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Abstract: Tunneling is studied here as a variational problem formulated in terms of a
functional which approximates the rate function for large deviations in Ising systems
with Glauber dynamics and Kac potentials, [9]. The spatial domain is a two-dimensional
square of side L with reflecting boundary conditions. For L large enough the penalty
for tunneling from the minus to the plus equilibrium states is determined. Minimizing
sequences are fully characterized and shown to have approximately a planar symmetry
at all times, thus departing from the Wulff shape in the initial and final stages of the
tunneling. In a final section (Sect. 11), we extend the results to d = 3 but their validity
in d > 3 is still open.

1. Introduction

Tunneling in the d = 2 ferromagnetic Ising model at low temperatures has been the
object of many studies, mainly focused on metastability, namely the analysis of the
Glauber dynamics when an external magnetic field h > 0 is present and the initial state
is close to the minus Gibbs state at h = 0. We are instead interested here in studying
a bistable equilibrium with “oscillations” between the two minimizers. Such a case has
been considered by Martinelli, [26], in the n.n. ferromagnetic Ising model in a d = 2
square of side L , proving upper and lower bounds for the [random] transition time from
the “plus” to the “minus” state (and vice versa) in the limit as L → ∞. Much earlier
Comets had attacked the problem in the context of Ising systems with Kac interactions.
Supposing the side L of the square to be proportional to the range γ−1 of the Kac inter-
action, Comets [9] derived the large deviations rate function in the asymptotics of small
γ . A “sharp” analysis of the path followed during the tunneling is however still an open
problem in both models.

� This research has been partially supported by MURST and NATO Grant PST.CLG.976552 and COFIN,
Prin n.2004028108.
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Tunneling is usually studied in two steps: the first one is based on a loss of mem-
ory property, namely that configurations close to one of the two stable states can be
successfully coupled with large probability before leaving the neighborhood. Such esti-
mates seem within the reach of the present techniques, as in [15] very strong properties
of Glauber dynamics have been established. The second step for tunneling requires to
solve a variational problem involving the large deviations rate function. In this paper
we concentrate on the latter aspect and study tunneling in a purely variational setting.
For simplicity we replace the Comets rate function by an “easier functional”, already
considered in [3] in the d = 1 version of the model. The extension to the true Comets
functional and then to the Ising system may still require a non-trivial work, but we believe
that the main physical features of the actual tunneling excursion are already captured by
our results.

The extension from d = 1 to d > 1 is in general far from trivial. Large deviations
and tunneling have been studied by Jona-Lasinio and Mitter, [22], for stochastic pertur-
bations of the Allen-Cahn equation, partially extending the d = 1 work by Faris and
Jona-Lasinio, [18] (see also [10]), but, as far as we know, a full analysis in d = 2 is
open also for the Ginzburg-Landau action functional associated with the Allen-Cahn
equation. Even more subtle is the analysis of tunneling under time constraints, namely
when the excursion between the two stable states is required to occur within a given time
interval. The picture in such a case may be dramatically different if time is short, and
the optimal pattern may involve multiple nucleations. Results of this type are proved
in d = 1 for the Ginzburg-Landau functional and Allen-Cahn equation, [23, 24], and
for the non local interaction considered here, [11]; most of the proofs are still missing
in the multi-dimensional case, but a clear picture of the phenomenon can at least be
outlined, [24].

Geometric patterns are the main issues in a multi-dimensional analysis. In the sharp
interface limit (i.e. when the spatial domain, a square of side L in our case, is observed
in rescaled variables so that it always appears as a unit square as L → ∞) the tunneling
orbits are moving surfaces which describe the boundaries of the set where the plus phase
is located. In d = 1 this is simply a point which moves from an endpoint of the unit
interval to the other one (Neumann boundary conditions are responsible for the nucle-
ation to start from the boundaries of the domain). To see geometrical effects we thus
need to go to d > 1.

An important factor is then played by the Wulff shape. As it is well known (and
briefly discussed in Sect. 2) in d = 2 dimensions the set with minimal perimeter for a
given area θ is a quarter of a circle around a vertex of the unit square Q1, or a rectangle
with three sides lying on ∂Q1 (again this is due to Neumann boundary conditions). Rect-
angles appear if their area and the area of the complement (in Q1) are both larger than a
critical value θcrit , otherwise we observe a quarter of a circle. As Wulff shapes describe
states with minimal free energies under the area constraint, one usually expects that if
the process is “slow” and the transformation “adiabatic” then the tunneling patterns are
determined by sequences of “equilibrium” Wulff shapes. It is however evident from the
above description that tunneling orbits cannot always be close to Wulff shapes as there
is a discontinuity at θcrit . One possible scenario is depicted in (a) of Fig. 1 where the
Wulff shape is deformed to interpolate around θcrit between the two different regimes.
We will prove instead that the optimal tunneling in our diffused interface model is all the
way planar as in pattern (b) of Fig. 1, namely that it is convenient to nucleate initially in
a less efficient way, the cost being recovered in the end. Our results hold whenever there
exists a stable invariant manifold which connects a saddle point of minimal energy to the
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Fig. 1. In a) and b) we depict two possible tunneling paths in the sharp interface regime. In fig. a) a small
droplet (Wulff shape) of the + phase (dark region) nucleates at a vertex of the square QL . It then invades QL as
time increases, gradually changing its interface, and eventually becomes a rectangle. Our results, valid for the
diffused interface model, show that a) is not minimizing, and that the minimizing path is the one corresponding
to fig. b). In this path we have initially a nucleation of a flat interface (dark rectangular region), which smoothly
invades QL

stable equilibria and which does not consist entirely of Wulff shapes. More discussions
on this point can be found in Sect. 2.

The content of the paper is outlined in Sect. 2, Subsect. 2.9, after defining the model
and stating the main results, the extension to d = 3 is discussed in Sect. 11. For reasons
of brevity imposed by the journal we have written in a separate paper, [2], the analysis
of the invariant manifolds for a non-local version of the Allen-Cahn equation, which is
used here to characterize the optimal tunneling orbits.

2. Definitions and Results

We consider a continuum model of a two-dimensional magnet where states are functions
m ∈ L∞(QL , [−1, 1]), QL = {r ∈ R

2 : |r · e1| ≤ L/2, |r · e2| ≤ L/2}, r · e1 and r · e2
the x and y components of r . m(r) is interpreted as a magnetization density which may
be related, by a coarse graining procedure, to an underlying Ising spin configuration,
hence the restriction to [−1, 1]. Time evolution is described by orbits which are smooth
functions u = u(r, t), r ∈ QL , t in R or in an interval of R, |u| ≤ 1.

