalent to0 � limj �� ��D2u��2z + hru; rzi2z3 + Æ�hru; rziz f(x; u) + hru; rxf(x; u)i+ jruj2 fu(x; u)���Æf(x; u) + � ddtu�(t)�����(xj(T �);T �) (20)Note that by (18), we have rz(xj(T �); T �) = �ru(xj(T �); T �) + �j (21)for some ve
tor �j su
h that limj �j = 0. Now we make another 
laim whi
h will be shown later:Claim II. With 
ase (ii) above, i.e. (19) holds, we have the following statement:limj ��D2u��2 (xj(T �); T �)z(xj(T �); T �) � limj �2z(xj(T �); T �): (22)11



With the above, starting from (20), we pro
eed as follows. (The notation (xj(T �); T �) is sup-pressed.)0 � limj ���2z + (�jruj2 + h�j; rui)2z3 + ÆC(F )� j�jruj2 + h�; ruijz + z + z2 + 2���� limj ���2z + �2jruj4z3 + ÆC(F ) ��+ �z + z2��� limj ���2z4 + �2jruj4z3 + ÆC(F ) ��+ �z + z2��� limj ��2(�1� 2jruj2)z3 + ÆC(F ) ��+ �z + z2��� limj ��z2�2z3 + ÆC(F ) ��+ �z + z2��i.e. �2 � ÆC(F ) limj (�z + �z2 + z3):Using ÆC(F )�z � 14�2 + 14Æ2C(F )2z2 and ÆC(F )�z2 � 14�2 + 14Æ2C(F )2z4, we have�2 � C(F )(Æ + Æ2)z4 or equivalently � � C(F )pÆ + Æ2z2 � C(F )pÆK2:The above then leads to a 
ontradi
tion upon 
hoosing �(Æ;K; F ) = 2C(F )pÆK2.We now give the proofs of Claims I and II.Proof of Claim I.. Without loss of generality, let S be semi-positive-de�nite. Let also ~G =(gij)1�i;j�n. TheneGV (S) = tr( ~GST ) = tr�hpSp ~Gi hp ~GpSi� = tr�hp ~GpSiT hp ~GpSi� � 0thus proving the 
laim. (The symbol p ~G refers to the square root of ~G and so forth.)Proof of Claim II. Note that zxi = z�1uxkuxkxi . We re-write (21) as:1z(xj(T �); T �) [D2u℄(xj(T �); T �)ru(xj(T �); T �) = �ru(xj(T �); T �) + �jIn the following we suppress the notation (xj(T �); T �). Let f�lgl=1;:::n be the eigenvalues of D2u.Then �jruj2 + h�j ; rui = 
[D2u℄ru; ru�z � maxl j�ljjruj2zso that �2jruj4 + 2� jruj2 h�j; rui+ h�j ; rui2 � (maxl j�lj)2jruj4z2 � ��D2u��2 jruj4z2 :leading to (22). (Re
all that limj jru(xj(T �); T �)j > 0.)12



Proof of Corollary 5. For the 
ase u0(x) � 0, by (9) of Lemma 3, we haveos
(u(t)) � os
 �u(t); fx 2 Rn : jxj � pn+ 1g�+ 4pn+ 1 � C kz(t)k1 for some C > 0. (23)From (10), let K = 2, we get supt2[0;TK ℄ kz(t)k1 � 1+C�(Æ; 2; F ) supt2[0;TK ℄ kz(t)k1. If Æ is 
hosensmall enough that C�(Æ; 2; F ) � 12 , thensupt2[0;TK ℄ kz(t)k1 � 11� C�(Æ; 2; F ) � 1 +C(F )Æ 12 :Further, if Æ is small enough that 1+C(F )Æ 12 � 2, the above estimate will hold for all t up to timeT , giving the desired result (11). The estimate (12) is a dire
t 
onsequen
e of (23) and what wehave just proved.For initial data with �nite gradient and os
illation bounds, (13) follows by using u+0 � supx2Rn u0(x)and u�0 � infx2Rn u0(x) as 
omparison data. Statement (14) follows from (10) and upon 
hoosingsmall enough Æ to ensure that kz(t)k � K for t 2 [0; T ℄.From now on, we will always assume that Æ is taken to be suÆ
iently small. The smallnessdepends on the initial quantities kru0k1 and os
(u0).3 E�e
tive Speed of Front Propagation9 Theorem. Let u(x; t) be the solution of (6) with initial datum u(x; 0) � 0; and letw
(x; t) := u(x; t)� 
t:Then there exists a unique, �nite value 
� , su
h thatkw
�kL1(Rn�R+) � D2 = D0 +pn+ 1 (24)where D0 is the number from Corollary 5(12). Furthermore, j
� j � Æ kfk1 and 
� is a Lips
hitz
ontinuous fun
tion of � .To fa
ilitate the proof, �rst de�neA
(t) := supx2Rn w
(x; t) and B
(t) := infx2Rnw
(x; t):Note that both quantities are �nite for ea
h t > 0; as we 
an 
ompare with 
onstant sub- andsuper-solutions. Furthermore, by Corollary 5(12), we haveA
(t)�B
(t) = os
(u(t)) � D0: (25)The proof of Theorem 9 is divided into two propositions.13



10 Proposition. There exists a unique �nite number 
� (j
� j � Æ kfk1) su
h that for all t � 0,�pn+ 1 � A
� (t) � D0 +pn+ 1 �or equivalently: �D0 �pn+ 1 � B
�(t) � pn+ 1� (26)and limt!+1A
(t) �or equivalently: limt!+1B
(t)� = ( +1 for 
 < 
��1 for 
 > 
� (27)Proof. The uniqueness of 
� and statement (27) are immediate 
onsequen
e of (26). The boundj
� j � Ækfk1 also follows easily by using A
(0) + Æ kfk1 t and B
(0) � Æ kfk1 t as super- andsub-solutions.Take a value of 
. If for this value of 
, (26) is satis�ed, then 
learly (27) is true by taking 
� = 
.We show that either (26) is true or A
 and B
 diverge at least linearly in time, i.e.suptA
(t) > D0 +pn+ 1 =) there exists � > 0; � > 0 s.t. A
(t) � �t� �inftA
(t) < �pn+ 1 =) there exists �0 > 0; �0 > 0 s.t. A
(t) � ��0t+ �0: (28)Consider the �rst statement. (The se
ond is shown in a similar way.) So suppose there exists t0su
h that A
(t0) > D0 +pn+ 1. By (25), B
(t0) > pn+ 1.In this 
ase, there exists a 
onstant h su
h that B
(t0) > h > pn+ 1 and the planar fun
tionu(1)0 (x) � h is some upward latti
e translate of u0(x) � 0 in the sense thatn(x; u(1)0 (x)) : x 2 Rno = f(x; u0(x)) : x 2 Rng+ (x0n; h)for some x0n 2 Rn whi
h satis�es OT� (x0n; h)T 2 Zn+1: Let u(1)(x; t) be the solution of (6) withinitial datum u(1)0 (x). By the invarian
e of (6) under latti
e translation and the uniqueness of
lassi
al solutions, then up to a delay in time and a translation of the graph in spa
e by (x0n; h), thebehavior of u(1)(x; t) is exa
tly the same as that of u(x; t). Furthermore, as u(x; t0) � u(1)(x; 0), by
omparison prin
iple, we have u(x; 2t0) � u(1)(x; t0) � 2h:By indu
tion, we have: infx2Rn u(x; it0) � ih.Let I0 := inft2[0;t0℄B
(t) > �1: By the translational invarian
e and the 
omparison prin
ipleagain, we get B
(t) � ih� I0 on [it0; (i + 1)t0℄: The �rst 
laim of (28) then follows with � = h=t0and � = I0 + h: The se
ond 
laim 
an be proved similarly.Now de�ne 
� := supn
 : limt!1A
(t) = +1o : (29)(Note that with this de�nition, it follows that limt!1A
(t) = +(�)1 for 
 < (>)
� .)If for this value of 
� , (26) is not satis�ed, using (28), then it holds that eitherlimt!1A
0(t) = +1 for 
0 = 
� + 12� (if there exists a t0 su
h that A
� (t0) > D0 +pn+ 1)or limt!1A
0(t) = �1 for 
0 = 
� � 12�0 (if there exists a t0 su
h that A
� (t0) < �pn+ 1):14



