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Abstract

We prove the existence and uniqueness of pulsating waves for the motion by mean curvature
of an n-dimensional hypersurface in an inhomogeneous medium, represented by a periodic forcing.
The main difficulty is caused by the degeneracy of the equation and the fact the forcing is allowed
to change sign. Under the assumption of weak inhomogeneity, we obtain uniform oscillation and
gradient bounds so that the evolving surface can be written as a graph over a reference hyperplane.
The existence of an effective speed of propagation is established for any normal direction. We
further prove the Lipschitz continuity of the speed with respect to the normal and various stability
properties of the pulsating wave. The results are related to the homogenization of mean curvature

flow with forcing.

1 Introduction

In this paper, we study the mean curvature flow of a hypersurface in a periodic inhomogeneous

medium. More precisely, we consider the evolution of an n-dimensional surface {F(t) CRY ¢ > 0}

*Current address: Dept. of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom.
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with its motion law given by:

Vn(p) =H(p) +0f(p), peT(?) (1)

where Vy and H are the normal velocity and mean curvature of I'(¢), and ¢ is a positive number
which measures the strength of the spatial inhomogeneity, represented by f. Without loss of

generality, we assume 0 < § < 1. The function f: R*t! — R satisfies the following conditions:

(i) f is Z"t-periodic, i.e. f(p +w) = f(p) for all p € R**! and w € Z"+1,
(ii) f(-) is twice continuously differentiable and || f||c2(gn+1) = F < oo.

We emphasize that f is not restricted to be either positive or negative.

The main contribution of the present paper is that under the above rather weak assumption for
the forcing, together with ¢ small enough, we are able to show for any direction v the existence of
a unique speed ¢, and a number D < oo such that the solution of (1) starting from a plane with
normal v stays as a graph over the same plane for all times, and moreover, this graph lies within
a distance D from a plane which has normal v and moves with normal velocity c¢,. This result is
motivated by and extends the geometric arguments of [4] which essentially considers a stationary
version of (1). Using the language of homogenization, we have in fact shown the existence of a

homogenized front — hyperplane with normal v — which moves with an effective speed — ¢, .

Furthermore, if ¢, # 0, we show that pulsating waves exist. A pulsating wave is a special
solution defined globally in space and time with the property that a spatial translation that keeps
the periodic environment invariant (lattice translation) corresponds to a translation in time. More
precisely, {Z,,(t) CR :te R} is a pulsating hypersurface evolving by (1) with normal direction
v and velocity ¢, # 0, if it satisfies the following property (see Figure 1):

N(t+7)=%(t)+ 2, forall z€Z""! and 7= vz

(2)

Cy

2t+1) = 2¢) +2

/2()

Figure 1. The pulsating wave property:
time shift corresponds to lattice trans-

lation.

The interest in (1) stems from models for the motions of material interfaces (such as phase

boundaries) in the over-damped limit, i.e. when inertial effects are neglected. Then the time



evolution is often the negative gradient flow of some underlying energy functional. Such models
should incorporate heterogeneities, which may arise from the periodic structure of the material or
substrate, or impurities present in the material on a very fine scale. These heterogeneities create
a very oscillatory energy landscape and make the analysis of the dynamics very challenging. In
particular, the large scale limit of the energy, obtained for example by means of I-convergence [10]
and the large-scale limit of the gradient flow dynamics may not commute, i.e. the gradient flow
of the limiting energy is not the scaling limit of the gradient flows. This is mainly due to the fact
that the dynamical state of the gradient flows often gets stuck in the local minima created by the
heterogeneities. The ultimate limiting behavior is the result of some nontrivial averaging process
between energetic and kinematic effects. See [11] for some results along these lines. (The work [22]
proves some I'-convergence result in the time dependent case but the effect of oscillatory energy

landscape is not considered.)

The motion law (1) is motivated by the evolution of phase boundaries [1] or defects such as
dislocation lines in a solid [3, 9, 21]. The “non-oscillatory” part of the energy for the gradient flow
model is chosen to be the interfacial energy (area of a hypersurface). This model thus captures
the competition between the tendency to decrease the interfacial energy — flatten the interface —
while at the same time adapting to inhomogeneities on a very small spatial scale. The mathematical
analysis of this simple “physical” model is already challenging as the interaction between the

nonlinearities and heterogeneities can be quite intricate.

One question of interest is the effective front and velocity of I'(¢) on a large space-time scale.
This can be phrased as follows: Given any direction v € S, is there a number ¢, such that the
solution of (1) starting from a plane with normal v stays within bounded distance from a plane that

has the same normal and moves with normal velocity ¢, ?

In the framework of homogenization, the above question can be formulated in the following

form. Introduce a small parameter € and rescale (1) as:

Vy =€eH(p)+df (p/e), pel(). (1)

Then questions on the effective behavior and quantity are equivalent to investigating the limits of
the solutions I'“(¢) of (1) as e — 0. Note that the highest order (curvature) term is multiplied
by the small parameter which makes the corresponding homogenization problem singular. In such
a scaling, the curvature and heterogeneity are coupled together in an elaborate way and hence can

lead to interesting phenomena.

The above question, though simply stated, is highly nontrivial. Besides the facts that the motion
law (1) is extremely nonlinear and the equation written in appropriate coordinate is degenerate
parabolic, the main technical difficulty in its analysis lies in the fact that the forcing f is allowed
to change sign. For a forcing which is positive and satisfies some additional technical conditions,
the problem on the existence of effective speed is solved in [19] using the machinery of viscosity
solution. This is briefly explained here. Let U€ : R**! x Rt — R be a function with the property
that each of its level sets X¢(t) = {z € R*™! : U(z,t) = A} evolves by (1¢), then U€ solves the



following nonlinear degenerate parabolic equation:
Uf = etx|(I = |VU| %(VU* @ VU ) D2U*| + 8f(X/e)|VU"]. (3)

It is conjectured (and proved in [19] for certain f which remains strictly positive) that the solutions
U¢ converge to a solution U of a homogenized problem which in the level set formulation becomes
the following first order equation:

U, = CyT VT |1 |VU]. (4)

(See also [2, 3] for results related to the above homogenization problem. The work [20] studies a

semilinear version of (1), but still with positive forcing.)

Another interesting behavior concerning (1) is the pinning/de-pinning phenomena. To explain

this, introduce an additional parameter h into (1):

Vv =H(p) +6(f(p) +h) (1n)

which models the presence of some external field imposed on the dynamics. The relevant questions
in terms of application and modeling include the de-pinning threshold h. defined as the smallest
force h required to obtain a monzero velocity c¢,, and also the relationship between the effective
velocity and the excess forcing h — he. This question is not addressed in the present paper but is
studied in detail in [11] for semi-linear PDEs which are approximations of (1) when the evolving
hypersurface is close to a very “flat” graph. We expect that for planes with rational normal direction
and small , the method of [11] can be extended to (1), but the estimates will in general not be
uniform in the direction. We remark that, unlike the effective velocity c¢,, the de-pinning threshold
he is in general not continuous in the direction v (see Section 5 for a simple example and also [5]

for some results on a related discrete system.)

We now introduce the setting of the present paper. The investigation of effective behavior is
very much tied to the consideration of plane-like solutions of (1), i.e. there exists a fixed unit vector
v € S™ such that for all ¢ > 0, the solution I'(¢) satisfies:

D(t):= sup (p—¢q) v <. (5)
P.q€l(?)

Furthermore, the existence of effective property relies intimately to the fact that D(t) is uniformly

bounded in time.

In order to incorporate general v, we introduce two coordinate systems for R**!. First, we write

Rn+1 as
n—+1 X n
R = ¥ X eR", Xpi1€RY.
n+1

Let O, be a positively oriented orthogonal transformation of R**! such that v = 0, ((0,...,0,1)").

Introduce the new coordinate system: (z, 1), ¢ € R* and z,,4+1 € R such that

T _ o X '
Tn+41 Xn+1

4



Observe that the (x,z,41)-coordinate of v is (0,...,0,1). We call the (X, X,,4+1)- and (z, zp41)-
coordinate systems the reference and tilted frames respectively (see Figure 2).

Kot )

b

Figure 2. The original and the tilted
frame. The lattice stands for the period

of the forcing.

IfI'(t) can be written as a graph over the plane z,,+; = 0,i.e. I'(t) = {(z, u(x,t)) : x € R", v € R},

then u solves the following quasi-linear parabolic differential equation:

\Y
up = Ap(v,z,u) = \/1+ [VuPdiv | ———— | +61/1+ |Vu>£(O, (2, u)"). (6)
1+ [Vl
The symbol V refers to the gradient operator with respect to the z-variables. Note that (6) is

invariant under the lattice translation in the following sense

/

/

Arw,z + 2", u+u') = Af(v,z,u) for all (ac
u

) € ofz ., (7)

Equation (6) plays a fundamental role in this paper. The notation v will sometimes be sup-
pressed, unless needed in the presentation. The main difficulty in the study of (6) is that it is
not uniformly parabolic and becomes degenerate as the gradient blows up. If the forcing is large,
this can indeed happen in finite time even if the initial data is smooth. Furthermore, the graph
representation might not be preserved in time (Section 5). However, by a combination of the peri-
odicity of the domain and the smallness of the inhomogeneity of the medium, we are able to derive

several useful uniform estimates for the solution of (6) which allow us to employ many techniques
for parabolic PDEs to the study of (1).

The restriction to small forcing is not just for convenience (so that we only need to deal with
classical solutions). In fact, if the forcing is large, it can lead to quite a different phenomena. First,
“pinch-off” — a portion of the graph becomes detached from the overall surface — can happen.
Even though this can still be potentially handled by the level-set formulation ([14, 7]), it involves
a different type of technicality. Second, on a more fundamental level of difficulty, there might not
even be an effective front or effective behavior due to the possibility of fingering. How to define a
modified notion of homogenized object and equation is not completely clear. Section 5 gives some

explicit examples of these phenomena.



We expect that our results for graph-like pulsating waves can be extended by fairly standard
arguments to yield a homogenization result for the level set equation (3). Indeed, using the fact
that our graph-like pulsating wave solution u(z,t) satisfies u; > 0 (Proposition 15), one can

construct a special solution for (3) by setting
{U(z,zp41,t) = A} ={u(z,t+ X) = zpy1}.

In a rotated and moving frame

Uz, Zps1,t) = U(z, Tpi1,t) — Tpyr — ot
is a globally bounded solution of
Us = tr[(f VU + P|"2(VU + P) ® (VU + P)))D2(7] +6f|VU + P| — cp,

where without loss of generality, P = v = (0,...,0,1). This clearly implies a homogenization result
for plane-like initial data. Note that the above equation is a special case of the equation for the
so-called “corrector”. As the limit effective velocity is continuous in the normal (Proposition 11),
we expect the extension to more general initial data to be straightforward, but in order to keep the

present paper focused and of reasonable length, we will not address these issues here.