2.1. The penalty functional. The “action” of an orbit u(·) restricted to an interval [t0, t1]
of its domain of definition is

AL;t0,t1(u) = FL(u(·, t0)) + IL;t0,t1(u),

where FL(m), the free energy of the state m, is

FL(m) =
∫

QL

φβ(m) dr +
1

4

∫

QL×QL

J neum(r, r ′)[m(r)− m(r ′)]2dr dr ′. (2.1)

J neum(r, r ′) is the interaction coupling constant (with Neumann boundary conditions),
namely J neum(r, r ′) =

∑
r ′′�r ′

J (r, r ′′), where r ′′ � r ′ means that r ′′ is equal to r ′ modulo

reflections along the lines {y = ±(2n + 1)L/2} and {x = ±(2n + 1)L/2}, n ∈ Z. We
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suppose J (r, r ′) = J (0, r ′ − r) and make the following “technical assumptions” on
J (0, r): J (0, r) only depends on |r |; it is a smooth non-negative function supported in

the unit ball;
∫

J (0, r) = 1;

j (0, x) =
∫

J ((0, 0), (x, y)) dy (2.2)

is a non-increasing function of x when x > 0. In (2.1) we take β > 1,

φβ(m) = φ̃β(m)− min|s|≤1
φ̃β(s), φ̃β(m) = −m2

2
− 1

β
S(m),

S(m) = −1 − m

2
log

1 − m

2
− 1 + m

2
log

1 + m

2
.

Finally,

IL;t0,t1(u) = 1

4

∫ t1

t0

∫
QL

[ut − fL(u)]2 dr dt,

where ut is the time derivative of u and

fL(u) = −δFL(u)

δu
= J neum ∗ u − aβ(u), aβ(u) = 1

β
arctanh(u),

J neum ∗ u(r) =
∫

QL

J neum(r, r ′)u(r ′) dr ′. (2.3)

As mentioned in the Introduction, AL;t0,t1(u) is a simplified version of the Comets large
deviations rate function for Glauber dynamics in a ferromagnetic Ising system with Kac
potential Jγ (r, r ′) = γ 2 J (γ r, γ r ′).

Later on, in the course of the proofs, we will consider rectangles QL ′,L = {(x, y) :
|x | ≤ L ′, |y| ≤ L/2} with L ′ ∈ (0,+∞] and call channel the set Q∞,L . The definition
of FL in (2.1) naturally extends to domains QL ′,L in which cases it will be denoted by
FQL′,L , as a functional on L∞(QL ′,L , [−1, 1]).

2.2. Dynamics: the semigroups St and Tt . We denote by St the semi-group generated
by the L2-gradient dynamics, namely St (u0) = u(·, t) is the solution to the non-local
evolution equation

ut = fL(u) = −δFL(u)

δu
, u(·, 0) = u0. (2.4)

The velocity field fL(u) is Lipschitz when restricted to sets of the form {‖u‖∞ ≤ b},
b < 1. Then it is not difficult to prove global existence of St (u0) if ‖u0‖∞ < 1, see [2]
for details.

The semigroup Tt (u0) generated by the equation

ut = −u + tanh{β J neum ∗ u}, u(·, 0) = u0, (2.5)
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has been much more studied in the literature, as (2.5) is the limit equation derived from
Glauber dynamics with Kac potentials in a scaling limit, see [15]. Thus for ease of refer-
ence and in order to exploit results already existing in the literature we will often in the
sequel consider Tt (u0), regarded either in QL or in Q∞,L . Observe that it also decreases
the energy FL , that its fixed points are the same as those of St , which are critical points
of FL .

2.3. The cost of tunneling. The action AL;t0,t1(u) is always non-negative, as the integ-
rands in FL and IL;t0,t1 are non-negative. Actually AL;t0,t1(u) > 0 unless u(r, t) ≡ ±mβ ,
where mβ > 0 is such that mβ = tanh{βmβ} (recall the assumption β > 1). There-
fore m(±)(r) ≡ ±mβ have the interpretation of the [only] two equilibrium states of
the system and tunneling describes orbits which connect such states. Thus the space of
tunneling orbits in a time T > 0 is

UL ,T = {u ∈ C∞(QL × [0, T ]) : u(r, 0) = −mβ, u(r, T ) = mβ for all r ∈ QL
}

and, calling IL ,T (u) = IL;0,T (u), we define the cost of tunneling as

PL := inf
T>0

inf
u∈UL ,T

IL ,T (u), (2.6)

noticing that since FL(m(−)) = 0, AL ,T (u) = AL;0,T (u) = IL ,T (u) when u ∈ UL ,T .
As mentioned in the Introduction the problem is completely different if restrictions

on T are imposed, but in this paper we will only study problem (2.6). To motivate our
results let us first describe some properties of AL;t0,t1 .

2.4. Reversibility. First notice that IL;t0,t1(u) = 0 if u(·, t) = St−t0(u(·, t0)), St being
defined in Subsect. 2.2. Given u(·, t), t ∈ [t0, t1], call urev(·, t0 + s) = u(·, t1 − s),
s ∈ [0, t1 − t0]. Then

AL;t0,t1(u) = AL;t0,t1(urev). (2.7)

To show (2.7), which is proved in [3], it suffices to expand the square in the integral
defining IL;t0,t1 and recall that fL(u) = −δFL(u)/δu. As a consequence of (2.7),

IL;t0,t1(u) ≥ FL(u(·, t1))− FL(u(·, t0)), (2.8)

IL;t0,t1(u) = FL(u(·, t1))− FL(u(·, t0)) if u(·, t0) = St1−t0(u(·, t1)). (2.9)

Remark 2.1. Note that IL ,T (u) ≥ FL(u(·, t)) for any t ∈ [0, T ].

2.5. The Wulff shape. Given any tunneling orbit u ∈ UL ,T and α ∈ (−mβ,mβ), by
continuity there must be a time t ∈ (0, T ) when u(·, t) ∈ 
α ,


α =

⎧⎪⎨
⎪⎩m ∈ L∞(QL , [−1, 1]) : −

∫

QL

m = α

⎫⎪⎬
⎪⎭ .
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Thus from (2.8),

IL ,T (u) ≥ inf
{

FL(m) : m ∈ 
α
}

for any α ∈ (−mβ,mβ), (2.10)

hence the intuition that optimality in tunneling requires closeness to the Wulff shape,
namely the minimizer on the r.h.s. of (2.10). The Wulff problem is well understood in
the limit L → ∞. As the infimum on the r.h.s. of (2.10) grows proportionally to L ,
(Ld−1 in d dimensions), it is natural to renormalize the free energy by dividing by L
and have (see [15–17])

lim
L→∞ inf

{ FL(m)

L
: m ∈ 
α

}
= cβ inf

{
P(E, int(Q1)) : E ⊆ Q1, |E | = 1

2
− ϑα

}
,

where P(E, int(Q1)) denotes the perimeter of the BV set E in the interior of Q1
(namely the intersection with ∂Q1 does not contribute); |E | is the Lebesgue measure of
E ; ϑα ∈ (−1/2, 1/2) is defined by