Both 
ases 
ontradi
t the de�nition (29) of 
� and the remark immediately below it. Thus (26)must hold and the Proposition is proved.We now pro
eed to prove the Lips
hitz 
ontinuity of 
� .11 Proposition (Lips
hitz Continuity of Speed with respe
t to �). The speed 
� is a Lips
hitzfun
tion of �, i.e. there exists a C(F; Æ) > 0 su
h that for all �; ~� 2 Sn,j
� � 
~� j � C j� � ~�j : (30)Proof. Fix �; ~� 2 Sn with j� � ~�j < 
0 for a small 
onstant 0 < 
0 = 
0(F; Æ)� 1:Consider (6) with �. Re
all that in the (x; xn+1)-
oordinate system, � = (0; : : : ; 0; 1)T . By 
hoos-ing an appropriate rotation with respe
t to the axis �; we 
an assume ~� = (sin ~�; 0; : : : ; 0; 
os ~�)Twith 0 < ~� < �2 . The main idea is to 
onstru
t an approximate solution of (6) whi
h is a plane-likesurfa
e with e�e
tive normal ve
tor ~�. We will show that su
h a solution 
annot have speed mu
hfaster then 
� . The 
onstru
tion of the approximating solution and its estimates are 
arried out inseveral steps.Step I { Kink-Like-Solution ~u (Figure 3).
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u  (x,t)(2)

(1)

u(x,t)~ Figure 3. Kink-Like-Solution
Let u(x; t) be a solution of (6) with u(x; 0) � 0 and normal ve
tor �. Let 
� be the speedobtained by Proposition 10. By (26), we then also have ku(�; t)� 
�tkL1(Rn) � D2 for all t � 0.Let H1; H2 be two �xed positive 
onstants satisfying H2 > H1 > 2pn+ 1. Consider two latti
etranslates u(1)(x; t) and u(2)(x; t) of u(x; t) su
h thatH2 � u(2)(x; t)� u(1)(x; t) � H1 for all x 2 Rn ; t 2 R+ .Further, let M be another �xed and large 
onstant. Consider eu0(x) whi
h is a smooth fun
tioninterpolating between u(2)(x; 0) and u(1)(x; 0) in the following sense:� u(1)(x; 0) � eu0(x) � u(2)(x; 0) for all x 2 Rn and eu0(x) = u(2)(x; 0) for x1 � �M; whileeu0(x) = u(1)(x; 0) for x1 �M ; 15



� keu0kC2(Rn) � CH2M�2kukC2(Rn), where C is a universal 
onstant whi
h does not depend onf; M or �.Now de�ne eu(x; t) as the 
lassi
al solution of (6) with initial datum eu0(x): By Theorem7, eu(x; t) exists globally in time and satis�es 

eu; eut;Deu;D2eu

L1(Rn�R+) < C(Æ; F;M;H2); withlimM!1C(Æ; F;M;H2) = C(Æ; F ):Next we show that eu(x; t) 
onverges to u(i)(x; t) exponentially as jx1j �! 1. Consider '(x; t) =~u(x; t)� u(1)(x; t). Then '(x; t) solves a linear, uniformly paraboli
 equation:'t = Af (�; x; ~u)�Af (�; x; u(1))= Xij aij(x; t)'xixj (x; t) +Xj bj(x; t)'xj (x; t) + 
(x; t)'(x; t) (31)where kaijkC0 + kbjkC0 + k
kC0 � C(Æ; F;M;H2): From now on the dependen
e on Æ and F willnot be written expli
itly.It is straightforward to verify that if A(M;H2); B(M;H2) are two large enough 
onstants, thenAe�x1eBt is a super-solution of (31). Hen
e 0 � ~u(x; t) � u(1)(x; t) = '(x; t) � Ae�x1eBt for allx 2 Rn and t � 0. Similar argument leads to 0 � u(2)(x; t) � ~u(x; t) � Aex1eBt. Note that A is oforder eMH2. Combining these estimates gives:maxnu(2)(x; t) �Aex1eBt; u(1)(x; t)o � ~u(x; t) � minnu(1)(x; t) +Ae�x1eBt; u(2)(x; t)o : (32)The above gives the following statement for eu whi
h justi�es it to be 
alled a \kink-like" solution:Let D1 := D1(H2) be the bound on the os
illation as in (13). Thenu(1)(x; t) � eu(x; t) � u(1)(x; t) + D14 for x1 � Bt+ ln 4AD1u(1)(x; t) � eu(x; t) � u(2)(x; t) for �Bt� ln 4AD1 � x1 � Bt+ ln 4AD1u(2)(x; t)� D14 � eu(x; t) � u(2)(x; t) for x1 � �Bt� ln 4AD1 (33)Note that the \width" of the region where eu interpolates between u(1) and u(2) grows at mostlinearly with speed B.Step II { Plane-Like Approximation (Figure 4).
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H Figure 4. Plane-Like-Approximation
Let �u(i)(x; t)	1i=�1 be a sequen
e of solutions of (6) whi
h are latti
e translates of ea
h othersu
h that u(i)(x; 0) � �iH with some �xed 
onstant H > 3D2, where D2 is the L1 -bound in the16



moving frame as in (24). By Proposition 10, we have


u(i)(x; t) + iH � 
�t


L1(Rn;R+) � D2:For the remaining proof, the above H and the M (used in the previous step) will be kept �xed.Let L be a large 
onstant (�M) whi
h is to be determined.De�ne ~u(i)(x; t) to be the kink-like solution whi
h interpolates between u(i+1) and u(i) as in StepI but now \
entered" at iL, i.e. eu(i)(x; 0) = u(i+1)(x; 0) for x1 � iL �M , eu(i)(x; 0) = u(i)(x; 0)for x1 � iL +M , and so forth. Now pat
h the �~u(i)	i together by means of a partition of unity:�(x; t) =P1�1 ~u(i)(x; t)�i(x) where the ��i	i is a sequen
e of smooth fun
tions satisfying:�i(x) � 0; �i(x) = ( 1 x1 2 [iL� L4 ; iL+ L4 ℄0 x1 2 (�1; iL� 3L4 ℄ [ [iL+ 3L4 ;1) and Xi �i(x) � 1:The �(x; t) thus 
onstru
ted has the following properties:1. Using (33), �(x; t) approximates a tilted plane in the following sense: for all i 2 Z:� For x 2 Rn : (i� 1)L+Bt+ ln 4AD1 � x1 � iL�Bt� ln 4AD1 :u(i�1)(x; t) + D14 � eu(x; t) � u(i�1)(x; t)� D14 (34)� For x 2 Rn : iL�Bt� ln 4AD1 � x1 � iL+Bt+ ln 4AD1 :u(i�1)(x; t) + D14 � eu(x; t) � u(i)(x; t)� D14 (35)The above stru
ture is valid if (i� 1)L+Bt+ ln 4AD1 � iL�Bt� ln 4AD1 , i.e.0 < t < TL := L2B � 1B ln 4AD1 : (36)Note that as A and B (whi
h are de�ned through M and H) are �xed, we get 0 < TL if L issuÆ
iently large.2. The upward normal ve
tor of the tilted hyperplane approximated by �(�; t) (for 0 < t < TL)is given in the (x; xn+1)-
oordinate system by� HpL2 +H2 ; 0; : : : ; 0; LpL2 +H2�T :whi
h 
an be set to equal ~� = (sin ~�; 0; : : : ; 0; 
os ~�)T upon 
hoosing:L = H 
ot ~�: (37)i.e. L � H~� as ~� �! 0. 17



3. � solves (6) exa
tly for all t � 0 and x 2 Rn su
h that x1 2 Si[iL� L4 ; iL+ L4 ℄.4. Now statement (32) 
ombined with the properties of the �i and paraboli
 regularity gives a
onstant C = C(M;H) su
h thatsupi 


�(�; t)� u(i)(�; t)