1.1 Outline of Paper

Section 2 proves the key estimates for (6) — uniform oscillation and gradient bounds (Theorem
4, Corollary 5) — to be used for the rest of the paper. The existence of classical solution with
Lipschitz initial data (Theorem 7) and a gradient decay estimate (Theorem 8) are also presented.
Section 3 establishes the existence, uniqueness and Lipschitz continuity of the effective speed of
propagation for any normal direction v. Section 4 proves the existence, uniqueness and various
stability properties of the pulsating wave solutions. Section 5 provides some examples for the
formation of singularities if the forcing is large. The Appendix contains the proof of Theorems

7 and 8 which are somewhat long and technical.

2 Estimates for Mean Curvature Flow in Inhomogeneous Medium

The following simple geometric lemma is the starting point for the uniform estimates derived
later. It essentially shows that starting from a hyperplane, at any fixed time ¢, if a cube @ is
“above(below)” the interface I'(¢), so is any “tangential” translates ¢ +w. This result is motivated
by the work [4].

1 Lemma. Let {T'(t) : t > 0} be a connected hypersurface in R**1 which is the unique classical
solution of (1) with initial datum the hyperplane T'(0) = {(X, Xpy1) : (X, Xpni1)? - v = 0}, i.e.
Tpy1 = 0. Let further X% (t) C R be connected open sets such that for all t, T'(t) = 0XF(t) =



OX~(t), R*L = I'(¢) UXT(¢) UX~(¢), and the vector v points into X (t). Let z € Z"'! and
Q(z) = Int([0,1]"*! + 2). Then following statements hold.

If Q(z) C XT(t), then Q(z + w) C XH(t) for all w € Z™" with w-v > 0. Similarly, if
Q(z) € (1), then Q(z +w) C X~ (t) for all w € Z" ! with w-v < 0.

Proof. Without loss of generality, we will just prove the first statement. Let f(t) be the solution
of (1) with initial datum I'(0) + w and ii(t) be the two open sets similarly defined as X*(¢) for
['(t). By the periodicity of the inhomogeneity and the assumed uniqueness of classical solution
of (1) starting from I'(0), we have that T'(t) = '(t) + w and ST (t) = ST(¢) + w. Moreover as
['(0) C £1(0), the comparison principle implies that S¥(£) C $T(¢). Since Q(z) C £+ (t), we have

Qz) +w CTH(t) +w=3t(t) CTH()
which proves the claim. O

2 Remark. Note that in the above and the rest of the paper, we deal only with classical solutions
of equation (1), by which we mean smooth hypersurface evolving according to (1). Due to the non-
degeneracy of the equation, even in the homogeneous case (f = 0), the question of well-posedness
is already not trivial (see [12, 13]). With forcing (f # 0), in general the gradient can blow up in
finite time. On the other hand, if the forcing is small (§ < 1) and the initial data has bounded
gradient and oscillation, well-posedness can be established. This and related comments are stated
in Remark 6(1,2), Theorems 7 and 8.

The following notations are introduced for convenience:

osc(I,B,v) := sup (p—gq)-v (for BCR*!) and osc(l',v) := osc(I, R"1 ).
p,gel'NB

If {(z,u(x)) : x € R"} is the graph representation of I' over R",

osc(u,B) := sup wu(z)—u(y) (for BCR") and osc(u):= osc(u, R").
z,yeR*NB

The previous Lemma immediately leads to the following result.

3 Lemma. Let {I'(t)},, be as in Lemma 1, in particular T'(0) = {(X, X;41) : (X, Xp1)1 v =0},
i.e. Tny1 =0. Let B = {(X, Xp41) € R* ¢ |X| <2y/n+1}. Then for all t >0,

osc (I'(t), 0,(B),v) < osc(I'(t),v) < osc(T'(t), 0,(B),v) +4vn + 1. (8)

In the graph setting, I'(t) = {(z,u(z,t)) : # € R"}, upon introducing B = {z : |z| < 2v/n+ 1}, then
it holds similarly that

osc(u(-,t), B) < osc(u(-,t)) < osc(u(-,t),B) +4vn + 1. 9)

(The quantity \/n+ 1 comes from the diameter of the unit cube in R*tL,)



It is crucial for our analysis that osc(I'(¢), ) remains uniformly bounded for all time. For the
existence and uniqueness of the speed as stated in Theorem 9, we could simply make this as a
standing assumption, or we can work in the graph setting in which such an assumption can be
justified. The next several results show that this assumption is indeed valid provided the forcing is
small compared with the period. For the clarity of presentation, the proofs are postponed till after

the results are listed.

In the following, the symbol C(F') denotes some universal constant which depends on the quan-
tity F* = [[fllc2@gn+1)- The constant convention is used: Different constants are denoted by the
same symbol C(F), provided they depend only on [|f||c2(gn+1) - In addition, if u(z,¢) is a solution
of (6), we denote:

z(z,t) = \/1+|Vu(z,t)]? and |[|z(t)|, := sup z(z,t).
zeR?
4 Theorem (Bernstein’s Method). Let {u(z,t) : z € R*,0 <t < T} be a classical solution of (6)
with uniformly Lipschitz and bounded initial datum wuy(x). Further, let K be a constant such that
K > ||z(0) Then:

oo

sup |[2(t) [l < [[2(0)[loc + A(9, K, F) sup osc(u(t)) (10)
tE[U,TK] tE[O,TK]

where T :=T Ainf {t > 0: ||z(t)|| . > K} and A(6, K, F) := C(F)ViK?2.
5 Corollary (Uniform Oscillation and Gradient Bounds). Let {u(z,t) : z € R*,0 <t < T} be as
in Theorem 4. There is a 0g(F) > 0 such that if ug(x) =0, then for all 0 < § < 0y, the following

two estimates hold:

NI

sup [[2(t)]| < 1+ C(F)5

(07" written differently sup [[Vu(t)||, < C(F)(S‘ll) , (11)
te[0,T

te[0,T

sup osc(u(t)) < Dg:=C(F)(1 + 5%) (12)
te[0,T

For general initial datum uy(z), set My := osc(ug). Then:

sup osc(u(t)) < Dy(My) := Dy + [Mpy]vn +1 (13)
te[0,7T7
(where [r] denotes the smallest integer bigger or equal to r). Furthermore, for all K > [|z(0),
K —[[z(0)]] ’
and 0 < § < ¢ :=C(F 0 , then
<00 =) | Dy ¥ Mol £ D)
sup |[2(t)[loc < [|2(0)lloc + A(6, K, £7) D1 (Mo). (14)
te[0,77

6 Remark. 1. The above two results show that the solution has uniform gradient bound in
space and time as long as J is small enough. They make equation (6) uniformly parabolic
and thus allow us to use standard techniques for quasilinear equations. In addition, note that
all the estimates are independent of 7. Hence by continuation in the time variable, we can
in fact show that classical solution exists globally in time. This will be stated more precisely

in Theorem 7.



2. In contrast to the case of pure mean curvature flow — f = 0, due to the degeneracy of the
parabolic operator, estimates for solutions of (6) of the form ||z(t)|| ., < [|2(0)] . ([13, Cor
3.1]) and [|z(t)[|, < G(osc(u(0)),t)) for some function G (see for example [15, Thm. 5.2])

cannot be true. Examples can easily be constructed such that an initial graph will not stay

loo

as a graph — the gradient can blow up in finite time (see Section 5).

On the other hand, our results show that a global in time estimate for the gradient is possible
through a combination of small forcing and uniform oscillation bound. In the present paper,

the latter is obtained by means of Lemma 1.

3. The dependence of the choice of § on the size of the period — here assumed to be 1 — of the
spatial inhomogeneity can be seen by scaling. Suppose the f in (6) is P-periodic in the z-

and u-variables. Consider the scaling:

Then equation (6) written in the #, % and ¢ variables becomes:

12— V&7 ~ 12
a;:\/1+‘va div % +5P,/1+‘va‘ £(0,(PE, Pa)T).
\Y

1+ u‘

We need § = 6P to be small. More precisely,

) 1
0P < A(If(PP)lcz) e 8§ < HA(Ifl + PllDauf g + P2 D21 )

where A(-) is some monotonically decreasing function. Qualitatively, small period allows
larger & while large period requires small §. The results in this paper requires the C?-norm
of f which demands a more stringent condition on the choice of §. It would be interesting to

see if only the dependence on || f||, is needed.

7 Theorem (Existence of Classical Solution of (6)). Let ug(x) be the initial data of (6). If
|Vuoll, = No < oo, then there is a T = T(0,F,Nyg) > 0 such that (6) has a unique classical
solution for t € (0,T). Moreover, it holds that:

1
7
If in addition, ||ug|l,, = Mo < oo, then for all 6 smaller than some constant d(F, My, Ny), there

exists a unique classical solution of (6) for all time. In this case, the following estimate holds:

HD2U('7t)HLoo(Rn) < O(N(JaFa T) (15)

1
HD2U(.,t)HLOO(Rn) < cl(z\fo,F)75 + Cy(Ny, F). (16)

The following statement, though strictly speaking not needed, is interesting in its own right. It

indicates the parabolic regularization property of (6) and might be useful for other purposes.



8 Theorem (Gradient Decay Estimate). Let {u(z,t): 2z € R*,0 <t < T} be as in Theorem 4.
Suppose [|z(0)],, = No < 00 and ||ulpco@nyory < M < 00. Then there exist constants 0 <
d3(T,No, M, F), and 0 < N1(6,T, M, F) < No(0,T, M, F') such that for all 0 < § < 3,

_ 1
if Ni < [|2(0) oo < N2, then [|2(T)]lo < 5 [12(0)]]

0 *

Furthermore, N1 and Ny satisfy lims_,o N1(6,T, M, F) = Nj < oo and lims_,q N2(5,T, M, F) = oo.

As mentioned earlier, the gradient can blow up in finite time. Hence an upper bound for [|z(0)||

is necessary for such kind of statement.

We now proceed to prove Theorem 4 and Corollary 5 which are the core estimates needed

for the rest of the paper. The proofs of Theorems 7 and 8 will be presented in the Appendix.

Proof of Theorem 4. Let A > 0 be some positive number (to be determined). We define the

following function:

O(z,t) := z(z,t) + A (u*(t) —u(z,t)), u*(t):= ;,;Seu]& u(z,t), D*(t):= wseulgl D(x,t).