(
1

2
− ϑα

)
mβ −

[
1 −

(
1

2
− ϑα

)]
mβ = α. (2.11)

Equation (2.11) has a clear geometrical interpretation, the magnetization α being real-
ized by putting mβ in the rectangle {(x, y) ∈ Q1 : x ≥ ϑα} and −mβ in its complement.
cβ , the surface tension, is equal to cβ = F (1)(m̄). Namely cβ is the one-dimensional
free energy F (1) of the one-dimensional instanton m̄(x), x ∈ R, where

F (1)(m) =
∫

R

φβ(m) dx +
1

4

∫

R

∫

R

j (x, x ′)[m(x)− m(x ′)]2 dxdx ′, (2.12)

with j (x, x ′) as in (2.2) and m̄ the non-zero, antisymmetric solution of

m̄ = tanh{ j ∗ m̄). (2.13)

The limit Wulff problem

inf

{
P(E, int(Q1)) : E ⊆ Q1, |E | = 1

2
− θ

}
(2.14)

of minimizing the perimeter functional P(E, int(Q1)) is explicitly solved. Indeed (2.14)
admits a solution and any solution Eθ is such that Q1 ∩∂Eθ is smooth and thus a critical
point, [25]. Moreover Q1 ∩ ∂Eθ is connected and has constant curvature. Hence it is
contained either in a circle or in a line. In addition the contact between ∂Eθ and ∂Q1 is
orthogonal. Let θcrit be defined by

1

2
− θcrit = πR2

4
, where

2πR

4
= 1.

Then the following result holds.

Proposition 2.1 [25]. If |θ | ≤ θcrit then Q1 ∩ ∂Eθ is a segment parallel to one of the
coordinate axes and intersecting two of the opposite sides of ∂Q1. If |θ | ≥ θcrit then

Q1 ∩ ∂Eθ is a quarter of a circle of radius
2√
π

(
1

2
− θ

)1/2

centered at one of the four

corners of Q1.
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Remark 2.2. As already remarked in the Introduction, for L large enough a tunneling
orbit cannot always be close to the Wulff shape, as the Wulff shape varies discontinuously
when α crosses the critical value at which ϑα = θcrit . When α = 0 the Wulff shape
is planar and this may suggest that optimal orbits become eventually (approximately)
planar. Two scenarios are then conceivable: (a) the plus phase grows initially as a quarter
of circle around a corner and then progressively deforms to end up into a planar wave
as α → 0; (b) the plus phase starts from the very beginning planar, so that in the limit
picture the perimeter is discontinuous at time 0, jumping from 0 to its maximal value. In
any case, both scenarios evidently contradict the intuitive idea that optimal orbits follow
Wulff shapes. A discussion on this issue can be found in [27] in the context of statistical
mechanics.

Planar symmetry suggests relevance of d = 1 tunneling, which is the argument of
the next subsection.

2.6. Tunneling in one dimension. Let F (1)L be defined by (2.12) with R replaced by
[−L/2, L/2] and with Neumann boundary conditions. Let m ∈ L∞([−L/2, L/2],
[−1, 1]) and set

me(r) = m(r · e1), r ∈ QL .

Then

FL(m
e) = L F (1)L (m). (2.15)

Let U (1)L ,T be the d = 1 tunneling orbits in a time T and P(1)L the d = 1 tunneling cost

associated with the functional F (1). We then have from (2.15),

PL ≤ L P(1)L . (2.16)

In [3, 4] it is proved that

P(1)L = F (1)L (m̂L), (2.17)

where m̂L is the unique non-zero, strictly monotone antisymmetric function of x which
solves the equation

m̂L(x) = tanh{ jneum ∗ m̂L(x)}, |x | ≤ L/2, (2.18)

with jneum obtained from j , see (2.2), by reflections at ±L/2 (thus m̂L is a critical point
of F (1)L ).

2.7. St -invariant manifolds. It is proved in [2] that m̂e
L := (m̂L)

e is “dynamically con-
nected” to m(±) in the sense that there are two St -invariant, one-dimensional mani-
folds, W± = {v(±)L (·, s), s ∈ R}, which connect m̂e

L to m(−) and, respectively, to m(+).

v
(±)
L (·, s) are planar functions (i.e. constant in the vertical direction) which satisfy the

following two properties:

lim
s→−∞ ‖v(±)L (·, s)− m̂e

L‖2 = 0, lim
s→∞ ‖v(±)L (·, s)− m(±)‖2 = 0, (2.19)

where ‖ · ‖2 is the L2 norm in QL , and

St (v
(±)
L (·, s)) = v

(±)
L (·, s + t) for all s ∈ R and all t ≥ 0.

Moreover FL(v
(±)
L (·, s)) < L F (1)L (m̂L) for any s ∈ R.
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2.8 Main results

Theorem 2.3. For L large enough

PL = L F (1)L (m̂L). (2.20)

Theorem 2.3 will be proved starting from Sect. 5. It suggests that the best strategy for
tunneling is to use orbits with planar symmetry, a statement made precise in Theorem
2.4 below which will be proved in Sect. 4 using heavily results from [2].

Theorem 2.4. For all L large enough, if {Tn, un} is a minimizing sequence for (2.6),
then lim

n→+∞ Tn = +∞ and, given any ε > 0 there exists a positive integer n0 such that

for any n ≥ n0, un (or its image under a rotation by an integer multiple of π/2) has the
following properties. There is s ∈ (0, Tn) so that ‖un(·, s)− m̂e

L‖2 ≤ ε and there are τ ′
and τ ′′ positive so that

‖un(·, t)− v
(−)
L (·, τ ′ − t)‖2 ≤ ε, t ∈ [0, s], (2.21)

‖un(·, t)− v
(+)
L (·,−τ ′′ + (t − s))‖2 ≤ ε, t ∈ [s, Tn]. (2.22)

Theorem 2.4 proves that the best tunneling is obtained by orbits which have (approx-
imately) a planar symmetry and which (approximately) follow the one-dimensional
manifolds connecting saddle and stable points, first in the time reverse direction and
then, after crossing the saddle, along the forward time direction. Initially the orbits look
far from optimal, in the sense that it would be cheaper to gain the same value of total
magnetization by following a different pattern, closer to the corresponding Wulff shape;
but overall such an initial cost is recovered by smaller costs afterwards. In the limit
L → ∞ and rescaling penalties by dividing by L , we see that in optimal orbits the free
energy jumps at time 0 to a value which then remains constant: in the limit the whole
penalty is paid at time 0+ . Thus pattern b) in Fig. 1 rather than a) is what we actually
observe in tunneling events.

2.9. Content of the paper. In Sect. 3 we reduce the proof of Theorem 2.3 to the proof
that • when u(·, t) ∈ 
α with |α| small then u(·, t) is very close to a planar instanton,
Theorem 3.1; • calling m = u(·, t), t as above, then either Ts(m) → m̂e

L as s → ∞, or
else Ts(m) at some time s is close to a planar instanton suitably shifted away from the
origin, Theorem 3.2; • if m is close to a planar instanton suitably shifted away to the
right or to the left of the origin, then Ts(m) is attracted by m(−) or respectively by m(+),
Theorem 3.3. We conclude Sect. 3 by showing that indeed Theorem 2.3 follows from
Theorems 3.1–3.3.