C2(fx:iL+L4�x1�iL+ 3L4 g) � Ce�L4 eBt: (38)Step III { Approximation of Speed.This step shows that the normal speed of propagation of the tilted plane approximated by �(x; t)
annot be mu
h bigger than 
� .In fa
t, by (34){(35), there exists a C1 > 0 su
h that for all (x; t) 2 Rn � [0; TL℄:�(x; t) � �(tan ~�)x1 + �
� +B tan ~�� t+ C1:(The extra fa
tor B tan ~� 
omes from the linear spread of the width of kink in the plane-likeapproximation | see (33) and (34){(35).) The above shows that �(x; t) 
an be bounded fromabove by a hyper-plane moving with normal speed 
� 
os ~� + B sin ~�, at least on the time interval[0; TL℄:Next we show that � di�ers from the a
tual solution of (6) by a very small error. >From (38),it follows that � satis�es the following equation:�t = Af (�; x;�) + g(x; t)where g(x; t) is supported on S1i=�1 �x : iL+ L4 � x1 � iL+ 3L4 	 and kgkC0 � Ce�L2 eBt. Lete�(x; t) be the solution of (6) with initial data e�(x; 0) = �(x; 0). The fun
tion  (x; t) = e�(x; t) ��(x; t) solves a linear paraboli
 equation similar to (31): t =Xij aij(x; t) xixj (x; t) +Xj bj(x; t) xj (x; t) + 
(x; t) (x; t) � g(x; t);  (x; 0) � 0:Using e	� =  � R t0 kg(s; �)kC0ds as a 
omparison fun
tion gives k (�; t)kL1(Rn) � Ce�L4 eBt. Hen
efor 0 � t � TL; we havee�(x; t) � �(x; t) + Ce�L2 eBt � �(tan ~�)x1 + (
� +B tan ~�)t+ C1 + Ce�L2 eBt:Similarly, by de�nition, e� 
an be bounded from below by some plane-like solution with normal ~�and speed 
~� . Thus:�(tan ~�)x1 + 
~�t
os ~� � C2 � �(tan ~�)x1 + (
� +B tan ~�)t+ C1 + Ce�L4 eBtwhi
h gives: (
~� � 
� 
os ~�)t � B(sin ~�)t+ C3 + C4e�L4 eBt: (39)18



Now 
hoose t = TLP for some P > 1 whi
h is admissible a

ording to (36). Furthermore, by (37),t = 1P � L2B � 1B ln 4AD1 � = 1P "H 
ot ~�2B � 1B ln 4AD1# :Then (39) be
omes:
~� � 
� 
os ~�P "H 
ot ~�2B � 1B ln 4AD1#� B sin ~�P "H 
ot ~�2B � 1B ln 4AD1#+ C3 + C4 exp"�H 
ot ~�4 + H 
ot ~�2P � 1P ln 4AD1#If we 
hoose P = 3 (> 2) and 
onsider the regime j~�j � 1, we obtain: 
~� � 
� 
os ~� � C(A;B;H)~�i.e. 
~� � 
� � C(A;B;H)~� +O(~�2) � C(A;B;H)~�:The lower bound 
� � 
~� � �C ~� 
an be proved similarly. The Lips
hitz 
ontinuity of 
� is thusestablished.4 Pulsating WaveIn this se
tion, we look for a spe
ial type of solutions of (6) whi
h is invariant under appropriatespa
e-time translation (see equation (2) and Figure 1):u(x+ x0; t+ t0) = 
�t0 + u(x; t) for all (x0; t0)T su
h that O�(x0; 
�t0)T 2 Zn+1. (40)If 
� 6= 0, the above 
ondition is equivalent to the following representation of u:u(x; t) = 
�t+ U(O�(x; 
�t)T ) (41)where U : ! = (!1; : : : ; !n+1) 2 Rn+1 �! Rn+1 is a one-periodi
 fun
tion of its argument, i.e.U(! + p) = U(!) for all ! 2 Rn+1 and p 2 Zn+1. We 
all U the transformed fun
tion of u and !the transformed variable. We will show the existen
e and uniqueness of U and present its variousstability properties. The resulting fun
tion u and the 
orresponding U will be 
alled a pulsatingwave for (6). We often identify u with U .For 
� 6= 0, we 
an relate the gradients of u to those of U . Introdu
ing:! = O�((x; 
� t)T ) and O� = (aij)1�i;j�n+1;then 
�1� ut � 1 = n+1Xk=1 ak;n+1�!kU and �xiu = n+1Xk=1 ak;i�!kU:19



Furthermore, U satis�es the following equation:
� + 
� n+1Xk=1 ak;n+1�!kU =q1 + j ~rU j2 nXi=18<:n+1Xk=1 ak;i�!k 0�Pn+1k=1 ak;i�!kUq1 + j ~rU j2 1A9=;+ Æq1 + j ~rU j2f(! +O�((0; : : : ; 0; U)T )): (42)where j ~rU j2 =Pni=1 �Pn+1k=1 ak;i�!kU�2.We �rst establish the following existen
e result.12 Theorem (Existen
e of Pulsating Wave). For any � 2 Sn, there exists a 
ontinuous fun
tionu : Rn �R ! R whi
h solves (6) and satis�es (40) for the 
� given by Proposition 10. Moreover,the transformed fun
tion U satis�es:kUkL1(Rn+1) � D3 := 3(D2 +pn+ 1)(where D2 is the 
onstant from Theorem 9) so that the pulsating wave is bounded in its movingframe.There are several methods to establish the existen
e result. A standard approa
h is to useS
hauder Fixed Point Theorem. This 
an be a

omplished by the gradient de
ay estimate (The-orem 8) whi
h produ
es a 
ontra
tion map in an appropriate fun
tion spa
e. Here we employ adi�erent, but more elementary method. It uses the 
omparison prin
iple in its full 
apa
ity.The 
urrent proof 
onsists of several steps. First we prove the Theorem for rational normaldire
tion � and the 
ase of 
� 6= 0. This is a

omplished by 
onstru
ting sub- and super-solutionsof (6). These obje
ts satisfy uniform Lips
hitz bounds in x, t independent of �. It turns out thatthey are in fa
t solutions and hen
e are a
tually pulsating waves. The 
ases of irrational dire
tionand 
� = 0 are handled by approximation using the previous 
ase.4.1 Proof of Theorem 12First 
onsider a rational normal dire
tion � | the 
oordinates of � are all rational numbers | andassume 
� > 0. Then in the (x; xn+1)-
oordinate system, the inhomgeneity is periodi
 with someperiod P = P (�). In 
ontrast to the one-periodi
ity of the inhomogeneity, we 
all this periodi
ity\�
titious" as the period depends on the normal dire
tion and it 
an be extremely large.Step I { Constru
tion of \Pulsating" Sub- and Super-solutionsLet fu�(x; t)gx2Rn;t2R+ be a solution of (6) starting from u�(x; 0) � �2(D2 + pn+ 1) whereD2 is the number from (24). De�ne:U+(x; t) := lim infjIj!1 �u+(x� xI ; t+ tI)� 
�tI	 (43)U�(x; t) := lim supjIj!1 �u�(x� xI ; t+ tI)� 
�tI	 (44)20



where u�(�; r) = �1 if r < 0 and �I 2 Zn+1	 is a �xed sequen
e whi
h enumerates the set�(xJ ; tJ) : O�(xJ ; 
�tJ) 2 Zn+1; tJ > 0	 :Note that U�(�; �) are de�ned on all of Rn�R. Furthermore, they satisfy the following properties:(i) They are both pulsating fun
tions, i.e. they satisfy (40). In parti
ular, they are P -periodi
in x.(ii) kU�(�; �) � 
�tkL1(Rn�R) < D2; and0 < 2(D2 +pn+ 1) < infx2Rn;t2RU+(x; t)� supx2Rn;t2RU�(x; t) < 6(D2 +pn+ 1): (45)(iii) They are uniformly Lips
hitz on Rn � R.(iv) U+(�; �) is a super-solution and U�(�; �) a sub-solution of (6).Proof. (i): We will only fo
us on U+: For all (xK ; tK) su
h that O�(xK ; 
�tK) 2 Zn+1,U+(x� xK ; t+ tK) = lim infjIj!1 u+(x� xK � xI ; t+ tK + tI)= lim infjI0j!1 u+(x� xI0 ; t+ tI0)= U+(x; t)sin
e O�(xK +xI ; 
�(tK + tI)) 2 Zn+1 if both O�(xK ; 
�tK) and O�(xI ; 
�tI) belong to Zn+1. Notethat the lim inf and lim sup of a sequen
e are not 
hanged under �nite shifts of the sequen
e.(ii): This follows from Theorem 9(24) whi
h yields���[u�(x1 � xJ ; t+ tJ)� 
�tJ ℄� 
�t� 2(D2 +pn+ 1)��� � D2 +pn+ 1;and hen
e the estimates as 
laimed.(iii): By Corollary 5, the kru�(x; t)kL1(Rn�R+) are bounded. Theorem 7 implies that

u�t (x; t)

L1(Rn�[1;1)) is also bounded. Therefore u� is uniformly Lips
hitz 
ontinuous in spa
eand time. As the lim inf and lim sup of uniformly Lips
hitz 
ontinuous fun
tions are also uniformlyLips
hitz (with the same 
onstant), the U�(�; �) satisfy the same property.(iv): The fa
t that lim inf and lim sup are super- and sub-solutions respe
tively, follows froma standard argument (see [8, Lemma 6.1℄). Note that we need no monotoni
ity of f(x; u) withrespe
t to u; be
ause u� are uniformly bounded (in the moving frame) and f(x; u) is uniformlyLips
hitz. The lemma 
an be applied instead to ~u�y;� (x; t) = e�Mt[u�(x � y; t + �) � 
�� ℄ on abounded neighborhood of t0; for some large 
onstant M .Step II { Existen
e of Pulsating Wave for Rational Slope21