Note that by definition, 0 < u*(t) —u(z,t) < osc(u(t)). Furthermore, the function u*(to) + 0 || f|| ¢

d
is a super-solution of (1) for all ¢y and ¢ > 0. Hence, au*(t) < 0| flloo- We will show the existence
of a function A(J, K, F') such that if A > A\(4, K, F'), then

sup O*(t) < ®*(0) + A sup osc(u(t)). (17)
te[0,Tx| te[0,Tk ]
First note that for all ¢ € [0,7k], there exists a sequence {z;(t)}; C R" with the following

property

D (1). 1) — (1), V(a;(t),1) — 0 and lim D*@(a;(1),1) <0. (18)

The last inequality in (18) is understood in the sense that lim; ([D?®(z;(t),t)]v, v) < 0 for all v €
R™. (Such a sequence may be constructed by considering the maxima of the functions @, (z,1) :=

®(z,t) — €j|z|? and upon choosing €; —» 0 appropriately.)

Now consider the above sequence at t = T™ € [0, 7| where ®*(T™) = supjg 1,.] ®*(¢). We state
for later use that lim ®(z;(7),T") > 0. The following two cases can be distinguished:
J

(i) lim; |Vu(z;(T*), T*)| — 0.
(ii) There exists a subsequence (still denoted by j) x;(t)’s such that

lim |Vu(z;(T7),T)| exists and is positive. (19)
j

10



If T* = 0, then we immediately have:

sup () < ©7(0) < [|2(0)[|o + Aosc(u(0)).
te[0,7k]

If T* > 0 and case (i) above holds, then

sup ®*(t) < @*(T™) =1+ Xosc(u(T™)) <1+ A sup osc(u(T™)).
[0,T] [0,T]

Together, these two cases give (17).

We now show that the case with 7" > 0 and case (ii) above cannot happen if we choose A large

enough. We first present a claim which will be proved later:

Claim I. Let V' be a vector in R* and év be the linear functional on the space of symmetric

n X n matrices defined as:

. Vev 1
Gris) = [(I 1+ |V|2> S] =S Tt

Then Gy (S) is > (<) 0 for any symmetric semi-positive(negative) definite matriz S.

Applying the above claim to D?®(z;(T*), T*), we have
. * * ~ 2 * *
0< hjm{q)t(xj(T ), T*) = Gyu(a; (1)) (D*®(2;(T7), T ))}
Hence
0< li;n{Zt(:vj (T*),T7) = Gyute, ) (D*2(2;(T7), T"))
* * ~ 2 * * d * [k
— Mug(2(T7), T*) = Gyu(a;(+)) (D*ulz;(T7),T7))] + Aut(T7)

which by (64) is equivalent to

D2ul? 2
o <tin{ 2L T T (920 1y 9, Vo) + 190 o))
j
d
=N f (z,u) + )\d—u* (t)} (20)
t () (1)1
Note that by (18), we have
Vz(z;(T*), T*) = A\Vu(z;(T*), T*) + p; (21)

for some vector p; such that lim; p; = 0. Now we make another claim which will be shown later:

Claim II. With case (ii) above, i.e. (19) holds, we have the following statement:

D2l ()T e e
h;_rn (o, (1), T7) > hjm)\ 2(z; (1), T™). (22)

11



With the above, starting from (20), we proceed as follows. (The notation (z;(7%),T*) is sup-

pressed.)
2 _ 2 2
j z z
2 4
< 1im{—>\2z+%+50(1?) ()\-I—)\z+z2)}
j z
02,4 4 )2 4
< lim{ A +3>\ [Vl +0C(F) (>\+>\Z+22)}
j z
2(_1 _ 2
< lim{A (=1 Z32|Vu| ) +0C(F) (A+>\z+z2)}
j
< lim 3 +0C(F) (A + Az +2°)
j z

ie. A2 < SC(F)lim(\z + Az% + 2%).
j
Using 0C(F)Az < 12?4+ 162C(F)?2% and 0C(F)A\z? < 1X\% 4+ 162C(F)?2*, we have
A2 < C(F)(0+0%)z* orequivalently X < C(F)V 6+ 6222 < C(F)VK?.

The above then leads to a contradiction upon choosing (6, K, F) = 2C(F)vV3K?. O
We now give the proofs of Claims I and II.

Proof of Claim I.. Without loss of generality, let S be semi-positive-definite. Let also G =

(gij)lgi,jgn- Then
~ ~ p = = T =
Gy (S) = tr(GST) = tr ([\/E\/ﬂ [\/5\/5}) = tr ([\/5\/5] [\/E\/ED >0
thus proving the claim. (The symbol \/5 refers to the square root of G and so forth.) U

Proof of Claim II. Note that z;, = 2z tug, ug, ;- We re-write (21) as:

1

Sy e (), T Vil (17), T%) = XVu(ay (T, T7) + p;

In the following we suppress the notation (z;(1),7™). Let {4},_, , be the eigenvalues of D?u.
Then

D?ulVu, V 2
)\|VU|2 + <pj, VU> _ <[ u] U u> < maxj |:ul||vu|

z z
so that
2 4 2,12 4
max; |u])*|Vu D*u|” |Vul
RVl + 27 [Tl (o, Vb + (o, Vup? < Lol Vult (D] [Vt
leading to (22). (Recall that lim; |Vu(x;(T*),T)| > 0.) O
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Proof of Corollary 5. For the case ug(z) =0, by (9) of Lemma 3, we have
osc(u(t)) < osc (u(t),{z € R" : |z| <Vn+1}) +4Vn+1 < C|lz(t)||,, for some C >0. (23)

From (10), let K = 2, we get sup,cpor,) 12(t)ll oo < 14+ CA(0,2, F) supyeio 1] [12(8) | - If 6 is chosen
small enough that CA(4,2, F) < %, then

1 1
sup ||z(t <———— <1+ C(F))2.
te[O,TK}H ()]l = ON5.2,F) (£)

Further, if ¢ is small enough that 1+ C(F)d 3 < 2, the above estimate will hold for all ¢ up to time
T, giving the desired result (11). The estimate (12) is a direct consequence of (23) and what we

have just proved.

For initial data with finite gradient and oscillation bounds, (13) follows by using ug§ = supgcrn uo(z)
and u, = inf,ecprn ug(z) as comparison data. Statement (14) follows from (10) and upon choosing
small enough 0 to ensure that ||z(¢)|| < K for t € [0,T]. O

From now on, we will always assume that § is taken to be sufficiently small. The smallness

depends on the initial quantities | Vuol|,, and osc(up).

3 Effective Speed of Front Propagation

9 Theorem. Let u(x,t) be the solution of (6) with initial datum u(z,0) =0, and let
w(z,t) := u(z,t) — ct.
Then there exists a unique, finite value c,, such that
[w || oo (rrxr,) < D2 = Do+ vVn+1 (24)

where Dy is the number from Corollary 5(12). Furthermore, |c,| < 0 || f||. and ¢, is a Lipschitz

continuous function of v .

To facilitate the proof, first define

A(t) :== sup w(x,t) and B(t) := inf w(x,t).
TERM TER™

Note that both quantities are finite for each ¢ > 0, as we can compare with constant sub- and

super-solutions. Furthermore, by Corollary 5(12), we have

A“(t) — BE(t) = osc(u(t)) < Dy. (25)
The proof of Theorem 9 is divided into two propositions.
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10 Proposition. There exists a unique finite number ¢, (|c,| < 8| f|l«) such that for all t >0,
—Vn+1<A“(t) <Dy+Vn+1 (or equivalently: — Dy —+vn+1<B%(t) <vVn+1) (26)

and

400 for c<c¢y (27)

t—4o00

lim A°(t) (or equivalently: tlir+n Bc(t)> :{
—+00

—o0  for ¢ > ¢y

Proof. The uniqueness of ¢, and statement (27) are immediate consequence of (26). The bound
lcv| < 0] f|loo also follows easily by using A°(0) + d || f]|,t and B(0) — ¢ f]|,, t as super- and

sub-solutions.
Take a value of ¢. If for this value of ¢, (26) is satisfied, then clearly (27) is true by taking ¢, = c.

We show that either (26) is true or A and B¢ diverge at least linearly in time, i.e.

sup; A°(t) > Dop++vVn+1 = there exists a > 0, >0 s.t. A°(t) > at — (25)
inf; A°(t) < —v/n +1 — there exists o/ >0, 8/ > 0s.t. A°(t) < —d't+ 5.

Consider the first statement. (The second is shown in a similar way.) So suppose there exists tg
such that A°(tg) > Dy + vn + 1. By (25), B®(tp) > vn + 1.

In this case, there exists a constant h such that B¢(t9) > h > v/n + 1 and the planar function
(1)

uy ' (z) = h is some upward lattice translate of ug(z) = 0 in the sense that
{(m,ugl)(m)) tx € R”} = {(z,uo(z)) : x € R"} + (z},, h)

for some z/, € R" which satisfies OL (!, h)" € Z"*'. Let u()(z,t) be the solution of (6) with
(1)

initial datum wg’(x). By the invariance of (6) under lattice translation and the uniqueness of
classical solutions, then up to a delay in time and a translation of the graph in space by (!, h), the
behavior of u(!) (x,t) is exactly the same as that of u(z,t). Furthermore, as u(z, to) > u' (z,0), by
comparison principle, we have
u(w, 2t) > vV (z, ty) > 2h.

By induction, we have: infyecgrn u(x,ity) > ih.

Let Iy := inf;c(g 4] B(t) > —oo. By the translational invariance and the comparison principle
again, we get B¢(t) > ih — Iy on [itg, (i + 1)tp]. The first claim of (28) then follows with a = h/t

and B = Iy + h. The second claim can be proved similarly.
Now define
¢y 1= sup {c : lim A°(¢) = —I—oo} . (29)
t—o0
(Note that with this definition, it follows that lim; o A(t) = +(—)oo for ¢ < (>)cy.)
If for this value of ¢,, (26) is not satisfied, using (28), then it holds that either

limy_, oo A€ (t) =400 for  =¢, + %a (if there exists a ty such that A% (ty) > Do+ vVn + 1)
or limy . A (t) = —00 for ¢ =¢, — 3o/ (if there exists a to such that A% (ty) < —v/n+1).
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Both cases contradict the definition (29) of ¢, and the remark immediately below it. Thus (26)
must hold and the Proposition is proved. O

We now proceed to prove the Lipschitz continuity of c,.

11 Proposition (Lipschitz Continuity of Speed with respect to v). The speed ¢, is a Lipschitz
function of v, i.e. there exists a C(F,0) > 0 such that for all v, € S,

lev —cp] < Clv—17). (30)

Proof. Fix v,v € S™ with |v — D] < ¢y for a small constant 0 < ¢y = ¢o(F,9) < 1.