In Section 4 we prove Theorem 2.4 as a consequence of Theorem 2.3 and of existence
and stability of the invariant manifolds W±, properties which are proved in a companion
paper, [2].

In Sects. 5–7 we prove Theorem 3.1: in Sect. 5 we quote from the literature lower
bounds on the free energy cost of deviations from equilibrium (Peierls estimates). In
Sect. 6 we prove that the distance from an instanton can be controlled in terms of the
free energy, Theorem 6.1, and in Sect.. 7 we conclude the proof of Theorem 3.1.

In Sect. 8 we prove Theorems 3.2 and 3.3, relying again on the companion paper [2],
thus concluding the proof of Theorem 2.3.

In the Appendix, Sects. 9 and 10, we prove some spectral properties of operators
obtained by linearizing the flows Tt and St which have been used in the proofs of The-
orems 3.1–3.3. The extension of the results to d = 3 is sketched in Sect. 11.
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3. Scheme of Proof of Theorem 2.3

By (2.16) and (2.17), PL ≤ L F (1)L (m̂L), so that Theorem 2.3 will be proved once we
show that for L large enough

PL ≥ L F (1)L (m̂L). (3.1)

Thus we may take arbitrarily ε > 0, restrict to T > 0 and u ∈ UL ,T such that

IL ,T (u) ≤ PL + ε ≤ L F (1)L (m̂L) + ε (3.2)

and show that if L is large enough for any such u,

IL ,T (u) ≥ L F (1)L (m̂L). (3.3)

The main point is an a-priori characterization of the tunneling orbits which satisfy (3.2)
at times t when u(·, t) ∈ 
α with |ϑα| < θ0 (ϑα as in (2.11)) where θ0 is fixed arbitrarily
with the only requirement that

0 < θ0 < θcrit (3.4)

(how large L is in our analysis will depend also on the value of θ0). As we will see in
Sect. 7, the proof of convergence to the Wulff shape as L → ∞, see Proposition 7.1,
essentially contains closeness to the instanton in the following sense:

For any δ > 0 there are ε(δ) > 0 and L(δ) so that if 0 < ε < ε(δ), L > L(δ),
m ∈ 
α with |ϑα| ≤ θ0 and FL(m) < L F (1)L (m̂L) + ε, then, modulo a rotation of an
integer multiple of π/2, there is ξ ∈ (−L/2, L/2) so that ‖m − m̄ξ,L‖1 ≤ δL2, where

m̄ξ,L(r) = m̄(r · e1 − ξ), r ∈ QL . (3.5)

The bound ‖m − m̄ξ,L‖1 ≤ δL2 is still far from what is needed in our proof of (3.1), but
it is an important ingredient in the proof of a much sharper estimate, where “the error”
‖m − m̄ξ,L‖2 vanishes instead of growing as L → ∞. This is the main technical point
in the paper, its precise statement is the content of:

Theorem 3.1. There are L0 and ε0(L) ∈ (0, L−100), so that for any L ≥ L0 if

m ∈ 
α with |ϑα| ≤ θ0 and FL(m) < L F (1)L (m̂L) + ε, ε ∈ (0, ε0(L)) (3.6)

then there exists ξ ∈ (−θ0 L − 1, θ0 L + 1) such that, modulo a rotation of an integer
multiple of π/2,

‖m − m̄ξ,L‖2 < L−100. (3.7)

Remarks. Theorem 3.1 as well as Theorems 3.2 and 3.3 below, are proved in the next
sections and in an appendix. The bound L−100 is not optimal. Analogously to (8.9), it
can be proved that |ϑα + ξ/L| < L−100. Our proof of Theorem 3.1 uses in an essential
way two dimensions but it extends to d > 3 using an argument due to Bodineau and
Ioffe, [5], and an extension of the theory of Wulff shapes to d = 3, [29], see Sect. 11.

The proof of (3.1) proceeds with a characterization of the critical points of FL(·).
For this purpose we use the dynamics with semigroup Tt defined by Eq. (2.5).



724 G. Bellettini, A. De Masi, N. Dirr, E. Presutti

Theorem 3.2. There exists L1 ≥ L0 such that for any L ≥ L1 the following holds. If m
satisfies (3.6) then either there is a time t when Tt (m) ∈ 
α′ , α′ such that |ϑα′ | = θ0, or
else lim

t→∞Tt (m) = m̂e
L in L2(QL) (modulo a rotation of an integer multiple of π/2).

Theorem 3.3. There exists L2 ≥ L1 such that for any L ≥ L2 the following holds. If
m ∈ 
α′ for some α′ such that ϑα′ = ±θ0 and if there exists ξ such that ‖m − m̄ξ,L‖2 <

L−100, then

lim
t→∞ Tt (m) = m(∓) in L2(QL). (3.8)

The proof of (3.1), giving the proofs of Theorems 3.1, 3.2 and 3.3, is then concluded
using the following corollary:

Corollary 3.4. Let L2 be as in Theorem 3.3 and L > L2. Then for any u ∈ UL ,T which
satisfies (3.2) with ε as in (3.6), there exists t∗ ∈ (0, T ) so that

FL(u(·, t∗)) ≥ L F (1)L (m̂L), (3.9)

and

lim
t→∞ Tt (u(·, t∗)) = m̂e

L in L2(QL). (3.10)

Proof. Let u ∈ UL ,T be as in the statement, α(t) such that u(·, t) ∈ 
α(t) and I = {t ∈
[0, T ] : |ϑα(t)| ≤ θ0}. Since ϑα(0) = 1/2, ϑα(T ) = −1/2 and θ0 < 1/2, by continuity
there is an interval [t0, t1] ⊂ I , where ϑα(t0) = θ0 and ϑα(t1) = −θ0. By Theorems 3.1,
3.2 and 3.3, [t0, t1] is the disjoint union of the intervals I+, I− and Î , respectively where
u(·, t) is attracted by m(+), m(−) and m̂e

L . By Theorem 3.3 I+ � t1 and I− � t0, thus I±
are both non-empty. Moreover, since the equilibria ±mβ are stable, by the continuity
of motion I+ and I− are open in I . Then necessarily also Î �= ∅ and hence there is a
time t∗ ∈ (t0, t1) so that (3.10) holds. Since Tt decreases the energy FL , see (6.2), (3.9)
follows from (3.10), (6.2) and (2.15). ��
Conclusion of the proof of Theorem 2.3. From (2.8) and (3.9) it follows that, if L is
large enough,

IL ,T (u) = AL ,T (u) ≥ AL;t∗(u) = FL(u(·, 0)) + IL ,t∗(u) ≥ FL(u(·, t∗)) ≥ L F (1)(m̂L),

hence (3.3). Theorem 2.3 is proved. ��
In d = 1, see [3, 4] (and [18] for Allen-Cahn), it is proved that for L large enough if

F (1)L (m) ≤ F (1)L (m̂L) + ε and m is a critical point, then m ∈ {m+,m−, m̂L}. (The state-
ment is evident in Allen-Cahn once formulated in terms of a one dimensional mechanical
point in a conservative force field.) It then follows that if P(1)L (u) ≤ F (1)L (m̂L) + ε then
at all t , u(·, t) is attracted by {m+,m−, m̂L}. In d = 2 we know that such a property is
valid only at times t when u(·, t) ∈ 
α with α such that |ϑα| ≤ θ0. As shown above the
proof of Theorem 2.3 can be worked out also with such a weaker statement, but there
could be problems when extending the analysis to Glauber dynamics in Ising models
with Kac potentials.