We show that in fa
t U�(x; t) are 
lassi
al solutions of (6) and thus are pulsating waves.First de�ne: T� := sup�� > 0 : infx2Rn �U+(x; 0) � U�(x; �)� � 0� (46)| the �rst time U�(�; t) tou
hes U+(�; 0) from below. By property (ii), the U� is bounded ina frame moving with velo
ity 0 < 
� so that T� < 1. By property (iii), the U� are uniformly
ontinuous in x and t. The periodi
ity in x then implies the existen
e of an x0 2 Rn su
h thatU�(x0; T�) = U+(x0; 0):Now 
onsider the 
lassi
al solutions V � of (6) with the Lips
hitz initial data V +(x; 0) = U+(x; 0)and V �(x; 0) = U�(x; T�): These solutions are globally de�ned (Theorem 7) and stay uniformlyLips
hitz (Corollary 5). By property (iv) and weak 
omparison prin
iple, we haveU�(x; t+ T�) � V �(x; t) � V +(x; t) � U+(x; t) for (x; t) 2 Rn � R+ . (47)On the other hand, by property (i), there exists T� > 0 su
h thatU�(x0; T� + T�) = U�(x0; T�) = U+(x0; 0) = U+(x0; T� + T�);leading to V �(x0; T�) = V +(x0; T�):Let eV := V +(x; t) � V �(x; t). As V � are C2;1(Rn � R+); the di�eren
e eV satis�es a linearparaboli
 PDE of the form (similar to (31)):�t eV =Xi;j aij(x; t)eVxixj +Xj bj(x; t)eVxj + 
(x; t)eVwith 
ontinuous 
oeÆ
ients. As f and V � are uniformly Lips
hitz in spa
e-time, the above equationis uniformly paraboli
 with bounded 
oeÆ
ients. Note that eV � 0 and eV (x0; 0) = eV (x0; T�) = 0.Classi
al strong maximum prin
iple (see for example [16℄) implies that eV (�; t) � 0 for all t 2 (0; T�).Therefore V + � V �: (By the same reasoning as in Step I(iv), we 
an apply the strong maximumprin
iple without a sign 
ondition on 
(x; t).)As a last step, note that V �(x; 1=n)! V �(x; 0) (pointwise), we obtain U+(�; t) = U�(�; T� + t)for t 2 [0; T� ℄; and therefore this fun
tion is both super- and subsolution, i.e. a vis
osity solution.By the 
omparison prin
iple for vis
osity solutions it must equal V � and thus is a 
lassi
al solution.We have thus established the existen
e of pulsating waves for rational slopes with 
� 6= 0.Step III { Existen
e of Pulsating Wave for Irrational SlopeThe following argument extends the existen
e result to irrational slopes.Let �n (rational slopes) ! �. By the 
ontinuity of the speed in the normal, we have 
n ! 
� 6= 0.Further, let un be the 
orresponding pulsating waves in the frame O�n . They satisfy uniformlyLips
hitz bounds in x, t independent of �.Using the transformation (41), we thus obtain a family of fun
tions Un(!) whi
h are 1-periodi
in Rn+1 and are solutions of (42). As 
n > 
�2 > 0, the 
hange of variables ! = O�n(x; 
nt)T are22



invertible for ea
h n with uniform bounds for the inverse. Therefore, the Un's also satisfy uniformLips
hitz and (by paraboli
 regularity of the un's) C2;� estimates on [0; 1℄n+1. Hen
e we 
an extra
ta 
onvergent subsequen
e leading to a U whi
h solves (42) with the limiting normal dire
tion �.The Theorem is thus proved for the 
ase 
� 6= 0.Step IV { Existen
e of \Pulsating Wave": Stationary (
� = 0) Case.Again, we 
onsider separately the 
ase of rational and irrational dire
tion.For rational dire
tion, the evolution equation des
ribed by (6) in fa
t is the negative gradient
ow of the following energy fun
tional:E(u) = Z[0;P ℄n �p1 + jruj2 � ÆF (x; u)� dxn; where F (x; u) = Z u0 f(x; s) ds (48)(\ut = �p1 + jruj2 ÆEÆu (u)"). As 
� = 0, we have two solutions of (6): u�(x; t) < u�(x; t) whi
h areP -periodi
 in x and are uniformly Lips
hitz and bounded in x and t. Hen
e any solution u(x; t)of (6) with u�(x; 0) � u(x; 0) � u�(x; 0) satis�es u�(x; t) � u(x; t) � u�(x; t). Furthermore, thefollowing energy identity holds:E(u(�; t)) + Z t0 Z[0;P ℄n u2tp1 + jruj2 dxn dt = E(u(�; 0)):The uniform os
illation and gradient bounds from Corollary 5 lead to supt�0 jE(u(�; t))j < 1.Moreover, the uniform gradient bound implies that u2t �p1 + jruj2��1 � Cu2t . Thus we haveZ 10 Z[0;P ℄n u2t dxn dt <1:A standard appli
ation of paraboli
 regularity implies that �tu(�; t) is uniformly 
ontinuous on[0; P ℄n; and hen
e �tu(�; tj) �! 0 for some subsequen
e tj �!1. A further subsequen
e gives thatthe limit �u(x) = limtjk!1 u(x; tjk) exists and it solves the stationary solution for (6). Furthermore,the P -periodi
ity of �u(�) automati
ally implies (40).For irrational dire
tion, the same argument 
an be applied with the modi�
ation that the domain[0; P ℄n is repla
ed by a sequen
e of monotoni
ally in
reasing balls Bj su
h that Bj �! Rn . Thefun
tion u is required to satisfy the Diri
hlet boundary 
ondition: u = C on �Bj (where u� � C �u�). Then for ea
h j, we obtain a stationary solution uj as before. From the uniform gradientestimates Corollary 5, we 
an extra
t a subsequen
e whi
h 
onverges (on 
ompa
t subsets) to astationary solution on the whole spa
e. (Note that the result of Corollary 5 stated for Rn , 
anbe extended to bounded domains su
h as balls Bj's by 
onstru
ting suitable barrier fun
tions withuniformly bounded gradient at the boundary. By the smallness of the for
ing and the apriori L1bound, su
h barriers 
an be 
onstru
ted quite easily.)Finally, for irrational slope, any stationary solution of (6) automati
ally satis�es (40) as there isno x0 2 Rn su
h that the 
ondition O�(x0; 0)T 2 Zn+1 is ful�lled. The whole Theorem 12 is thusproved. 23



13 Remark. 1. Our result for the 
ase 
� 6= 0 is related to the result in [4℄ on the existen
e ofplane-like minimizers: If the for
ing is small and suÆ
iently regular, then stationary solutionsof (1) not only stay 
lose to a plane, but are even graphs over that plane.2. Note that there may be solutions that stay bounded in a frame with 
� = 0; but are notstationary, for example a \traveling kink" or 
as
ades of many kink stru
tures.4.2 Properties of the Pulsating WaveIn this se
tion, we present the uniqueness result and some stability properties for the pulsatingwave.14 Proposition (Uniqueness of Pulsating Wave). For all �, the speed 
� is unique. If 
� 6= 0, thenthe shape U of the pulsating wave is also unique.Proof. The uniqueness of 
� is already proved in Theorem 9, in parti
ular, Proposition 10.When 
� 6= 0 and the dire
tion � is rational, the uniqueness of the pulsating wave follows exa
tlyfrom the same argument as in [11, Proposition 6℄. When � is irrational, we pro
eed similarly, butwith the following additional 
onsideration. (Without loss of generality, assume 
� > 0.)Let U and V be two pulsating waves solving (42). First, 
onsider u0(x) = U(O�(x; 0)T ). Se
ond,let v(x; t) be the solution of (6) with initial data �v(x; 0) = �h+V (O�(x; 0)T ) for some large positive
onstant h su
h that �v is some latti
e translation of V (O�(x; 0)T ). Similar to (46), de�ne:T� = sup�� > 0 : infx2Rn (u(x; 0)� �v(x; �)) � 0� :Note that T� < 1 as 
� > 0. Now let ~u(x; t) and ~v(x; t) be the solution of (6) with initial datau0(x) and �v(x; T�). As ~v(x; 0) � ~u(x; 0), weak maximum prin
iple (in the whole spa
e) implies that~v(x; t) � ~u(x; t) for all x 2 Rn and t � 0. Consider the following two 
ases.1. Suppose there exists an x� su
h that ~u(x�; 0) = ~v(x�; 0). By the pulsating wave ansatz,~u(x� + x0; 
�t0) = ~v(x� + x0; 
�t0) for some (x0; 
�t0) su
h that t0 > 0 and O�(x0; 
�t0) 2 Zn+1.This would 
ontradi
t the strong 
omparison prin
iple (in unbounded domain) unless U isidenti
ally equal to V .2. Suppose there exists xi su
h that jxij �! 1 and ~u(xi; 0)� ~v(xi; 0) �! 0+. By the pulsatingansatz again, we have ~u(xi + x0i; 
�t0i) � ~v(xi + x0i; 
�t0i) �! 0+ for some (x0i; 
�t0i) satisfyingO�(x0i; 
�t0i)T 2 Zn+1. As 
� 6= 0, we 
an always 
hoose the x0i and t0i's su
h that the (xi +xi; ti)'s lie in a 
ompa
t subsets of Rn+1 . Hen
e, there exists an x� and t� su
h that ~u(x�; t�) =~v(x�; t�). Thus the situation is the same as the previous 
ase.
24