Consider (6) with . Recall that in the (x, 2, 1)-coordinate system, v = (0,...,0,1)T. By choos-
ing an appropriate rotation with respect to the axis v, we can assume 7 = (sin é, 0,...,0,cos é)T
with 0 < 6 < 5. The main idea is to construct an approximate solution of (6) which is a plane-like
surface with effective normal vector . We will show that such a solution cannot have speed much
faster then ¢,. The construction of the approximating solution and its estimates are carried out in

several steps.

Step I — Kink-Like-Solution @ (Figure 3).

Figure 3. Kink-Like-Solution

u“{xt)

Let u(z,t) be a solution of (6) with u(z,0) = 0 and normal vector v. Let ¢, be the speed
obtained by Proposition 10. By (26), we then also have [lu(-,?) — ¢,t[|p 0 gny < D2 for all £ > 0.

Let Hy, H> be two fixed positive constants satisfying Ho > H; > 2v/n + 1. Consider two lattice
translates M) (z,t) and u® (z,t) of u(z,t) such that

Hy > u®(z,t) —uM(z,¢) > H, forallz e R"teR,.

Further, let M be another fixed and large constant. Consider @p(x) which is a smooth function

interpolating between 4 (z,0) and u(!) (z,0) in the following sense:

o u(z,0) < Up(x) < uP(x,0) for all z € R" and tg(z) = u@(z,0) for z; < —M, while
to(x) = uM(z,0) for z; > M;

15



o [[ugllczrny < CHQM_2||U“C2(R71>, where (' is a universal constant which does not depend on
f, M or v.

Now define u(z,t) as the classical solution of (6) with initial datum ug(z). By Theorem
7, u(xz,t) exists globally in time and satisfies Hﬂ, ug, D, DQﬂHLOO( < C(0,F, M, Hs), with

limy 00 C(6, F, M, Hy) = C(5, F).

R™ ><R+>

Next we show that @(z,t) converges to u()(z,t) exponentially as |z;| — co. Consider p(z,t) =

a(z,t) —ulV(z,t). Then o(z,t) solves a linear, uniformly parabolic equation:

Pt = Af(yux7ﬂ) —Af(I/,ZL‘7U(1))
= D aij (@, )z (@,1) + Y bj(, ) g, (2,1) + ez, t)p(w, 1) (31)
ij J
where [|aij|lco + [|bj]lco + ||cl|co < C(9, F, M, Hy). From now on the dependence on § and F will

not be written explicitly.

It is straightforward to verify that if A(M, Hy), B(M, Hs) are two large enough constants, then
Ae~"1ePt is a super-solution of (31). Hence 0 < i(z,t) — ulD(z,t) = p(x,t) < Ae 1B for all
2 € R* and ¢t > 0. Similar argument leads to 0 < u(® (z,t) — i(z,t) < Ae®1ePt. Note that A is of

order e Hy. Combining these estimates gives:

max {u(2> (z,1) — Ae® Pt uM (2, t)} < a(z,t) < min {u(1>(x, t) + Ae Pt u@ (z, t)} . (32)

The above gives the following statement for @ which justifies it to be called a “kink-like” solution:
Let Dy := Dy(H3) be the bound on the oscillation as in (13). Then

uD(z,t) < Uz, t) < uV(z,t) + B for xy > Bt + ln%‘?
u (z,t) <u(x,t) <u®(z,t)  for —Bt—InH <) <Bt+In (33)
u® (z,t) — % < (z,t) <u®(z,t) for x1 < —Bt— ln%

Note that the “width” of the region where @ interpolates between u) and w? grows at most

linearly with speed B.

Step II — Plane-Like Approximation (Figure 4).

o et
‘ R Figure 4. Plane-Like-

______________________ M §/V N \\Am Approximation
_________________________ M
~ H el
tang=H T
0 L

Let {ul®(z, t)}z_oo be a sequence of solutions of (6) which are lattice translates of each other
such that u((z,0) = —iH with some fixed constant H > 3Dy, where Dy is the L®-bound in the
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moving frame as in (24). By Proposition 10, we have

< Ds.

Hu(i) (x,t) +iH — ¢t <
Lee (R",R+)

For the remaining proof, the above H and the M (used in the previous step) will be kept fixed.

Let L be a large constant (3> M) which is to be determined.

Define @) (z,t) to be the kink-like solution which interpolates between u(+1) and u() as in Step
I but now “centered” at iL, i.e. @ (z,0) = vV (z,0) for z; < iL — M, a®(z,0) = u®(z,0)
for £1 > iL + M, and so forth. Now patch the {ﬁ(i)}i together by means of a partition of unity:

®(z,t) = 3 4 (z,t)n'(z) where the {nl}Z is a sequence of smooth functions satisfying:

o0

1 x1 € iL — £,0L + L]
0 21 € (—00,iL — 3] UL+ 3 00

n'(z) >0, n'(z) = { ) and an(x) =1.

The ®(z,t) thus constructed has the following properties:

1. Using (33), ®(z,t) approximates a tilted plane in the following sense: for all i € Z:

e For € R" : (i—l)L—i—Bt—l—ln%le SiL—Bt—ln%‘?:

, Dy _ , D
D (,t) + 7 2, t) 2wl (@, t) -
e Forz €eR" : il — Bt —In 3 < <iL + Bt +In
, Dy _ , D
w (2, 1) + Tl > Uz, t) > ul (1) — Il

The above structure is valid if (i — 1)L + Bt + In % <¢L—-Bt—1In %, ie.

L 1. 4A
t<Tpi=— — —=Iln—.
0<t<Ty 5B BnD1

(34)

(36)

Note that as A and B (which are defined through M and H) are fixed, we get 0 < 17, if L is

sufficiently large.

2. The upward normal vector of the tilted hyperplane approximated by ®(-,¢) (for 0 < ¢ < 1p,)

is given in the (x, z,4+1)-coordinate system by

(o 7tem)

which can be set to equal 7 = (sin é, 0,...,0,cos é)T upon choosing:
L = H cot 6.

i.e.LN%as§—>0.
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3. @ solves (6) ezactly for all t > 0 and = € R" such that =, € J;[iL — £,iL + £].

4. Now statement (32) combined with the properties of the 7; and parabolic regularity gives a
constant C' = C(M, H) such that

< Ce 1B, (38)

sup H@(-,t) - u(i)(-,t)‘

02({x:iL+%Sx1 SM,.F%})

Step III — Approximation of Speed.

This step shows that the normal speed of propagation of the tilted plane approximated by ®(z, t)

cannot be much bigger than c,.

In fact, by (34)-(35), there exists a C; > 0 such that for all (z,t) € R* x [0,T]:
®(z,t) < —(tanb)z; + (c,, + Btané) t+ C1.

(The extra factor Btanf comes from the linear spread of the width of kink in the plane-like
approximation — see (33) and (34)-(35).) The above shows that ®(z,t) can be bounded from
above by a hyper-plane moving with normal speed c, cos@ + Bsin é, at least on the time interval
[0,T7].

Next we show that @ differs from the actual solution of (6) by a very small error. ;From (38),

it follows that ® satisfies the following equation:
¢t = Af(l/,.’L‘, @) +g($‘,t)

where g(z,t) is supported on U _  {z:iL+ % <z <iL+ 2} and |gllco < Ce~%eBl. Let
®(z,t) be the solution of (6) with initial data ®(z,0) = ®(x,0). The function ¢(z,t) = ®(z,t) —

®(z,t) solves a linear parabolic equation similar to (31):
z/)t = Z Clz'j(iv, t)z/)wiﬂfj (:E, t) + Z b](‘/E? t)?,bxj (:E, t) + C(I, t)i/)(.’E, t) - g(:zc, t)7 Z,b({E, 0) =0.
ij J

Using U% = ¢ + f(f l9(s,-)lcods as a comparison function gives [[4)(-, )| oo (rn) < Ce 1eBt. Hence
for 0 <t < T, we have

B(z,t) < B(z,t) + Ce~5eBt < —(tanb)z, + (¢, + Btanf)t + Cy + Ce 5Bl

Similarly, by definition, ® can be bounded from below by some plane-like solution with normal »

and speed c¢;. Thus:

5 it o x L
—(tan @)z + c 5 Cy < —(tanb)zy + (¢, + Btan0)t + C; + Ce 1Bt
cos
which gives:
(¢p — ¢, cos0)t < B(sin)t + Cs + CheTeBt, (39)
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Now choose t = T—PL for some P > 1 which is admissible according to (36). Furthermore, by (37),

1

L 1. 4A 1
t=—|——-—=sh—| ==
P (2B B D P

H cot 1l 4A
2B B D

Then (39) becomes:

Hcotd 1. 4A

¢y — ¢, cosb

P 98 B D,
<Bsiné H cot 11 4A Ot O Hcot§+Hcoté 11 4A
— —=In— exp | — — —In—
="p 98 B D, 3T atxp 4 2P P D

If we choose P = 3 (> 2) and consider the regime |f| < 1, we obtain: ¢; — ¢, cos < C(A, B, H)f
ie.

¢y —c, < C(A,B,H)0 + O(6?) < C(A, B, H)b.

The lower bound ¢, — ¢ > —C# can be proved similarly. The Lipschitz continuity of ¢, is thus
established. O

4 Pulsating Wave

In this section, we look for a special type of solutions of (6) which is invariant under appropriate

space-time translation (see equation (2) and Figure 1):
u(z + 't +1') = c,t’ +u(z,t) for all («/,¢')T such that O, (z,c,t")T € "L, (40)
If ¢, # 0, the above condition is equivalent to the following representation of wu:
u(z,t) = et + U(O,(x, c,t)T) (41)

where U : w = (w1,...,wyp1) € R — Rl is a one-periodic function of its argument, i.e.
U(w+p) = U(w) for all w € R*! and p € Z". We call U the transformed function of v and w
the transformed variable. We will show the existence and uniqueness of U and present its various
stability properties. The resulting function u and the corresponding U will be called a pulsating
wave for (6). We often identify u with U.

For ¢, # 0, we can relate the gradients of u to those of U. Introducing:

w=0,((z,c,t)") and O, = (aij)1<ij<n+1,

then
n+l n+1
-1
¢, up—1= Z agn+10.,, U and Oy u = Z a,;0.,, U.
k=1 k=1
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Furthermore, U satisfies the following equation:

n+l n n+1 Zn+1 ay 5 U
v = w
€t e Y an10,U = L+ [VUR Y0 a0, | =Rt
k=1 i=1 | k=1 1+ |VU?