We have shown that the proof of Theorem 2.3 reduces to the proof of Theorems 3.1,
3.2 and 3.3, which is given in the next sections. While the proof of Theorems 3.2 and
3.3 is an extension of the proof of analogous statements in d = 1, see [3], the proof of
Theorem 3.1 requires really new considerations, due to the geometrical complexities of
a higher dimension and it will take most of the paper.
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4. Proof of Theorem 2.4

In this section we prove Theorem 2.4 using Theorem 2.3 which is thus taken for proved.
Let {un, Tn} be a minimizing sequence for (2.6), i.e., un ∈ UL ,Tn and lim

n→∞ IL ,Tn (un) =
PL = L F (1)L (m̂L), where the last equality follows from Theorem 2.3. Then for any
ε > 0 there exists nε so that for any n ≥ nε ,

IL ,Tn (un) ≤ L F (1)L (m̂L) + ε, L F (1)(m̂L) = FL(m̂
e
L). (4.1)

By Corollary 3.4 if L > L2 and ε is as in (3.6), then for any n ≥ nε there is a time
sn ∈ (0, Tn) (sn will be the time s in Theorem 2.4) so that

lim
t→∞ Tt

(
u(·, sn)

) = m̂e
L , FL(un(·, sn)) ≥ L F (1)L (m̂L). (4.2)

By (2.8), IL ,Tn (un) ≥ IL ,sn (un) ≥ FL(un(·, sn)), then, using (4.1),

0 ≤ FL(un(·, sn))− FL(m̂
e
L) ≤ ε. (4.3)

The function

wn(·, t) = un(·, sn − t), t ∈ (0, sn) (4.4)

satisfies the identity

dwn

dt
= J neum ∗ wn − 1

β
arctanh(wn) + Kn, (4.5)

where Kn is defined by (4.5) itself. We then consider (4.5) as an equation in wn , regard-
ing Kn as a “known term”. In the next lemma we will prove that Kn is “small” and then
as a consequence and relying heavily on [2] that wn follows closely the St -invariant
manifold W−.

Lemma 4.1. Let ε > 0, un satisfy (4.1), sn as in (4.2),wn as in (4.4) and Kn as in (4.5).
Then for n sufficiently large,

‖Kn‖2 :=
sn∫

0

∫

QL

Kn(r, t)2 drdt < ε. (4.6)

Furthermore there exists c > 0 independent of n so that

‖wn(·, 0)− m̂e
L‖2

2 ≤ cε. (4.7)

Proof. From (4.1) and (2.15) it follows that

FL(m̂
e
L) + ε ≥

sn∫

0

∫

QL

[(un)t − fL(un)]2 = IL ,sn (un). (4.8)

By (2.7) and recalling that FL(un(·, 0)) = 0,

IL ,sn (un)= AL;sn (un)= AL ,sn (wn)= IL ,sn (wn)+FL(un(·, sn))=‖Kn‖2+FL(un(·, sn)),

which, together with (4.8) and (4.2), implies (4.6).
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Let 
 := {m ∈ L∞(QL , (−1, 1)) : lim
t→∞ ‖Tt (m)− m̂e

L‖2 = 0}. In [2, Theorem 7.2]

it is proved that there is c so that

‖m − m̂e
L‖2

2 ≤ c[FL(m)− FL(m̂
e
L)] for all m ∈ 
. (4.9)

By (4.2) un(·, sn) = wn(·, 0) ∈ 
, therefore (4.7) follows from (4.9) and (4.3). ��
We will prove the properties of wn stated in Theorem 2.4 by investigating the evo-

lution equation (4.5) and exploiting that Kn is small. Smallness of Kn is however not
enough: if we only knew the bounds on Kn from Lemma 4.1 we could not predict (even
approximately) the evolution of wn . Recall in fact that m̂e

L is a stationary solution of
the unperturbed evolution so that, no matter how small Kn is, it would nonetheless be
larger than the unperturbed force in a correspondingly small neighborhood of m̂e

L . In
other words, when close to m̂e

L the evolution is essentially ruled by Kn . Besides this, the
initial datum wn(·, 0) is in the domain of attraction of m̂e

L with “the wrong dynamics”
Tt , under the “right evolution” St it may no longer converge to m̂e

L but rather to m− or
even m+. In conclusion the evolution ofwn(·, 0)may have completely different behavior
if we only had the information in Lemma 4.1 concerning smallness of Kn and closeness
of wn(·, 0) to m̂e

L .
Let us now recall what is proved in [2], in particular Theorem 7.3 of [2]. Call SK

t (m)
the flow generated by the equation ut = J neum ∗ u − β−1arctanh(u) + K , u(·, 0) = m,
where K = K (r, t), (r, t) ∈ QL × R+, is a smooth space-time dependent force. Then
for any ζ and τ positive there is ε′ > 0 so that if ‖K‖ < ε′ and ‖m − m̂e

L‖2 < ε′ only
the following two alternatives hold:

• For all times t ≥ 0, ‖SK
t (m)− m̂e

L‖2 < ζ .

• There are t∗ > 0 and σ ∈ {−,+} so that ‖SK
t (m)− m̂e

L‖2 < 2‖v(σ)L (·,−τ)− m̂e
L‖2

for all t ≤ t∗ while ‖SK
t (m)− v

(σ)
L (·,−τ + (t − t∗)‖2 < ζ for all t ≥ t∗.

Let us now prove the statements in Theorem 2.4 referring to W−, calling ε∗ the param-
eter ε in Theorem 2.4 to avoid confusion with the ε in (4.1) and identifying s = sn . Recall
that un(sn − t) = SKn

t (wn(0)), t ∈ [0, sn]; we are only writing the time variable in the
argument of the functions.