For the 
ase 
� = 0, we do not expe
t uniqueness to be true as there 
ould be many stationarysolutions 
orresponding to the lo
al minimizers of the energy fun
tional (48). These solutions
annot be related to ea
h other as in the 
� 6= 0 
ase.The next result leads to a form of stability property of the pulsating waves. It is similar in spiritto the Krein-Rutman type of statement.15 Proposition (Monotoni
ity in Time for the Pulsating Wave). Let u be a pulsating wave of (6)with 
� > 0. Then ut > 0 for all x 2 Rn and t 2 R.Proof. We �rst prove the result for rational dire
tion so that the pulsating wave is spa
e-timeperiodi
 in a tilted frame with some period P = P (�). The 
ase for irrational dire
tion 
an bededu
ed by a limiting pro
edure together with the strong maximum prin
iple.Consider u(x; 0) and de�ne:T� = sup ft � 0 : u(x; t) � u(x; 0) for some x 2 Rng :As 
� > 0 and u is bounded in its frame, we have 0 � T� < 1. By the 
ontinuity of u(x; t)in the x- and t-variables and the 
ompa
tness of the domain (as u is P -periodi
), we must haveu(x; T�) � u(x; 0) for all x 2 Rn and u(x�; T�) = u(x�; 0) for some x�. Now 
onsider the solutionsof (6) with initial data u(x; T�) and u(x; 0); respe
tively. The pulsating wave ansatz implies thatu(x�; T� + T�) = u(x�; T�) for some T� > 0, 
ontradi
ting the strong maximum prin
iple unlessu(�; T�) � u(�; 0): As 
� > 0; this 
an only happen if T� = 0. Hen
e u(x; t) > u(x; 0) for allt > 0 giving ut � 0. The fa
t that ut > 0 follows from strong maximum prin
iple for ut: (Notethat ut solves a linear paraboli
 equation (by taking the time derivative of (6)) with bounded
oeÆ
ients.)The above result immediately leads to the following 
orollary.16 Corollary. Let � be a rational dire
tion and u be the pulsating wave of (6) with 
� 6= 0. Thenthere exist 0 < C1(�; F ) < C2(F ) <1 su
h that for all x 2 Rn , t; s 2 R, it holds thatC1 jt� sj � ju(x; t) � u(x; s)j � C2 jt� sj :The next exponential 
onvergen
e result is a 
onsequen
e of the above monotoni
ity property.17 Theorem (Stability Property of Pulsating Wave). If � is a rational dire
tion and 
� 6= 0, thenthe pulsating wave u satis�es the following stability property.Let fv(x; t) : x 2 Rn ; t � 0g be a 
lassi
al solution of (6) whi
h is a P -periodi
 fun
tion (whereP = P (�)). Then there exists t� 2 R, � > 0 and a 
onstant C whi
h might depend on P su
h thatkv(�; t) � u(�; t� + t)kL1(Rn) � Ce��t:25



Proof. Without loss of generality, we 
an assume the initial 
ondition v(x; 0) is smooth and v(x; 0) >NP for some suÆ
iently large integer N so that v(x; 0) � u(x; 0) for x 2 Rn .Now let u(x; t) be the pulsating wave of (6). De�ne:s�0 = inf ft > 0 : u(x; t) = v(x; 0) for some x 2 Rngand t�0 = sup ft > 0 : u(x; t) = v(x; 0) for some x 2 Rng(Qualitatively, s�0 is the �rst time u(x; t) tou
hes v(x; 0) from below and t�0 is the last time u(x; t)tou
hes v(x; 0) from above. The above de�nitions make sense as we are working in the 
ompa
tdomain and u and v are periodi
 fun
tions with uniform Lips
hitz bound.) By Proposition 15,we have s�0 < t�0 and u(x; s�0) � v(x; 0) � u(x; t�0) for all x 2 Rn with the equalities valid at somex00; x000 2 Rn .By 
omparison prin
iple, we have for all x 2 Rn that u(x; s�0+T ) � v(x; T ) � u(x; t�0+T ) where
�T = P . The pulsating wave ansatz gives:u(x; s�0) � v(x; T ) � 
�T � u(x; t�0):Now the strong maximum prin
iple together with Proposition 15 imply the existen
e of s�1 andt�1 su
h that s�0 < s�1 < t�1 < t�0 and u(x; s�1) � v(x; T ) � 
�T � u(x; t�1) with the equalities valid atsome x01; x001 2 Rn . By indu
tion, there exist s�n�1 < s�n < t�n < t�n�1 su
h thatu(x; s�n) � v(x; nT )� 
�nT � u(x; t�n); x 2 Rn (49)and the equalities hold at some x0n; x00n 2 Rn .De�ne: ��n = t�n � s�n. We 
laim the existen
e of a positive number � < 1 independent of n su
hthat ��n+1 � ���n: (50)Granted the above 
laim, then there exists a t� < 1 su
h that t� � s�n and t�n � t� � �n.Furthermore, from (49), we have:u(x; t�) + u(x; s�n)� u(x; t�) + 
�nT � v(x; nT ) � u(x; t�) + u(x; t�n)� u(x; t�) + 
�nT:Hen
e, Corollary 16 giveskv(�; nT ) � u(x; t� + nT )kL1(Rn) � ku(�; s�n)� u(�; t�)kL1(Rn) + ku(�; t�n)� u(�; t�)kL1(Rn) � 2C2�nwhi
h will lead to the stated exponential 
onvergen
e.Now we pro
eed to prove (50).Consider the time interval: [nT; nT + T2 ℄. Applying the same argument as that leading to (49),we obtain the following statement:u(x; s�n + T2 + �1) � v(x; nT + T2 )� 
�nT � u(x; t�n + T2 � �2); for all x 2 Rn26



for some �1; �2 > 0 su
h that s�n+ T2 + �1 � t�n+ T2 � �2 and the equalities hold at some x0; x00 2 Rn .Let 0 < � < 1 be some �xed number (to be determined later). Consider the following two 
ases.Case One. If �1 + �2 � ���n, then applying strong 
omparison prin
iple to (6) on the interval[nT + T2 ; (n+ 1)T ℄, we haveu(x; s�n + T + �1) < v(x; (n+ 1)T )� 
�nT < u(x; t�n + T � �2) for all x 2 Rn .Hen
e s�n + �1 � s�n+1 � t�n+1 � t�n � �2 whi
h leads to��n+1 = t�n+1 � s�n+1 � t�n � �2 � (s�n + �1) � (1� �)��n:Setting � = 1� � gives the desired result.Case Two. If �1 + �2 � ���n, then either �1 � �2 ��n or �2 � �2 ��n. Consider the se
ond 
ase (the�rst 
an be treated similarly.)Let  (x; t) = v(x; nT + t)� u(x; s�n + t)� 
�nT . It solves a linear paraboli
 equation similar to(31) with smooth bounded 
oeÆ
ients. Then  has the following properties:1.  (�; 0) � 0 and hen
e  (�; t) > 0 for all t > 0.2. 0 �  (x; 0) = v(x; nT )� u(x; s�n)� 
�nT � u(x; t�n)� u(x; s�n) � C2��n. Hen
e,k (�; 0)kL1(Rn) � C2��n; and 



r ��; T2 �



L1(Rn) � C3(T ) k (�; 0)kL1(Rn) � C3(T )��n(51)where the �rst estimate 
omes from Corollary 16 and the se
ond is a 
onsequen
e ofparaboli
 regularity | re
all that  (�; t) is periodi
 in x 2 Rn .Now the de�nition and assumption of �2 implies the existen
e of some x00 2 Rn su
h that (x00; T2 ) = v(x00; nT + T2 )� u(x00; s�n + T2 )� 
�nT= u(x00; t�n + T2 � �2)� u(x00; s�n + T2 )= u(x00; t�n + T2 )� u(x00; s�n + T2 ) + u(x00; t�n + T2 � �2)� u(x00; t�n + T2 )� C1��n � C2�2 ��n (by Corollary 16)� (C1 � C2�2 )��n:Upon 
hoosing � small enough, we get 