+6\/1+|VURf(w+ O ((0,...,0,0)")). (42)

- 2
where [VUJ? = Y0 (Sit a0, U)
We first establish the following existence result.

12 Theorem (Existence of Pulsating Wave). For any v € S™, there exists a continuous function
u: R" x R — R which solves (6) and satisfies (40) for the ¢, given by Proposition 10. Moreover,

the transformed function U satisfies:
||U||L°°(Rn+1) < D3 = 3(D2 + M)

(where Do is the constant from Theorem 9) so that the pulsating wave is bounded in its moving

frame.

There are several methods to establish the existence result. A standard approach is to use
Schauder Fixed Point Theorem. This can be accomplished by the gradient decay estimate (The-
orem 8) which produces a contraction map in an appropriate function space. Here we employ a

different, but more elementary method. It uses the comparison principle in its full capacity.

The current proof consists of several steps. First we prove the Theorem for rational normal
direction v and the case of ¢, # 0. This is accomplished by constructing sub- and super-solutions
of (6). These objects satisfy uniform Lipschitz bounds in z, ¢ independent of v. It turns out that
they are in fact solutions and hence are actually pulsating waves. The cases of irrational direction

and ¢, = 0 are handled by approximation using the previous case.

4.1 Proof of Theorem 12

First consider a rational normal direction v — the coordinates of v are all rational numbers — and
assume ¢, > 0. Then in the (x,z,41)-coordinate system, the inhomgeneity is periodic with some
period P = P(v). In contrast to the one-periodicity of the inhomogeneity, we call this periodicity

“fictitious” as the period depends on the normal direction and it can be extremely large.
Step I — Construction of “Pulsating” Sub- and Super-solutions

Let {ui(x7t)}:c€R",teR+ be a solution of (6) starting from u*(z,0) = £2(Dy + v/n + 1) where
D, is the number from (24). Define:

Ut(z,t) = liminf{u"(z -2, t+1t1) —ctr} (43)
[I|—o00

U (z,t) = limsup{uf(:v—:vj,t—l—t[) —c,jtj} (44)
[T|—o0
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where u®(,r) = +oo if r <0 and {I € Z""'} is a fixed sequence which enumerates the set

{(:vJ,tJ) :O0u(zg,ceuty) € "ttty > 0}.
Note that U*(-,-) are defined on all of R” x R. Furthermore, they satisfy the following properties:

(i) They are both pulsating functions, i.e. they satisfy (40). In particular, they are P-periodic

n z.
(ii) |U*(-,-) = cutllpoomnxr) < D2, and

0<2(Dy+vVn+1)< inf UT(x,t)— sup U (z,t) <6(Dy++vn+1). (45)
zeR™ teR zER™ teR

(iii) They are uniformly Lipschitz on R" x R.

(iv) U*(-,-) is a super-solution and U (-,-) a sub-solution of (6).
Proof. (i): We will only focus on U*. For all (z,tx) such that O, (zg,c,tx) € Z"H,

Utz —zi,t+tx) = liminfu®(z — 25 — 1, t +tx + 1)
|[T]—00

= liminfu® (z —zp,t +tp)
[T —o0

= Ut (z,t)
since O, (vx +x1,¢(ti +17)) € Z" L if both O, (zk,cuty) and O, (xr,c, t;) belong to Z" L. Note
that the liminf and lim sup of a sequence are not changed under finite shifts of the sequence.

(ii): This follows from Theorem 9(24) which yields

W (@1 = st +10) = eots] = 6t F 2Dy + Vit )| < Dyt Vit 1,

and hence the estimates as claimed.

(iii): By Corollary 5, the ||Vui(:r,t)]|Loo(Rnxk+) are bounded. Theorem 7 implies that

+ +
| ui (x’t)HLOO(R"X[l,oo))
and time. As the liminf and lim sup of uniformly Lipschitz continuous functions are also uniformly

is also bounded. Therefore u™ is uniformly Lipschitz continuous in space

Lipschitz (with the same constant), the U*(-,-) satisfy the same property.

(iv): The fact that liminf and limsup are super- and sub-solutions respectively, follows from

a standard argument (see [8, Lemma 6.1]). Note that we need no monotonicity of f(z,u) with

+

respect to u, because u™ are uniformly bounded (in the moving frame) and f(z,u) is uniformly

Lipschitz. The lemma can be applied instead to ﬂiT(:v,t) = e My*(z —y,t +7) —c,7] on a

bounded neighborhood of y, for some large constant M. O

Step II — Existence of Pulsating Wave for Rational Slope
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We show that in fact U*(x,t) are classical solutions of (6) and thus are pulsating waves.

First define:

T, := sup {7’ >0: :cleI%Rf" (U (z,0) = U (z,71)) > 0} (46)

— the first time U (-,t) touches U™ (-,0) from below. By property (ii), the U~ is bounded in
a frame moving with velocity 0 < ¢, so that T, < oco. By property (iii), the UT are uniformly
continuous in z and ¢. The periodicity in x then implies the existence of an zy € R" such that
U~ (zo,Ty) = U™ (z0,0).

Now consider the classical solutions V* of (6) with the Lipschitz initial data V*(x,0) = UT(z, 0)
and V™ (z,0) = U™ (z,Ty). These solutions are globally defined (Theorem 7) and stay uniformly

Lipschitz (Corollary 5). By property (iv) and weak comparison principle, we have
U (2, t+T,) <V (z,t) <V (2,t) <U(2,t) for (z,t) € R* x R,. (47)
On the other hand, by property (i), there exists T, > 0 such that
U™ (20, T, +T,) = U (20, T,) = Ut (20,0) = U (20, T, +Ts),

leading to V= (zo,T,) = VT (zo,T)).
Let V := V*t(z,t) — V (z,t). As VE are C*L(R" x R, ), the difference V satisfies a linear
parabolic PDE of the form (similar to (31)):
oV =" aij(@,t)Va,a, + Y bj(2,)Va, + ez, )V
i,J J
with continuous coefficients. As f and V* are uniformly Lipschitz in space-time, the above equation
is uniformly parabolic with bounded coefficients. Note that V > 0 and V (z9,0) = V (z0,T}) = 0.
Classical strong maximum principle (see for example [16]) implies that V (-, £) = 0 for all £ € (0,T},).
Therefore V™ = V. (By the same reasoning as in Step I(iv), we can apply the strong maximum
principle without a sign condition on ¢(z,t).)

As a last step, note that V*(z,1/n) — V*(x,0) (pointwise), we obtain Ut (-,t) = U~ (-, T\ + 1)
for ¢t € [0,7,], and therefore this function is both super- and subsolution, i.e. a viscosity solution.
By the comparison principle for viscosity solutions it must equal V* and thus is a classical solution.

We have thus established the existence of pulsating waves for rational slopes with ¢, # 0.
Step III — Existence of Pulsating Wave for Irrational Slope

The following argument extends the existence result to irrational slopes.

Let v, (rational slopes) — v. By the continuity of the speed in the normal, we have ¢, — ¢, # 0.
Further, let u, be the corresponding pulsating waves in the frame O, . They satisfy uniformly

Lipschitz bounds in z, ¢t independent of v.

Using the transformation (41), we thus obtain a family of functions U, (w) which are 1-periodic

in R"* and are solutions of (42). As ¢, > % > 0, the change of variables w = O,, (%, c,t)" are
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invertible for each n with uniform bounds for the inverse. Therefore, the U,,’s also satisfy uniform
Lipschitz and (by parabolic regularity of the u,’s) C%“ estimates on [0,1]"*. Hence we can extract

a convergent subsequence leading to a U which solves (42) with the limiting normal direction v.
The Theorem is thus proved for the case ¢, # 0.

Step IV — Existence of “Pulsating Wave”: Stationary (¢, = 0) Case.
Again, we consider separately the case of rational and irrational direction.

For rational direction, the evolution equation described by (6) in fact is the negative gradient

flow of the following energy functional:
E(u) = / <\/1 + [Vu|? — 5F(x,u)> dz", where F(z,u) = / f(z,s)ds (48)
[0,P]" 0

(“ur = —m%(u)”). As ¢, = 0, we have two solutions of (6): u.(z,t) < u*(x,t) which are
P-periodic in z and are uniformly Lipschitz and bounded in z and ¢. Hence any solution u(x,t)
of (6) with u.(z,0) < u(z,0) < u*(x,0) satisfies u.(x,t) < u(z,t) < u*(z,t). Furthermore, the
following energy identity holds:

E(u(+,0)).

t u2
E(u(- 1)) +/ / et dz"dt =
0 Jo.pr /14 [Vauf?
The uniform oscillation and gradient bounds from Corollary 5 lead to sup;> |€(u(-,t))| < oo.

-1
Moreover, the uniform gradient bound implies that u? (\/ 1+ |Vu|2> < Cu?. Thus we have

/ / u? dz" dt < oco.
o Jo,pp

A standard application of parabolic regularity implies that Oyu(-,t) is uniformly continuous on
[0, P]", and hence dyu(-,t;) — 0 for some subsequence ¢; — co. A further subsequence gives that
the limit 4(z) = limy; o0 u(w, ¢;,) exists and it solves the stationary solution for (6). Furthermore,

the P-periodicity of 4(-) automatically implies (40).

For irrational direction, the same argument can be applied with the modification that the domain
[0, P]™ is replaced by a sequence of monotonically increasing balls B; such that B; — R". The
function v is required to satisfy the Dirichlet boundary condition: v = C on 0B; (where u, < C' <
u*). Then for each j, we obtain a stationary solution u/ as before. From the uniform gradient
estimates Corollary 5, we can extract a subsequence which converges (on compact subsets) to a
stationary solution on the whole space. (Note that the result of Corollary 5 stated for R", can
be extended to bounded domains such as balls B;’s by constructing suitable barrier functions with
uniformly bounded gradient at the boundary. By the smallness of the forcing and the apriori L™

bound, such barriers can be constructed quite easily.)

Finally, for irrational slope, any stationary solution of (6) automatically satisfies (40) as there is
no ' € R* such that the condition O, (z',0)T € Z"*+! is fulfilled. The whole Theorem 12 is thus

proved.
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13 Remark. 1. Our result for the case ¢, # 0 is related to the result in [4] on the existence of
plane-like minimizers: If the forcing is small and sufficiently regular, then stationary solutions

of (1) not only stay close to a plane, but are even graphs over that plane.

2. Note that there may be solutions that stay bounded in a frame with ¢, = 0, but are not

stationary, for example a “traveling kink” or cascades of many kink structures.

4.2 Properties of the Pulsating Wave

In this section, we present the uniqueness result and some stability properties for the pulsating

wave.