We choose: τ such that sup
s≤−τ

‖v(−)L (s)− m̂e
L‖2 ≤ ε∗/10; ζ < ε∗/10; ε′ is determined

by τ and ζ as above; ε in (4.1) so that ε < ε′ and cε < ε∗, cε as in (4.7), so that the
inequality ‖un(·, sn)− m̂e

L‖2 ≤ ε∗ in Theorem 2.4 follows from (4.7).
Since un(0) = m(−) the first alternative above is excluded and in the second alterna-

tive σ = −. Let t∗ be as in the second alternative. We then have ‖un(sn − t)−v(−)L (−τ +
t − t∗)‖2 < ε∗ for t ∈ [t∗, sn]. For t ∈ [0, t∗] we write

‖un(sn − t)− v
(−)
L (−τ + t − t∗)‖2 ≤‖un(sn − t)−m̂e

L‖2+‖v(−)L (−τ + t − t∗)−m̂e
L‖2

which is ≤ 3 sup
s≤−τ

‖v(−)L (s)− m̂e
L‖2 ≤ 3ε∗/10. Equation (2.21) is thus proved with τ ′ =

−τ + (sn − t∗).
The proof of (2.22) is analogous. We now take

w+
n (·, t) = un(·, sn + t), t ∈ [0, Tn − sn],
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so that w+
n satisfies the “equation”

dw+
n

dt
= J neum ∗ w+

n − 1

β
arctanh(w+

n ) + K +
n (4.10)

with K +
n defined by (4.10). Analogously to Lemma 4.1, ‖K +

n ‖ < ε for n large enough.
Since SK +

Tn−tn
(w+

n ) = m(+), the first alternative is again excluded and the second one is
followed with σ = +. Again we require τ so large and ζ so small (and ε correspond-
ingly small) that ‖v(+)L (·,−τ) − m̂e

L‖2 ≤ ε∗/10 and ζ < ε∗. Then (2.22) follows with
τ ′′ = τ ′ + t∗ (t∗ the time appearing in the second alternative applied to the present case).
Notice finally that if ε∗ → 0 the time τ in the above construction diverges and then we
need also Tn → ∞ as stated in Theorem 2.4.

5. Local Equilibrium and Peierls Estimates

The heuristics behind the proof of Theorem 3.1 goes as follows. The Wulff theorem and
the limit Wulff shape suggest that if u(·, ·) satisfies (3.2), at times t when u(·, t) ∈ 
α
with |ϑα| ≤ θ0, to “zero order” u(·, t) looks like

Wα,L := mβ1{(x,y):x≥Lϑα} − mβ1{(x,y):x<Lϑα}. (5.1)

To a next approximation we expect u(·, t) close to m̄ξ,L with ξ such that m̄ξ,L ∈ 
α .
Behind this picture is the intuition that it does not pay to have deviations from +mβ and
−mβ away from the interface and that the actual profile at the interface is not exactly
as sharp as in Wα,L but rather the diffuse interface defined by the d = 1 instanton m̄
shifted by ξ .

In this section we quote from the literature lower bounds on the free energy due to devi-
ations from equilibrium [Peierls estimates], in the next one we prove lower bounds due to
deviations from the instanton shape and in Sect. 7 we use all that to prove Theorem 3.1.

Local equilibrium and deviations from equilibrium as usual in statistical mechanics
are defined in terms of “averages” and of “coarse grained” variables. We briefly recall
the main notion adapted to the present context.

Definition 5.1 (Coarse graining). We denote by D(�), � > 0, the partition of R
2 into the

squares {(x, y) : x ∈ [n�, (n + 1)�), y ∈ [n′�, (n′ + 1)�)}, n, n′ integers, and by C (�)
r

the square of D(�) which contains r . Then the �-coarse grained image m(�) of a function
m ∈ L∞(R2) is

m(�)(r) := −
∫

C(�)r

m(r ′).

Definition 5.2 (Geometrical notions). A set is D(�)-measurable if it is union of squares
in D(�), two sets are connected if their closures have non-empty intersection and B is
a vertical connection if it is a D(�+)-measurable, connected set which is connected to
both lines {y = ±L/2}. Given a D(�+)-measurable region � ⊂ QL we call δ�+

out[�] the
union of all squares of D(�+) in QL \� which are connected to �.
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Definition 5.3 (Phase indicators). Given an “accuracy parameter” ζ > 0 and m ∈
L∞(R2, [−1, 1]), we define the “local phase indicator”

η(ζ,�)(m; r) =
{

±1 if |m(�)(r)∓ mβ | ≤ ζ ,
0 otherwise.

Given �− > 0, �+ an integer multiple of �−, D(�+) a coarser partition of D(�−), we define
the “global phase indicator”

�(ζ,�−,�+)(m; r) =
{

±1 if η(ζ,�−)(m; ·) = ±1 in C (�+)
r ∪ δ�+

out[C (�+)
r ],

0 otherwise.

η(ζ,�)(m; r) and �(ζ,�−,�+)(m; r) are defined also for functions m ∈ L∞(QL , [−1, 1])
by simply extending m to R

2 by reflections along the lines {y = (2n + 1)L/2} and
{x = (2n + 1)L/2}, n ∈ Z.

Definition 5.3 introduces the notion of “local equilibrium”: a point r is attributed to
the plus phase if �(ζ,�−,�+)(m; r) = 1, to the minus phase if �(ζ,�−,�+)(m; r) = −1
while, if �(ζ,�−,�+)(m; r) = 0, r belongs to a contour, contours being the maximal
connected components of {r : �(ζ,�−,�+)(m; r) = 0}. Local equilibrium in r requires
closeness to mβ in a large region, the 9 squares in Fig. 2. By choosing �− small we try to
approximate point-wise closeness (which would be too strong a request as the energy is
defined by integrals) while by taking �+ large we try to approximate global equilibrium.
Very little is needed for local equilibrium to fail as exemplified in Fig. 2.

Definition 5.4 (Choice of parameters). We choose �− and �+ as functions of ζ and L .
The definition is used only when ζ is small and L much larger than �+, and the depen-
dence on L is only through the requirement that L�−1± is an integer. We require that for
ζ small enough: �− ∈ [ζ 2/2, ζ 2]; �+ ∈ [ζ−4/2, ζ−4] with �+ an integer multiple of �−;
QL to be the closure of union of squares of D(�+); each square of D(�+) to be the union
of squares of D(�−).

η
( ζ , l )

=/

l

1

+

-

r

Fig. 2. Nine large squares belonging to D(�+). The small squares are instead elements of D(�−). Even if
η(ζ,�−)(m; ·) = 1 in all small squares except the one in grey, nonetheless �(ζ,�−,�+)(m; r) = 0
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We have the following two theorems, whose proof is (essentially) contained in [28]:

Theorem 5.5. There exist c > 0 and ω > 0 such that if ζ > 0 is small enough and �−,
�+ and L are as above, the following assertions hold. Let� ⊂ QL be D(�−)-measurable,
and let m be such that η(ζ,�−)(m; r) = 1 for all r ∈ QL at distance ≤ 1 from �. Then
there exists a function ψ satisfying

ψ = m outside �,

η(ζ,�−)(ψ; ·) = 1 in �,

ψ(r) = tanh{β J neum ∗ ψ(r)}, r ∈ �,
|ψ(r)− mβ | ≤ ce−ωdist(r,QL\�), r ∈ �,
FL(ψ) ≤ FL(m).