 (�; T2 )

L1 � C3��n. This and the gradient bound in(51) implies the existen
e of a C4(T ) su
h that for all x 2 Rn , it holds that  (x; T ) � C4(T )��n.Without loss of generality, C4(T ) 
an be 
hosen to be some small number. This leads to thefollowing sequen
e of statements:v(x; nT + T )� u(x; s�n + T )� 
�nT � C4��n (for all x 2 Rn)v(x; (n+ 1)T )� u(x; s�n)� 
�(n+ 1)T � C4��nv(x; (n+ 1)T )� 
�(n+ 1)T � C4��n + u(x; s�n):27



Now from Corollary 16, we dedu
e that s�n+1 � s�n + Æ�n for some Æ�n > C4C2 ��n. So we have:��n+1 = t�n+1 � s�n+1 � t�n � s�n � Æ�n � ��n � C4C1 ��n = �1� C4C1� ��n:(Re
all that C4 
an be 
hosen to be as small as possible.)Finally, (50) follows upon 
hoosing � = min�12 ; C1C2� and � = max�1� �; 1� C4C1�. (It is 
learthat the 
hoi
e of all the 
onstants are independent of n.)For general L1 initial data de�ned on the whole spa
e, the stability issue 
an be quite 
om-pli
ated. On the other hand, for 
ompa
tly supported initial perturbation, analogous stabilityproperty might still be true. Due to length, we do not pursue to make this statement pre
ise in the
urrent paper.The next result indi
ates the stability of the pulsating wave with respe
t to the underlyingmedium. Due to the availability of the additional equation (42), the result is stronger in the 
aseof 
� 6= 0.18 Proposition (Stability of Pulsating Wave with respe
t to the Inhomogeneity). Consider asequen
e of inhomogeneous mediums fi's and f satisfying 
ondition A. Suppose kfi � fkC2 �! 0.Let Ui and U be the pulsating waves for fi and f with speed 
i and 
 (and the same normal dire
tion�). Then the following 
onvergen
e statements hold.(i) 
i �! 
.(ii) If 
 6= 0, then Ui �! U uniformly in Rn � R.(iii) If 
 = 0, then there exists a subsequen
e uij (x; t) = Uij (OT� (x; 
� t)) 
onverging uniformly on
ompa
t subsets of Rn � R to a solution of (6) for f .Proof. (i): The 
onvergen
e of the speed follows easily by 
onsidering the equation satis�ed byui � u: ddt(ui(x; t) � u(x; t)) = Afi(�; x; ui)�Af (�; x; u)= Af (�; x; ui)�Af (�; x; u) +Afi(�; x; ui)�Af (�; x; ui)= [DuAf ℄(�; x; u�)(ui � u) + [DfAf ℄f�(�; x; ui)(fi � f)where DuA and DfA are the derivatives of Af with respe
t to the arguments u and f . (In theabove, we have used the mean value theorem for �rst order Taylor expansion.) Gronwall's inequalitygives kui(�; t)� u(�; t)kL1(Rn) � C kfi � fk1 eCt where the 
onstant C depends on the C2-normsof the f and fi's. Hen
e for any large, but �xed T , we have kui(�; T ) � u(�; T )kL1(Rn) �! 0 whi
himplies the 
onvergen
e of the 
i's.(ii): If 
 6= 0, working dire
tly in the transformed equation (42) shows that any limit of the Ui'ssatis�es the same equation as that for U . Uniqueness of U implies the result.28



(iii): If 
 = 0, working instead in the original equation (6) implies that up to a sub-sequen
e,the ui's 
onverges uniformly in 
ompa
t subsets in spa
e-time and the limiting fun
tion satis�es(6) for the inhomogeneity fun
tion f .5 Examples of Fingering and Pin
hingHere we give some examples in R2 of the formation of singularities for the mean 
urvature 
owwith for
ing (1) when the for
ing is not small.5.1 Fingering with \Laminate" EnvironmentBy a laminate environment we mean a for
ing of the form f(x; u) = g(x). Even though simple, it
an provide examples amenable to expli
it 
omputations whi
h 
an still 
apture some interestingfeatures. Note that after a rotation by �2 , the for
ing in the new frame is des
ribed by a fun
tionwhi
h depends only on the u-variable. This already indi
ates that questions on e�e
tive behaviors
an depend 
ru
ially on the dire
tion of the front.Here we give an example that, in 
ontrast to the e�e
tive speed 
� , the pinning threshold h
 asmentioned in page 4 varies dis
ontinuously with respe
t to the normal dire
tion. Consider (after arotation of the axis by �2 ) f(x; u) = sin(u) + �+ h where 0 < � < 1. If h = 0, then any 
onstantfun
tion u = u� where u� solves sin(u�) + � = 0 with fu(�; u�) = 
os(u�) < 0 is a stable stationarysolution so that h
 must be stri
tly positive for this dire
tion. On the other hand, fronts with anyother dire
tions will always have non-zero speed (unless h = ��) as they 
an be approximated bytraveling kinks (see Figure 5). (See also [5℄ for a similar result on a related dis
rete system.)Another interesting phenomena is \�ngering". A pre
ise analysis of su
h a situation has been
arried out in details in [6℄ so we will just brie
y explain the terminology. If f(x; u) equals someperiodi
 fun
tion g(x) su
h that its amplitude is suÆ
iently large 
ompared with the period, thenthe solution u(x; t) starting from u(x; 0) � 0 remains as a graph, but it 
an happen thatlim inf[0;1℄n u(x; t)! �1 as t!1; lim sup[0;1℄n u(x; t)! +1 as t!1:(See Figure 6.) The solution in a sense 
an be des
ribed by a 
as
ade of a series of translationalinvariant solitons, or \grim-reapers". In this 
ase, it is not apriori 
lear what the \e�e
tive front"should be.
29



u = u*

Figure 5. Pinned horizontal dire
tion andtraveling tilted dire
tion. g > 0 g > 0

g < 0 g < 0u

x

Figure 6. Fingering in a laminate: Theverti
al lines denote the period of g(x).5.2 Pin
hing with \Hard" Obsta
lesThis se
tion provides an example for the formation of another form of singularities. It 
an lead tothe \pin
h-o�" of a portion of the surfa
e, reminis
ent to the so-
alled Orowan loops in dislo
ationdynami
s [21, pp 624℄.We 
onsider strong, almost \hard" 
ir
ular obsta
les. Consider three positive 
onstants �� 1,and A and B � 1. Choose a smooth fun
tion f(x; u) whi
h satis�esf(x; u) := ( �B for x2 + u2 � �2;A for x2 + u2 > (2�)2(and is extended periodi
ally in both the x and u-dire
tions with period two). Let the initial databe u0(x) � �1. Now 
onsider two types of evolving 
ir
les. (See Figure 7.)Outer Barrier. Consider the obsta
le S� := f(x; u) : x2 + u2 � �2g and the shrinking ballS�(t) 
entered at (0; 0) with radius r�(t) solvingddtr�(t) = � 1r�(t) +B; r�(0) = �:Now S�(t) a
ts as barrier for the geometri
 problem, hen
e also as a barrier for the graph equation(6). The shrinking of S�(t) 
an be made arbitrarily slow if B is 
hosen appropriatedly (B � 1� ).Inner Barrier. Consider a sequen
e of expanding 
ir
les 
entered at (1; 
i) with 
i 2 [�1; 1℄and radius denoted by Ri(t). The 
enters are arranged in su
h a way that 
1 < 
2 < � � � . These
ir
les are used as inner barriers to the evolving solution u(x; t). Their radii solveddtRi(t) = � 1Ri(t) +A; for t 2 [ti�1; ti)whi
h are further related by Ri(ti�1) = Ri�1(ti�1)�(
i�
i�1) so that only the i-th 
ir
le is \a
tive"as a barrier during the time interval [ti�1; ti℄. If the 
onstant A and the initial Ri's are large enough,then the 
ir
les will expand. The ti's are 
hosen su
h that the i-th 
ir
le is allowed to 
ontinue to30



expand until it tou
hes S�(t) at ti. At this moment, a new 
ir
le with parameters 
i+1 and Ri+1�ts inside Ri(t) and is used as initial datum for a new a
tive barrier.
R (t)

i−1

i

i+1

R  (t)