14 Proposition (Uniqueness of Pulsating Wave). For all v, the speed ¢, is unique. If ¢, # 0, then

the shape U of the pulsating wave is also unique.

Proof. The uniqueness of ¢, is already proved in Theorem 9, in particular, Proposition 10.

When ¢, # 0 and the direction v is rational, the uniqueness of the pulsating wave follows exactly
from the same argument as in [11, Proposition 6]. When v is irrational, we proceed similarly, but

with the following additional consideration. (Without loss of generality, assume ¢, > 0.)

Let U and V be two pulsating waves solving (42). First, consider up(z) = U(O,(x,0)T). Second,
let v(x, ) be the solution of (6) with initial data (x,0) = —h+V (O, (z,0)") for some large positive
constant h such that ¥ is some lattice translation of V (O, (z,0)?). Similar to (46), define:

T, = sup {T >0: inf (u(z,0) —o(z, 7)) > 0} .
TeR™

Note that T, < oo as ¢, > 0. Now let a(z,t) and v(z,t) be the solution of (6) with initial data

uo(z) and v(x,Ty). As 0(x,0) < @(z,0), weak maximum principle (in the whole space) implies that

0(x,t) < a(x,t) for all z € R* and ¢t > 0. Consider the following two cases.

1. Suppose there exists an z, such that u(z,,0) = 9(z4,0). By the pulsating wave ansatz,
a(zy + ', cpt') = 0(zs + 2, c,t") for some (2, c,t') such that ¢ > 0 and O, (2, c,t') € Z"HL.
This would contradict the strong comparison principle (in unbounded domain) unless U is

identically equal to V.

2. Suppose there exists z; such that |z;] — oo and @(x;,0) — 0(x;,0) — 0". By the pulsating
ansatz again, we have u(z; + @}, ¢,t}) — 0(z; + z}, ¢, t}) — 0T for some (z},c,t}) satisfying
O, (zh, e, t))l € Z"1. As ¢, # 0, we can always choose the z} and t.’s such that the (z; +
7, t;)’s lie in a compact subsets of R**!. Hence, there exists an z, and ¢, such that @(z,,t.) =

0(Z«,t,). Thus the situation is the same as the previous case.
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For the case ¢, = 0, we do not expect uniqueness to be true as there could be many stationary
solutions corresponding to the local minimizers of the energy functional (48). These solutions

cannot be related to each other as in the ¢, # 0 case.

The next result leads to a form of stability property of the pulsating waves. It is similar in spirit

to the Krein-Rutman type of statement.

15 Proposition (Monotonicity in Time for the Pulsating Wave). Let u be a pulsating wave of (6)
with ¢, > 0. Then ug > 0 for all z € R* and t € R.

Proof. We first prove the result for rational direction so that the pulsating wave is space-time
periodic in a tilted frame with some period P = P(v). The case for irrational direction can be

deduced by a limiting procedure together with the strong maximum principle.

Consider u(z,0) and define:
T, =sup{t > 0:u(z,t) <u(x,0) for some z € R"}.

As ¢, > 0 and u is bounded in its frame, we have 0 < T, < oco. By the continuity of u(x,t)
in the z- and ¢-variables and the compactness of the domain (as u is P-periodic), we must have
u(z, Ty) > u(x,0) for all z € R" and u(z, Ty) = u(z4,0) for some x,.. Now consider the solutions
of (6) with initial data u(z,T.) and wu(z,0), respectively. The pulsating wave ansatz implies that
w(zy, Ty +T,)) = u(zs,T,) for some T, > 0, contradicting the strong maximum principle unless
u(+,Ty) = u(+,0). As ¢, > 0, this can only happen if T, = 0. Hence u(z,t) > u(x,0) for all
t > 0 giving uy > 0. The fact that u, > 0 follows from strong maximum principle for u;. (Note
that u; solves a linear parabolic equation (by taking the time derivative of (6)) with bounded
coefficients.) O

The above result immediately leads to the following corollary.

16 Corollary. Let v be a rational direction and u be the pulsating wave of (6) with ¢, # 0. Then
there exist 0 < Cy(v, F) < C3(F') < oo such that for all z € R, t,s € R, it holds that

Cy |t —s| <|u(z,t) —u(z,s)| < Colt —s].

The next exponential convergence result is a consequence of the above monotonicity property.

17 Theorem (Stability Property of Pulsating Wave). If v is a rational direction and ¢, # 0, then
the pulsating wave u satisfies the following stability property.

Let {v(z,t) : x € R",t > 0} be a classical solution of (6) which is a P-periodic function (where
P = P(v)). Then there ezists t, € R, A > 0 and a constant C which might depend on P such that

“U('ut) - u('at* + t)“]LOO(Rn) < CeiAt.
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Proof. Without loss of generality, we can assume the initial condition v(z, 0) is smooth and v(z, 0) >
NP for some sufficiently large integer N so that v(x,0) > u(z,0) for x € R™.

Now let u(x,t) be the pulsating wave of (6). Define:

inf{t >0:u(x,t) = v(z,0) for some z € R"}

50
and t; = sup{t>0:u(z,t) =v(z,0) for some z € R"}
(Qualitatively, sj is the first time u(z,t) touches v(z,0) from below and ¢j is the last time u(z,t)
touches v(x,0) from above. The above definitions make sense as we are working in the compact
domain and v and v are periodic functions with uniform Lipschitz bound.) By Proposition 15,
we have s§ < ¢ and u(z, sj) < v(z,0) < u(z,ty) for all x € R" with the equalities valid at some
z(, ¢y € R™.
By comparison principle, we have for all z € R” that u(z, s§+71') < v(z,T) < u(z,t;+T) where
¢, T = P. The pulsating wave ansatz gives:

u(z,sy) <v(z,T) —c,T < u(x,tp).

Now the strong mazimum principle together with Proposition 15 imply the existence of s7 and
t} such that sj < s7 < t] <t} and u(z,s}) < v(z,T) — ¢, T < u(z,t]) with the equalities valid at
some z7,z] € R". By induction, there exist s} | < s <& <% _; such that

u(z,s;) <v(z,nT) —c,nT < u(z,t)), zeR" (49)
and the equalities hold at some 2], z!! € R".

Define: 7,;; =t;, — s;,. We claim the existence of a positive number p < 1 independent of n such
that
Tpt1 < PTy- (50)

Granted the above claim, then there exists a t* < oo such that t* — s}, and ¢;, —t* < p".

Furthermore, from (49), we have:

u(z,t*) +u(z,s;) —u(z,t*) + c,nT < v(z,nT) < u(z,t*) + u(z, b)) —u(z, t*) + c,nT.
Hence, Corollary 16 gives
0 T) — (e, £+ T ey < ey 55) = 87 ooy + e 15) = e £°) e ) < 200"
which will lead to the stated exponential convergence.

Now we proceed to prove (50).

Consider the time interval: [nT,nT + %] Applying the same argument as that leading to (49),

we obtain the following statement:

T T T
u(z, s) + 5 +e) <v(z,nT + 5) —cenT <u(zx,t, + 5 €2), forall z € R"
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for some €1, €z > 0 such that s’ + % +e <th+ % — €9 and the equalities hold at some 2/, 2" € R”.
Let 0 < g < 1 be some fixed number (to be determined later). Consider the following two cases.

Case One. If €) + €9 > p7,), then applying strong comparison principle to (6) on the interval
[T + L, (n + 1)T), we have
u(z,s) +T +e€1) <v(z,(n+1)T) —cynT < u(z,t;, +T —e3) for all z € R,
Hence s;, + €1 < 55,1 < t5, 1 < t;, — € which leads to
T =ty — Sy St — ez — (s + 1) < (L= )7y
Setting p = 1 — p gives the desired result.

Case Two. If €; + €3 < p7;;, then either ¢, < £7;% or o < 577, Consider the second case (the

first can be treated similarly.)

Let ¢(z,t) = v(x,nT +t) — u(z, s}, +t) —c,nT. It solves a linear parabolic equation similar to

(31) with smooth bounded coefficients. Then 1 has the following properties:
1. 9(-,0) > 0 and hence (-, t) > 0 for all £ > 0.
2. 0 <Y(z,0) =v(z,nT) — u(z,sk) — c,nT < u(z,th) —u(z,sk) < Cerr. Hence,

* T *
(-, 0) e oy < Cory and Hw( ) < ) 119, Ol ey < Co (T

oo (R™) (51)

where the first estimate comes from Corollary 16 and the second is a consequence of

v g

parabolic regularity — recall that (-, t) is periodic in z € R".

Now the definition and assumption of €5 implies the existence of some z” € R™ such that

T T T
(", 5) = o(z",nT + 5) — (2", s} + 5) —cynT
T T
= u(z",t) + 5 €2) —u(z", sy + 5)
T T T T
= @t + 5) —u(@’ s+ ) FuE’ G+ 5 - e) —u(al )+ )

\Y

Ciry — CQ%T; (by Corollary 16)
> (G- o).

Upon choosing p small enough, we get HI/J(', %)H]Loo > (7. This and the gradient bound in

(51) implies the existence of a Cy4(T) such that for all x € R", it holds that ¢(z,T) > Cua(T)7;.

Without loss of generality, C4(7T") can be chosen to be some small number. This leads to the
following sequence of statements:

v(z,nT +7T) —u(z,s, +T) —c,nT

v(z,(n+1)T) —u(z,s)) —c(n+1)T

v(z,(n+1)T) —c,(n+1)T > Curp, +u(x,sy).

Y

Cutt

n

Cut}

n

(for all z € R™)

\Y
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Now from Corollary 16, we deduce that sy, > s; + 6, for some §;; > g—;T*

. So we have:

04 04
* * * * * « % " .
Tn+1:tn+1_sn+1Stn_sn_anSTn__T =(1—— Th-

(Recall that Cy can be chosen to be as small as possible.)

Finally, (50) follows upon choosing ¢ = min (%, %) and p = max (1 —p,1— g—;‘) (It is clear
that the choice of all the constants are independent of n.) O

For general L™ initial data defined on the whole space, the stability issue can be quite com-
plicated. On the other hand, for compactly supported initial perturbation, analogous stability
property might still be true. Due to length, we do not pursue to make this statement precise in the

current paper.

The next result indicates the stability of the pulsating wave with respect to the underlying
medium. Due to the availability of the additional equation (42), the result is stronger in the case
of ¢, #0.

18 Proposition (Stability of Pulsating Wave with respect to the Inhomogeneity). Consider a
sequence of inhomogeneous mediums f;’s and f satisfying condition A. Suppose || fi — fllq2 — 0.
Let U; and U be the pulsating waves for f; and f with speed ¢; and ¢ (and the same normal direction

v). Then the following convergence statements hold.