The analogous statement holds if η(ζ,�−)(m; ·) = −1, provided mβ is replaced by −mβ .

Theorem 5.6. There exists c1 > 0 such that if ζ is small enough and �−, �+ and L are
as above, the following assertions hold. Let� ⊂ QL be D(�+)-measurable and let m be
such that �(ζ,�−,�+)(m; ·) = 1 in δ�+

out[�]. Then there exists a function ψ satisfying

ψ = m outside �,

η(ζ,�−)(ψ; ·) = 1 in �,

FL(m) ≥ FL(ψ) + c1ζ
2(�−)2 N0, (5.2)

where N0 denotes the number of squares of D(�+) ∩�, where �(ζ,�−,�+)(m; ·) = 0. The
analogous statement holds if �(ζ,�−,�+)(m; ·) = −1 in δ�+

out[�].

6. Free Energy Bounds in the Channel

This section continues the “preparation” to the proof of Theorem 3.1. We will estimate
here the cost of deviations from the instanton shape. The natural setup for the problem is
the channel Q∞,L = {(x, y) : |y| ≤ L/2}; in the next section we will in fact eventually
reduce from QL to Q∞,L . Our main result is an extension to Q∞,L of a d = 1 result in
[28]:

Theorem 6.1. There is c so that for any L large enough and for any m ∈ L∞
(Q∞,L , [−1, 1]) such that uniformly in y lim inf

x→∞ m(x, y) > 0 and lim sup
x→−∞

m(x, y) < 0

and such that for some ξ ∈ R, ‖m − m̄e
ξ‖2

2 < ∞,

FQ∞,L (m)−FQ∞,L (m̄
e)≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cL−[22+36β], if inf
ξ∈R

‖m−m̄e
ξ‖2

2

>L−24β−8

cL−[2+12(β+1)] inf
ξ∈R

‖m − m̄e
ξ‖2

2, if inf
ξ∈R

‖m−m̄e
ξ‖2

2

≤L−24β−8

. (6.1)

The dependence on L in (6.1) is not optimal. We cannot possibly have

FQ∞,L (m)− FQ∞,L (m̄
e) ≥ c inf

ξ∈R

‖m − m̄e
ξ‖2

2, c > 0
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because inf
ξ∈R

‖m − m̄e
ξ‖2

2 can be made arbitrarily large while keeping the free energy

bounded: just take m as a piecewise constant function of x which as x increases from
−∞ to +∞ has values −mβ , mβ , −mβ and mβ . Then the L2 norm increases to ∞ as
the two intermediate intervals are made long enough while the free energy is bounded

by 4cL , c =
∫

x≤0

∫
x ′≥0

j (x, x ′). Thus the lower bound can hold only if inf
ξ∈R

‖m − m̄e
ξ‖2

2

is small enough. Theorem 6.1 is proved at the end of the section. Its proof, essentially
perturbative, is obtained by expanding FQ∞,L (m) around FQ∞,L (m̄

e). The linear term
disappears because the instanton is a critical point; the quadratic term becomes then the
leading one. Its analysis requires the study of the spectral properties of a linear operator,
which is the second derivative of the functional and hence also the operator obtained
by linearizing the time flow around m̄e. The spectral properties of such an operator are
interesting in their own right, their analysis far from trivial and rather long. We have thus
decided to just use in this section the outcome of the theory leaving details and proofs
to an appendix, where the issue is presented in a self contained fashion.

Thus a spectral gap estimate will prove the desired lower bounds to a second order
approximation, an analysis of the energy landscape away from the instanton shape where
non-linear effects are dominant requires a different set of ideas. Both close and away
from the instanton shape, dynamical properties of the flow Tt (m) play a dominant role,
as well as in the proofs of Theorems 5.5-5.6. We thus begin our analysis by quoting from
the literature some basic properties of the time flow.

6.1. Monotonicity of energy. The semigroup Tt generated by (2.5) (either in R
d or else

in QL or in Q∞,L with J → J neum, at the moment our notation does not distinguish
among them) has the following properties (which explains why they are useful in proving
energy bounds):

(i) Tt decreases the energy F (respectively in R
d or else in QL and in Q∞,L ):

F(Tt (m)) ≤ F(Ts(m)) for s ≤ t and if lim
t→∞ Tt (m) → m∗ uniformly on the

compacts then

lim inf
t→∞ F(Tt (m)) ≥ F(m∗). (6.2)

(ii) As t → ∞, Tt (m) converges by subsequences uniformly on the compacts to a
solution of the stationary equation m = tanh{β J ∗ m} (with J → J neum in QL or
Q∞,L ).

6.2. Properties of the instanton. In [17] it is proved that there exists a > 0 so that

lim
x→∞ eαx m̄′(x) = a, (6.3)

where α > 0 is such that

p−
∫

R

j (0, x)eαx = 1, p− = lim
x→∞ p(x) = β(1 − m2

β) < 1.



Tunneling in Two Dimension 731

The finite volume instanton m̂L is close to m̄ restricted to [−L/2, L/2]; we will just
need here that their energies are exponentially close: there are c > 0 and ω > 0 so that
for all L ,

|F (1)L (m̂L)− F (1)(m̄)| ≤ ce−ωL . (6.4)

A function m on R “is close in shape to an instanton” if m is close to a translate m̄ξ

of m̄, m̄ξ (x) = m̄(x − ξ), ξ ∈ R. Usually ξ is chosen by minimizing a weighted L2

distance of m from the instanton manifold {m̄ξ , ξ ∈ R}. We will use here the notion of
center of m: ξm is a “center of m” if

∫
R

mm̄′
ξm

p−1
ξm

= 0, pξ = β(1 − m̄2
ξ ). ξm is then

a critical point of ξ → ‖m − m̄ξ‖2
ξ := ∫

R
(m − m̄ξ )

2 p−1
ξ , i.e. the p−1

ξ -weighted L2

distance. Existence and uniqueness of the center are proved when either infξ ‖m − m̄ξ‖2
or infξ ‖m − m̄ξ‖∞ are small enough, see [28]. The proof extends straightforwardly to
the case of the channel, Q∞,L , where ξm is defined as∫

Q∞,L

m(r)m̄′
ξm
(r · e1)p

−1
ξm
(r · e1) = 0, pξ (x) = β[1 − m̄2

ξ (x)]. (6.5)

The precise statement (in the L2 case) is given in the lemma below where we show that
the center of m is related to the minimization of the usual L2 distance from the instanton
manifold.