S (t)
−

x

u

Pinched

R  (T )*

u(x,T )*

u(x,t)

Figure 7. The solid lines show the ex-pe
ted behavior of the solution u(x; t)at di�erent times, the dashed linesdenote the outer- (S�(t)) and inner-(Ri(t)) barriers.
Sin
e A is suÆ
iently large, ea
h of the Ri is growing with speed bounded from below. Thusthere exists a 
ertain time T� su
h that for some i, the Ri will tou
h its periodi
 extension on theverti
al line x � 0. If the motion of the outer barrier S�(t) is so slow that r�(T�) > 0; then thesolution 
annot remain as a graph, leading to an example of pin
hing.The above pin
hing phenomena 
an 
ertainly be handled by the level-set formulation as in (3).On the other hand, this example is not too mu
h di�erent from the �ngering example. If thedeta
hed portion around the obsta
le S�(t) persists for a long time, it 
an be viewed as a part of\deta
hed" �ngers. In order to show a homogenization result for su
h kind of situation, in a sensewe still need a solution whi
h remains bounded in some appropriate moving frame. This provideswork for further investigation.A Classi
al Estimates for Mean Curvature Flow with For
ingThis appendix proves Theorems 7 and 8. Sin
e we already have spa
e-time uniform gradientestimates, we 
ould in prin
iple invoke well-known results for quasilinear paraboli
 equations, inparti
ular, the interior S
hauder estimates to prove the existen
e of 
lassi
al solutions starting fromLips
hitz initial data. However, in order to take advantage of the stru
ture of the equation andsee how the 
onstants are 
omputed in the estimates, we will use a more geometri
 approa
h as in[17, 12, 13℄. As the overall strategy is already presented quite 
learly in the 
ited referen
es, weonly outline here the main steps needed in extending the results to handle equation (6).
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Let ��(t) � Rn+1 : t � 0	 be parameterized as �(p; t) so that its motion law is given by (1), i.e.��t�(p; t) = VN� (� is the unit normal of �(t)).The following notations (with Einstein 
onvention) will be used:gij = � ���pi ; ���pj� (�rst fundamental form)� h�; �i = standard inner produ
t in Rn+1 �gij = inverse of (gij), i.e. gikgkj = Æijhij = �� �2��pi�pj ; �� = � ���pi ; ���pj� (se
ond fundamental form)H = gijhij (mean 
urvature)jAj2 = gijgklhikhjlr� = gradient operator on the tangent spa
e of �� r�' = gij [�pi'℄�pj� �4� = Lapla
e Beltrami operator on the tangent spa
e of �� 4�' = 1pg�pi �pggij�pj'� �where ' is an arbitrary fun
tion de�ned on � and g = det(gij).Let �t = f(x; u(x; t)) : x 2 Rng so that it has a graph representation over a hyperplane withnormal ve
tor � = (0; : : : ; 0; 1), then we have the following expli
it formulas: (r is the gradientoperator with respe
t to x 2 Rn)� = 1z (�ru; 1); gij = Æij + uxiuxj ; gij = Æij � �i�j ; hij = �1zuxixj (52)where z =q1 + jruj2 = h�; �i�1 and � = uxiz . Furthermore,H = �1z �Æij � �i�j�uxixj and jAj2 = 1z2 gijgkluikujl:We further remark that up to tangential di�eomorphism, the geometri
 evolution (1) is equivalentto the graph equation (6) (see [13, pp 549℄) whi
h is written again here in the following form:ut = gijuxixj + Æq1 + jruj2f(O�(x; u)T ): (53)For simpli
ity, we set Æ = 1. As seen in the following derivation, this will not a�e
t the result,as the smallness of Æ is only used in deriving the gradient bound in Theorem 4. On
e this is doneor assumed, Æ does not play a role in deriving higher regularity.We now write down the evolution equations for the important geometri
 quantities relevant forour estimates. In the following, the symbol C(�) denotes some general 
onstant whi
h might dependon its argument(s). Re
all that F = kfkC2(Rn+1).32



���t = gij ����t ; ���pi� ���pj = �gij ��; ��pi ����t �� ���pj= �gij ��; ��pi (VN�)� ���pj = �gij �VN�pi ���pj = �r�VN = r�H �r�f (54)�gij�t = � ��pi ����t �; ���pj�+� ���pi ; ��pj ����t ��= � ��pi (VN�); ���pj�+� ���pi ; ��pj (VN�)� = VN � ���pi ; ���pj�+ VN � ���pi ; ���pj�= 2VNhij = (�2H + 2f)hij (55)�gij�t = �gik �gkl�t glj = �2VNgikgljhkl = (2H � 2f)gikgljhkl (56)�hij�t = � ��t � �2��pi�pj ; �� = � �2�pi�pj �����t �; ���� �2��pi�pj ; ���t �= � �2�pi�pj (�VN�); ���� �2��pi�pj ; �r�VN�= � �2�pi�pj (H�); ���� �2��pi�pj ; r�H��� �2�pi�pj (f�); ��+� �2��pi�pj ; r�f�= 4�hij � 2Hglmhilhmj + jAj2 hij �� �2�pi�pj (f�); ��+� �2��pi�pj ; r�f� (57)� jAj2�t = ��t(gikgjlhijhkl) = gik;t gjlhijhkl + gikgjl;t hijhkl + gikgjl(hij);thkl + gikgjlhij(hkl);t= 4� jAj2 � 2 jr�Aj2 + 2 jAj4 + (I) + (II) (58)where (I) = �2fhikgjlhijhkl � 2fhjlgikhijhkl so that j(I)j � C(F ) jAj3(II) = gikgjlhkl��� �2�pi�pj (f�); ��+� �2��pi�pj ; r�f��+gikgjlhij ��� �2�pk�pl (f�); ��+� �2��pk�pl ; r�f��Note that � �2�pk�pl (f�); �� = � �2f�pk�pl� + �f�pk ���pl + �f�pl ���pk + f �2��pk�pl ; ��= �2f�pk�pl � f � ���pk ; ���pl�33



so that j(II)j � C(F ) jAj+ C(F ):Hen
e we have: � jAj2�t � 4� jAj2 � 2 jr�Aj2 + 2 jAj4 + C(F ) jAj3 + C(F ): (59)Finally, we need the evolution equation for z:�z�t = ��t h�; �i�1 = �z2 h�t�; �i = z2 h�r�H; �i+ z2 hr�f; �i (60)so that �z�t � 4�z � jAj2 z � 2z jr�zj2 + C(F )z2: (61)We are now ready to prove the stated Theorems.A.1 Proof of Theorem 7 { Existen
e of Classi
al SolutionThe main point here is that the initial data is only assumed to be Lips
hitz. In order to prove theexisten
e of 
lassi
al solution, we need apriori estimates for the se
ond derivatives or equivalently,the se
ond fundamental form. This is provided by the following lemma on the interior in timeestimate for the 
urvature.19 Lemma. Let f�t : t � 0g be a 
lassi
al solution of (6) su
h that kzkL1(Rn�R+) � N� < 1.Then, for all T > 0, there exists a 
onstant C(N�; F; T ) su
h that for 0 � t � T ,


jAj2 (�; t)


L1(Rn) � C(N�; F; T )1t : (62)Proof. The proof follows very mu
h the strategy of [13, Theorem 3.1℄. Hen
e only the key stepswill be outlined.Let ' be a positive in
reasing fun
tion (to be determined). Then(�t �4�) hjAj2 '(z2)i= jAj2 '0(z2)2zzt + '(z2)(jAj2)t �r� �jAj2'0(z2)2zr�z + '(z2)r�(jAj2)�= jAj2 '0(z2)2z [zt �4�z℄ + '(z2) h(jAj2)t �4�jAj2i�4'0(z2)z 
r�jAj2; r�z�� jAj2 '00(z2)4z2 jr�zj2 � jAj2 '0(z2)2 jr�zj2� 2 �'(z2)� '0(z2)z2� jAj4 � 2'(z2) jr�Aj2 � (6'0(z2) + 4'00(z2)z2) jAj2 jr�zj2�2 
r�jAj2; r�'(z2)�+ C(F )z3'0(z2) jAj2 +C(F )'(z2) hjAj3 + 1i� 2(' � '0z2) jAj4 � '�1 Dr�'; r�(jAj2 ')E� (6'0(1� '�1'0z2) + 4'00z2) jAj2 jr�zj2+C(F )z3'0 jAj2 + C(F )'(z2) hjAj3 + 1i :34