(i) ¢; — c.
(ii) If ¢ # 0, then Ui — U uniformly in R* x R.

iii) If ¢ = 0, then there exists a subsequence u;. (z,t) = U; (OL(x,c,t)) converging uniformly on
J J v
compact subsets of R* x R to a solution of (6) for f.

Proof. (i): The convergence of the speed follows easily by considering the equation satisfied by
U; — U:

%(ui(a;,t) Cwlwnt) = Ap () — Ap (v, )

= Ai(v,z,u) — Ap(v,z,u) + Ap (v, 2,u;) — Ap(v, 2, uq)
= [DuAf](V,:U,’U,*)(’U,i - u) + [DfAf]f*(VJxvui)(fi - f)

where D, A and DA are the derivatives of Ay with respect to the arguments u and f. (In the
above, we have used the mean value theorem for first order Taylor expansion.) Gronwall’s inequality
gives [[ui(+2) — u( )| oo mny < Cllfi — flloo e“? where the constant C' depends on the C%-norms
of the f and f;’s. Hence for any large, but fired T', we have [lu;(-,T) — (-, T)|| 00 (gny — 0 which

implies the convergence of the ¢;’s.

(ii): If ¢ # 0, working directly in the transformed equation (42) shows that any limit of the U;’s

satisfies the same equation as that for U. Uniqueness of U implies the result.
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(iii): If ¢ = 0, working instead in the original equation (6) implies that up to a sub-sequence,
the u;’s converges uniformly in compact subsets in space-time and the limiting function satisfies

(6) for the inhomogeneity function f. O

5 Examples of Fingering and Pinching

Here we give some examples in R? of the formation of singularities for the mean curvature flow

with forcing (1) when the forcing is not small.

5.1 Fingering with “Laminate” Environment

By a laminate environment we mean a forcing of the form f(z,u) = g(z). Even though simple, it
can provide examples amenable to explicit computations which can still capture some interesting
features. Note that after a rotation by 7, the forcing in the new frame is described by a function
which depends only on the u-variable. This already indicates that questions on effective behaviors

can depend crucially on the direction of the front.

Here we give an example that, in contrast to the effective speed c¢,, the pinning threshold h, as
mentioned in page 4 varies discontinuously with respect to the normal direction. Consider (after a
rotation of the axis by %) f(z,u) = sin(u) + A+ h where 0 < A < 1. If h = 0, then any constant
function u = u, where u, solves sin(u,) + A = 0 with f, (-, us) = cos(u,) < 0 is a stable stationary
solution so that h. must be strictly positive for this direction. On the other hand, fronts with any
other directions will always have non-zero speed (unless h = —\) as they can be approximated by

traveling kinks (see Figure 5). (See also [5] for a similar result on a related discrete system.)

Another interesting phenomena is “fingering”. A precise analysis of such a situation has been
carried out in details in [6] so we will just briefly explain the terminology. If f(z,u) equals some
periodic function g(x) such that its amplitude is sufficiently large compared with the period, then

the solution u(z,t) starting from wu(z,0) = 0 remains as a graph, but it can happen that

li[m %nfu(m,t) — —o0 as t — oo, limsupu(z,t) — 400 as t — 0.
0,1]™ [0,1]”

(See Figure 6.) The solution in a sense can be described by a cascade of a series of translational

invariant solitons, or “grim-reapers”. In this case, it is not apriori clear what the “effective front”

should be.
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Figure 5. Pinned horizontal direction and Figure 6. Fingering in a laminate: The

traveling tilted direction. vertical lines denote the period of g(z).

5.2 Pinching with “Hard” Obstacles

This section provides an example for the formation of another form of singularities. It can lead to
the “pinch-off” of a portion of the surface, reminiscent to the so-called Orowan loops in dislocation

dynamics [21, pp 624].

We consider strong, almost “hard” circular obstacles. Consider three positive constants p < 1,
and A and B > 1. Choose a smooth function f(z,u) which satisfies

—B  for 2 +u? < p?,
A for z°+4u® > (2p)

(and is extended periodically in both the z and u-directions with period two). Let the initial data
be ug(z) = —1. Now consider two types of evolving circles. (See Figure 7.)

Outer Barrier. Consider the obstacle S~ := {(z,u) : z? + u? < p?} and the shrinking ball
S7(t) centered at (0,0) with radius r_(¢) solving

d |
a ="

+ B, r_(0)=np.

Now S~ (t) acts as barrier for the geometric problem, hence also as a barrier for the graph equation

(6). The shrinking of S~ (¢) can be made arbitrarily slow if B is chosen appropriatedly (B ~ %)

Inner Barrier. Consider a sequence of expanding circles centered at (1,¢;) with ¢; € [—1,1]
and radius denoted by R;(t). The centers are arranged in such a way that ¢; < co < ---. These

circles are used as inner barriers to the evolving solution u(z,t). Their radii solve

d 1

—Ri(t)=————+ A, forte[ti_i,t

ali) =g T4 fortclionh)

which are further related by R;(t;—1) = R;—1(t;—1) — (¢; —cj—1) so that only the i-th circle is “active”
as a barrier during the time interval [t;_1, ¢;]. If the constant A and the initial R;’s are large enough,

then the circles will expand. The ¢;’s are chosen such that the i-th circle is allowed to continue to
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expand until it touches S™(¢) at ¢;. At this moment, a new circle with parameters ¢;1; and R;;

fits inside R;(t) and is used as initial datum for a new active barrier.

/

u(x,T.)
) Figure 7. The solid lines show the ex-
Pinched F pected behavior of the solution u(z,t)
u(x.t) k at different times, the dashed lines
denote the outer- (S7(¢)) and inner-

(R;(t)) barriers.

Since A is sufficiently large, each of the R; is growing with speed bounded from below. Thus
there exists a certain time 7 such that for some 7, the R; will touch its periodic extension on the
vertical line z = 0. If the motion of the outer barrier S~ (¢) is so slow that r_(T) > 0, then the

solution cannot remain as a graph, leading to an example of pinching.

The above pinching phenomena can certainly be handled by the level-set formulation as in (3).
On the other hand, this example is not too much different from the fingering example. If the
detached portion around the obstacle S~ (¢) persists for a long time, it can be viewed as a part of
“detached” fingers. In order to show a homogenization result for such kind of situation, in a sense
we still need a solution which remains bounded in some appropriate moving frame. This provides

work for further investigation.

A Classical Estimates for Mean Curvature Flow with Forcing

This appendix proves Theorems 7 and 8. Since we already have space-time uniform gradient
estimates, we could in principle invoke well-known results for quasilinear parabolic equations, in
particular, the interior Schauder estimates to prove the existence of classical solutions starting from
Lipschitz initial data. However, in order to take advantage of the structure of the equation and
see how the constants are computed in the estimates, we will use a more geometric approach as in
[17, 12, 13]. As the overall strategy is already presented quite clearly in the cited references, we

only outline here the main steps needed in extending the results to handle equation (6).
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Let {I'(t) C R""! : ¢ > 0} be parameterized as I'(p,t) so that its motion law is given by (1), i.e.

0
EF(p, t) = Vyo (o is the unit normal of I'(¢)).

The following notations (with Einstein convention) will be used:

or or
i = (=, — first fundamental form
( (-,-) = standard inner product in R**1 )
g = inverse of (gi), i.e. g% gr; = 5;-
o0’r or o
hij = — <7, a> = <—, —U> (second fundamental form)
OpiOp; Op;’ Opj
H = g“Yh;; (mean curvature)
A® = ¢Yg " hihy
Vr = gradient operator on the tangent space of I'
( Vrp = gij [8pi‘:0]8pjr )
Ar = Laplace Beltrami operator on the tangent space of I’
1 .
( Arp = Eapi [v99” 0y, 0] )

where ¢ is an arbitrary function defined on I' and g = det(g;;).

Let T'y = {(z,u(z,t)) : # € R"} so that it has a graph representation over a hyperplane with
normal vector v = (0,...,0,1), then we have the following explicit formulas: (V is the gradient

operator with respect to z € R")

1 o 1
o= ;(‘VU, 1), gij = 0ij + ugug;, g7 =07 —mn;, hij = = Ui, (52)

where z = \/1 4 |Vu|* = (0, v) ' and 5 = i Furthermore,
z

1, L ij
H = —— (87 —minj) tae; and A" = =96  uiru;r

We further remark that up to tangential diffeomorphism, the geometric evolution (1) is equivalent

to the graph equation (6) (see [13, pp 549]) which is written again here in the following form:

w = gy, + 00/ 1+ |Vul* f(O, (z,u)"). (53)

For simplicity, we set § = 1. As seen in the following derivation, this will not affect the result,
as the smallness of § is only used in deriving the gradient bound in Theorem 4. Once this is done

or assumed, & does not play a role in deriving higher regularity.

We now write down the evolution equations for the important geometric quantities relevant for
our estimates. In the following, the symbol C(-) denotes some general constant which might depend

on its argument(s). Recall that F' = || f{|c2(gn+1y-
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39ij
ot

ahi]‘
ot

014"
ot

where

Note that

do _ /00 O\ O
ot ot opi/ op; Y
y 0 or

— _gile 2 9 _
g <07 Op; (VNU)> Op;

9 (ory orN  Jor 9

dp; \ 0t )7 Opj dp;’ Op;

(Lo, &) (2,0
api - N p; Opi’ Opj

o o)y or
" Op; \ Ot dp;
OV or
—qg¥ - — _ — _
opi Op; VrVy =VrH — Vrf (54)

8_I‘
ot
Jdo oI o' Oo

<VN">> =W <a—px @-> ”N<a—pz~’ %J

= 2VNhij = (—2H + 2f)hij (55)
Ha"l 0 . L I
S — g — oV g™ gl hyy = (2H — 2f)g™ g I (56)
ot ot
0 o°r - 0?2 or o’ do
9/ 9 (9 (%) S\ _ g0
ot 8pi8pj ’ 8piapj ot )’ 8pi8pj "ot
0? o°T
- _V _ _
<3pi8pj (ZVio), 0> <3pi0pj’ VFVN>
0?2 0T 0% 0T
- H (" v.g)_— o
<3pz’3pj (Ho), 0> <3Pi3pj’ vr > <3Pi3pj (fo). U> " <3pz‘3pj’ Vrf>

9
ot

(I) = —thikgjlhijhkl — thjlgikhijhkl so that

Arhij — 2Hg ™ hihj + | A]” hij —

Ar |AP —2|VrAP + 2|4 + (I

0T
dpidp;’

(57)

{ ap?;pj (1), o)+ oo V05 )

(glkgﬂhijhkl) = g?tkg]lhijhkl + glkg,]t hijhi + nggﬂ(hij),thkl + glkg]lhij(hm),t

) + (1) (58)

(D) < C(F) AP

(10 = g (— (L (o) o)+ (LT vy
g g kl 8;01(9])] g), 0 8p18p]’ I
. 0? o0°r
(e} )
g9 OpiOp (fo), @ OprOp rf
o2 92 f of 9o Of do 920
(fo),o) = o+ 57—+ 77— , O
OprOp; OpOp; Opr Op; ~ Op; Opy, OprOp;
P f<8_0 8_0>
OpiOpy Opr” Opy
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so that
((ID)] < C(F)|A[ + C(F).