Upon 
hoosing '(s) = s1� ks where k is some small positive number (to be determined), we have:(�t �4�) hjAj2 'i � �k hjAj2 'i2 � '�1 Dr�'; r�(jAj2 ')E+C(F )z3'0 jAj2 + C(F )' hjAj3 + 1i :As kzk1 � N� < 1, we 
an 
hoose k = k(N�) small enough that '(z2) and its derivativesare all uniformly bounded. Note that '(z2) is also bounded from below as z � 1. The presen
eof �k hjAj2 'i2 is 
ru
ial. It is the re
e
tion of the fa
t that the equation is uniformly paraboli
(as the gradient is assumed to be uniformly bounded). It 
an be used to absorb the jAj2 and jAj3terms. By introdu
ing B = jAj2 '(z2) and 
hanging the 
onstants, we thus arrive at:(�t �4�)B � �kB2 � '�1 hr�'; r�Bi+ C(F;N�):Now 
onsider the equation satis�ed by the quantity tB:(�t �4�)(tB) = t(�t �4�)B +B � �ktB2 � t'�1 hr�'; r�Bi+ tC(N�; F ) +B:Furthermore, the quantity '(z2) satis�es:(�t �4�)' � �2z2'0 jAj2 + C(N�; F )z3'0:Thus we have:(�t �4�)(tB + ') � �ktB2 +B � '�1 hr�'; r�(tB + ')i+ C(N�; F )(jAj2 + 1) + tC(N�; F )� �ktB2 + C(N�; F )B � '�1 hr�'; r�(tB + ')i+ tC(N�; F )� �kB [tB � C(N�; F )B℄� '�1 hr�'; r�(tB + ')i+ tC(N�; F )(where in the above we have made used of the fa
t that jr�'j2 � C(N�) jAj2).Now suppose supt2[0;T ℄[tB+'(z2)℄ equals some 
onstantM > 0. Assume that the sup is attainedat p� and t�. Then we have0 � �k�M � '(z2)t � �M � '(z2)� C�+ TC����(p�;t�)whi
h leads to a 
ontradi
tion upon 
hoosing M = M(N�; T; F ) large enough. The argument 
anbe lo
alized in spa
e as done in [13℄ or we 
an also use the similar devi
e as in page 10 by 
hoosingappropriate (p(j)� ; t(j)� )'s su
h that tB+' 
onverges to the sup. The same proof then goes through.The desired interior in time estimate (62) is thus established.With the above apriori bounds, Theorem 7 
an be proved using approximation of the initialdata. For smooth initial data, the result follows by S
hauder Fixed Point Theorem. The estimatesof Corollary 5 lead to uniform gradient bound whi
h then gives a 
urvature bound whi
h dependsonly on the gradient. The lo
al in time existen
e and uniqueness of 
lassi
al solutions then followeasily from standard arguments. The global in time existen
e follows from the 
ombination ofuniform os
illation and gradient bounds as explained in Remark 6(1).35



A.2 Proof of Theorem 8 { Gradient De
ay EstimateThe te
hnique is initiated by [18℄ for the ellipti
 
ase. The 
omputation here follows 
losely to thatof [15, Theorem 5.2℄, making use of the graph equation (6) (or (53)).We �rst re
all the notations of (52). Furthermore, let 

D2u

2 =Pij u2xixj . Then (60) takes thefollowing analogous form:zt = gijzxixj � 1z gijgkluxkxiuxlxj � 2z gij�k�luxixkuxjxl + �k (Æzf )xk (63)or more 
ompa
tly written as:zt = gijzxixj�

D2u

2z +hru; rzi2z3 +Æ�hru; rziz f(x; u) + hru; rxf(x; u)i+ jruj2 fu(x; u)� :(64)Furthermore, the symmetri
 matrix ~G = (gij) satis�es:~G = I � � 
 � = (1� j�j2)I + j�j2�I � �j�j 
 �j�j� � (1� j�j2)I = 1z2 I (65)so that ~G is positive de�nite with its smallest eigenvalues equal to 1z2 .Now we pro
eed to prove the Theorem. Without loss of generality, we restri
t our attention to
R;T = f(x; t) : 0 � jxj � R; 0 < t < Tg. By adding a 
onstant to u, we 
an assume �3M � u ��M < 0 so that kukL1(R�R+) � 3M . Let u(0; T ) = �m < 0.De�ne h(x; t) = �(x; t)z(x; t) where�(x; t) = eK�(x;t) � 1 and �(x; t) = �u(x; t)2m + tT �1� jxj2R2 ��+and the 
onstant K is to be determined.Consider the expression Lh = gijhxixj � ht whi
h equals �Lz+ zL�+2(�)xizxi � �i�j(�)xizxj ��i�j(�)xj zxi . As (�)xi = hxi��zxiz , we have:Lh� 2gijz zjhi = ��Lz � 2gijz zizj�+ zL�:Now estimate: Lz � 2gijz zxizxj and L�. Using (63) and (65), the former is estimated as:Lz � 2gijz zxizxj = 1z gijgkluxkxiuxlxj + 2z gij�k�luxixkuxlxj � �k (Æzf)k � 2gijz �k�luxkxiuxlxj� 1z5 

D2u

2 � Æ h
[D2u℄�; �� f + hru; rxfi+ jruj2 fui :Furthermore, as ��
[D2u℄�; ���� � kD2ukjruj2z2 = kD2ukz5=2 jruj2z 12 , we have Æ 
D2u�; �� f � 12 kD2uk2z5 +12Æ2z5C(F ) whi
h givesLz � 2gijz zizj � 12 

D2u

2z5 � C(F )Æz2(1 + Æz3): (66)36



For L�, we haveL� = K2eK�gij(�)xi(�)xj +KeK� �gij(�)xixj � (�)t�� K2eK�z2 jr(�)j2 +KeK� �gij(�)xixj � (�)t� (from (65)):Note that (�)xi = uxi2m � 2txiTR2 ; (�)xixj = uxixj2m ; (�)t = ut2m + 1T �1� jxj2R2 � :Hen
e L� � K2 eK�z2 ����ru2m � 2txTR2 ����2 +KeK� ��Æzf2m � 1T �1� jxj2R2 �� : (67)Combining (66) and (67), we sequentially estimate Lh from below:Lh� 2gijz zjhi� zL�� �C(F )Æz2(1 + Æz3)� �� K24m2z2 �jruj2 � 16m2R2 ��K �ÆzC(F )2m + 1T �1� jxj2R2 ��� ÆC(F )z(1 + Æz3)�De�ne the set D = �(x; t) 2 
R;T : z2(x; t) � 2�1 + 16m2R2 �� : (68)On D, we have:Lh� 2gijz zjhi � zeK�� K28m2 �K �ÆzC(F )2m + 1T �� ÆC(F )z(1 + Æz3)�� zeK�� K216m2 � 4Æ2z2C(F )� 16m2T 2 � ÆC(F )z(1 + Æz3)� :Let z� = supt2[0;T ℄ kz(t)k1. If we 
hoose:K � 4mp3 �4mT + C(F )pÆz� + C(F )Æz� +C(F )Æz�2�then Lh� 2gijz zjhi � 0.Observe that (0; T ) 2 spt�. Assume (0; T ) 2 D, otherwise z(0; T ) � p2 �1 + 4mR �. By maximumprin
iple, we have h(0; T ) � max(x;t)2�D h(x; t), i.e.�eK(� 12+1) � 1� z(0; T ) � max(x;t)2�D0�eK� u2m+ tT �1� jxj2R2 ��+ � 11A z(x; t) � �eK � 1�p2�1 + 4mR �leading toz(0; T ) � p2�1 + 4mR ��exp�2mp3 �4mT + C(F )pÆz� +C(F )Æz� + C(F )Æz�2��+ 1� (69)37



Now let N0 = kz(0)k1. By (14) of Corollary 5, we have z� � �Z := N0 + C(F )pÆN20 (1 +M)for Æ � Æ1(N0;M; F ). Hen
e the result will follow if we 
hoose N0 su
h thatp2�1 + 4MR ��exp �2Mp3 �4MT + C(F )(pÆ �Z + Æ �Z + Æ �Z2)��+ 1� � N02 : (70)If Æ is small enough, su
h a 
hoi
e for N0 is always possible and it 
an be bounded from below andabove by two 
onstants N1(T;M;F ) and N2(T;M;F ). The whole Theorem is thus proved.A
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