Hence we have:

0|A?
|8t| < Ap AP = 2|ViAP +2|AY + C(F) |A]2 + C(F). (59)
Finally, we need the evolution equation for z:
0 0
== o) = =22 (00, v) = 22 (—VrH, v) + 22 (Vrf, v) (60)
ot ot
so that
0z 2 2 2 2
o < Arz—|Al"z — 2 |Vrz|” 4+ C(F)z°. (61)

We are now ready to prove the stated Theorems.

A.1 Proof of Theorem 7 — Existence of Classical Solution

The main point here is that the initial data is only assumed to be Lipschitz. In order to prove the
existence of classical solution, we need apriori estimates for the second derivatives or equivalently,
the second fundamental form. This is provided by the following lemma on the interior in time

estimate for the curvature.

19 Lemma. Let {I'y: ¢ > 0} be a classical solution of (6) such that ||z||pccmny g,y < Nx < o0.
Then, for all T > 0, there exists a constant C(Ny, F,T) such that for 0 <t <T,
1
A2 tH < C(N,,F,T)-. 62
141 D). oy < OOV BT (62)

Proof. The proof follows very much the strategy of [13, Theorem 3.1]. Hence only the key steps
will be outlined.

Let ¢ be a positive increasing function (to be determined). Then

(0 - &r) [JA] 0(22)]
= AP ¢ (9222 + p()(1AP), - Vi [|A20 (22)22 V02 + p(z) V(| AP)]
= AP ()22 [ — O] + 9(z2) [(14P): - ArlAP

~4¢/(z%)z (VAP Voz) - AP ¢ (22)42% |Vrzf? = | A ¢/ (23)2| Vrzf?

< 2[p(e) — ¢ (922 AL = 20(2) VP AP - (66 (22) + 46 (29)22) AP |Vp2
~2(VrlAP, Vip(z))) + C(F)2%' (%) |A]” + C(F)p(=?) || +1]
< 2p— @) A — o7 (Vrp, Vr(lAP ) — (66 (1 = 97 ¢'2?) + 4p"2%) | AP |Vpzf?

+C(F)2! [A] + C(F)p(z?) [|A]° +1].
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. S . . .
Upon choosing ¢(s) = where k is some small positive number (to be determined), we have:
s

1—

(@ - 20) (142 6] <~k 142 6]~ o7 (Vrp, Ve(AP @) + C(F)2! AP + O 14 +1].

As |lz]|, < Ny < oo, we can choose k = k(N,) small enough that o(z%) and its derivatives

are all uniformly bounded. Note that ¢(z?) is also bounded from below as z > 1. The presence
2
of —k [|A|2 go] is crucial. It is the reflection of the fact that the equation is uniformly parabolic

(as the gradient is assumed to be uniformly bounded). It can be used to absorb the |A|* and |A[?

terms. By introducing B = |A|? ¢(z2) and changing the constants, we thus arrive at:
(0 — Ar)B < —kB* =™ (Vrg, Vi B) + C(F,N.).
Now consider the equation satisfied by the quantity ¢B:
(0, — Ar)(tB) = t(0; — Ar)B + B < —ktB% — to~ (Vry, VrB) +tC(N,, F) + B.
Furthermore, the quantity ¢(z2) satisfies:
(0 — Ar) @ < —222¢" |A]* + C(N,, F)z3¢'.

Thus we have:

(O —Ar)(tB+¢) < —ktB®+B— o ' (Vrp, Vi(tB+ ¢)) + C(N., F)(|A]” +1) + tC(N., F)
< —ktB*4 C(N.,F)B — ¢ ' (Vryp, Vr(tB + ¢)) +tC(Ny, F)
< —kB[tB — C(Ny, F)B] — ¢~ (Vry, Vr(tB + ¢)) + 1C(Ny, F)

(where in the above we have made used of the fact that |Vpep|? < C(N,) |A[%).

Now suppose sup;¢o 17 [tB+p(2?)] equals some constant M > 0. Assume that the sup is attained
at p, and t,. Then we have
M — 2
0< —k (ﬂ) [M — (%) — C] + TC

t (posrt-)

which leads to a contradiction upon choosing M = M(N,,T, F') large enough. The argument can
be localized in space as done in [13] or we can also use the similar device as in page 10 by choosing

appropriate (pij ), tij ))’s such that B + ¢ converges to the sup. The same proof then goes through.

The desired interior in time estimate (62) is thus established. O

With the above apriori bounds, Theorem 7 can be proved using approximation of the initial
data. For smooth initial data, the result follows by Schauder Fixed Point Theorem. The estimates
of Corollary 5 lead to uniform gradient bound which then gives a curvature bound which depends
only on the gradient. The local in time existence and uniqueness of classical solutions then follow
easily from standard arguments. The global in time existence follows from the combination of

uniform oscillation and gradient bounds as explained in Remark 6(1).
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A.2 Proof of Theorem 8 — Gradient Decay Estimate

The technique is initiated by [18] for the elliptic case. The computation here follows closely to that
of [15, Theorem 5.2], making use of the graph equation (6) (or (53)).

We first recall the notations of (52). Furthermore, let HD2uH2 =

following analogous form:

2
ij Uz;e;- Then (60) takes the

zt = g”z:cﬂ:j - ;g”gkluxkxiu:lej - ggl]nknluxixkuxjx, + 77k (5Zf)q:k (63)

or more compactly written as:

i
zZt =49 szia:j_

2y 2 U 4 2 (% z
[Pull” | Vw 2) +a{<v V2 b u) + (Va, vxf(:v,u)>+|w|2fu(w,u)}-

z 23

z
(64)
Furthermore, the symmetric matrix G = (¢g*/) satisfies:
1
G=1=non=(— WP+ (1 Tho ) 2 0=l =1 (65)

so that G is positive definite with its smallest eigenvalues equal to z%

Now we proceed to prove the Theorem. Without loss of generality, we restrict our attention to
Qrr ={(z,t): 0 < |z| < R,0 <t <T}. By adding a constant to u, we can assume —3M < u <
—M <0 so that [|ul|peryr,) < 3M. Let w(0,T) = —m <O0.

Define h(z,t) = p(x,t)z(x,t) where

t) t |z|? +
1) = efKolzt) _q d £ = u(z, _

plz,t) =e and  ¢(z,t) = o + T —
and the constant K is to be determined.

Consider the expression Lh = gijhxixj — hy which equals pLz + 2Lp + 2(p) s, 2z — 1°07 (p) 2y —

o B —p.
WZT}J (P)a:] Ry As (p)a:l = %, we have:

g” g”
Lh — 27Zjhi =p (Lz — 27zizj-> + zLp.

Now estimate: Lz — 22~ zxzzx] and Lp. Using (63) and (65), the former is estimated as:

L—Zij I T 2 ik _ k(s _Zijkl
4 P Z:Eizxj - Zg g kaxiux,xj + Zg nmn u:ci:cku:cl:cj n ( Zf)k 2 nn u:ck:ciux,:cj
1 2
> | D%|* — 6 [(ID%uln, ) £ + (Vu, Vuf) +|Vu ] -
2 2 2 2. (|2
Furthermore, as ‘([DQU]n, n}‘ < o uJL\Vu| HD u“ |Vu|2z2 we have 0 (D?un, n) f < %“DZ:H +
$0225C(F) which gives
g 1||D%u?
Lz — 2g—zizj > 3 | = | — C(F)62*(1 + 62°). (66)
z z



For Lp, we have

Lp = KQeK‘i’gij (¢)xz(¢)x] + Kel? (gij((tb)xixj a (¢)t)

K?eK¢ .
> V@I + K" (¢7()aia; — ($)r)  (from (65)).
Note that
Oo =22 -2 Gy = 22 0= 1 (1- )
Henee ,e5? | Vu 2z |? K ozf 1 ||
Lp> K*— |5 = 2 +Ke¢[—%—f(l—ﬁ>]. (67)

Combining (66) and (67), we sequentially estimate Lh from below:

ij
Lh—297zjhi
> zLp — pC(F)62*(1 4 62°)
K? 5 16m? §2C(F) 1 |z|? 3
> - — _ — N _
> p{4m2z2 [|Vu| 7B ] K[ o7 —l—T( R2>] SC(F)z(1 + 4z )}

Define the set

16mn*
D:{(a;,t)GQR,T:zQ(x,t)ZZ(l-i- Rn; >} (68)
On D, we have:
g9 ko | K* 52C(F) 1 5
972 o h. > -  _ i
Lh —2 . zjh; > ze Y K o + T IC(F)z(1+d27)

K? 16m?
S ke ) BT s 2 _ _ 3y
> ze {16m2 40%2°C(F) T2 SC(F)z(1 + oz )}
Let 2% = sup;e(o17 |2(¢) | - If we choose:
K> 47”; (%m + C(F)Woz + C(F)oz" + C(F)az*2>

then Lh — 22 z;h; > 0.
Observe that (0,T) € sptg. Assume (0,7') € D, otherwise z(0,7) < v2 (1 + 22). By maximum
principle, we have h(0,T) < max, s)cop h(z,1), ie.

(x,t)€dD

<6K(7%+1) B 1) A0.T) < max (ek{g’,‘,ﬁ%(l;;)r ) 1) dt) < (K —1) V2 (1 n 4_m>

leading to

20,T) < V3 (1 + 4%) {exp (27”; [%m + C(F)a7 + C(F)s2* + C(F)dz*ZD + 1} (69)
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Now let Ny = ||2(0)]||... By (14) of Corollary 5, we have z* < Z := Ny + C(F)VSNZ(1 + M)
for § < 61(Ny, M, F'). Hence the result will follow if we choose Ny such that

NG (1 4 %) {exp [% (# 4 C(F)(\/é_Z+5Z+5Z2)>] 4 1} < % (70)

If § is small enough, such a choice for Ny is always possible and it can be bounded from below and
above by two constants Ni(T', M, F') and Ny(T, M, F). The whole Theorem is thus proved.
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