Lemma 6.1. There are c and ε positive so that if m ∈ L∞(Q∞,L , [−1, 1]) and
inf
ξ∈R

‖m − m̄e
ξ‖2 < ε then there is a unique ξm such that (6.5) holds, ‖m − m̄e

ξm
‖2 ≤ cε

and

‖m − m̄e
ξm

‖2
2 ≤ 1

1 − m2
β

inf
ξ∈R

‖m − m̄e
ξ‖2

2. (6.6)

Proof. The proof of existence and uniqueness of the center and that ‖m − m̄e
ξm

‖2 ≤ cε
are a simple extension of their proof in d = 1, [28], and are omitted. It remains to prove
(6.6). Without loss of generality we may suppose ξm = 0. Let then

f (ξ) :=
∫

Q∞,L

[m(r)− m̄ξ (r · e1)]2

p(r · e1)
dr, b := √ f (0).

Since p−1
ξm

≤ [β(1 − m2
β)]−1 < (1 − m2

β)
−1 and ‖m − m̄e‖2 ≤ cε then b2 ≤ (1 −

m2
β)

−1(cε)2 for all m such that inf
ξ∈R

‖m − m̄e
ξ‖2 < ε.

We claim that f (ξ) has a unique minimum at ξ = 0 if ε is small enough. Call f ′ and
f ′′ the first and second derivatives of f w.r.t. ξ . By an explicit computation, f ′(0) = 0
and

f ′′(0) ≥ 2
∫
(m̄′)2

p
dr − 2b[

∫
(m̄′′)2

p
dr ]1/2.

We suppose ε so small that 2b[
∫
(m̄′′)2

p
dr ]1/2 < 2−1

∫
(m̄′)2

p
dr . Then there is ε∗ > 0

so that

f ′′(ξ) ≥
∫
(m̄′)2

p
dr, |ξ | ≤ ε∗,
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which proves that f (ξ) has a unique minimum at ξ = 0 when ξ ∈ [−ε∗, ε∗]. Call

A(ξ)2 =
∫
(m̄ − m̄ξ )

2

p
dr, A2 = inf|ξ |≥ε∗ A(ξ)2 > 0

and suppose ε so small that b < A/2. Write f (ξ) = ∫ [{m − m̄}− {m̄ξ − m̄}]2 p−1dr =
b2 + A(ξ)2 − 2

∫
(m − m̄)(m̄ξ − m̄)p−1dr , hence f (ξ) ≥ A(ξ)2

(
1 − b

A(ξ)

)2 ≥ A2/4.

Then

f (0) = b2 < A2/4 ≤ inf|ξ |≥ε∗ f (ξ)

thus proving the claim that 0 is the unique minimizer of f .
Using that pξm < β and that 1 − m̄2

ξ > 1 − m2
β we then have

‖m − m̄e
ξm

‖2
2 ≤

∫

Q∞,L

β

pe
ξm

[m − m̄e
ξm

]2 = inf
ξ∈R

β

∫

Q∞,L

[m − m̄e
ξ ]2

pe
ξm

≤ 1

1 − m2
β

inf
ξ∈R

‖m − m̄e
ξ‖2

2.

��

6.3. Spectral estimates. There are several results on the linear stability of the instanton
shape in d = 1 which extend to the case of the channel Q∞,L . In an Appendix (Sects. 9
and 10) we will prove the following statements where, to simplify notation, we drop the
superscript “e”to denote the extension of a function on R to the channel Q∞,L .Recalling
that gL(m) := −m + tanh{β J neum ∗ m} and that gL(m̄ξ ) = 0, the first order term in the
expansion of gL(m̄ξ + ψ), ψ = m − m̄ξ , gives

�ξψ = −ψ + pξ J neum ∗ ψ, pξ = β(1 − m̄2
ξ ). (6.7)

We will regard �ξ as an operator on L∞ and/or L2. It is easily checked that �ξ has
an eigenvalue 0 with eigenvector m̄′

ξ and that �ξ is self-adjoint on L2(QL , p−1
ξ ). In

Sect. 10 we will prove the existence of a L2 spectral gap: there is a positive number κ
(called a in Theorem 10.1) so that

〈ψ,�ξψ〉ξ ≤ − κ

L2 〈ψ,ψ〉ξ , 〈ψ, m̄′
ξ 〉ξ = 0, (6.8)

where 〈·, ·〉ξ is the scalar product in L2(QL , p−1
ξ ). A spectral gap in L∞ is proved in

Sect. 9: there is c > 0 so that (see Theorem 9.4)

‖e�ξ tψ‖∞ ≤ ce−(κ/L2)t‖ψ‖∞, 〈ψ, m̄′
ξ 〉ξ = 0. (6.9)

The orthogonality condition in (6.8)–(6.9) is behind the definition of center of a function
in (6.5). Indeed if ξ = ξm then ψ = m − m̄ξ fulfills the requirement in (6.8)–(6.9) as

〈(m − m̄ξ ), m̄′
ξ 〉ξ = 0. (6.10)

Recall in fact that, 〈m̄ξ , m̄′
ξ 〉ξ = 0 because m̄ is antisymmetric and m̄′ symmetric, then

(6.10) with ξ = ξm follows from (6.5).
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6.4. Stability of the instanton. We start by proving a weaker version of (6.1):

Theorem 6.2. Let m ∈ L∞(Q∞,L , [−1, 1]) be such that lim inf
x→±∞ m(x, y) ≷ 0 uniformly

in y. Then there exists ξ̂ such that

lim
t→∞ Tt (m) = m̄e

ξ̂
in L∞(Q∞,L) (6.11)

and

FQ∞,L (m) ≥ FQ∞,L (m̄
e
ξ̂
) = FQ∞,L (m̄

e) = cβL . (6.12)

Proof. The analogous statements hold for the instanton m̄ in d = 1 and indeed the
proof of the theorem is a simple adaptation of the d = 1 proof. We just sketch the main
lines. The first step uses in an essential way the spectral gap property of the previous
subsection to extend from linear to local stability. The argument is standard and allows
to conclude that if ‖m − m̄e

ξ‖∞ ≤ ε with ε > 0 small enough, then (6.11) is verified.
The global stability statement in the theorem follows from the above local stability using
more involved arguments based on a comparison theorem (ferromagnetic inequalities).
The proof is however essentially as in d = 1, see [12, 16, 17], and its details are omitted.
Equation (6.12) follows from (6.11) and (i) of Subsect. 6.1. ��
Lemma 6.3. Let m ∈ L∞(Q∞,L , [−1, 1]). Then

‖∇(Tt (m)− e−t m)‖∞ ≤ β ‖∇ J‖∞. (6.13)

Moreover, there exists τ > 0 so that for any t ≥ τ and any m ∈ L∞(Q∞,L , [−1, 1]),

‖Tt (m)‖∞ ≤ mβ +
1 − mβ

2
. (6.14)

Proof. The integral version of (2.5) yields

Tt (m)− e−t m =
t∫

0

e−(t−s) tanh{β J neum ∗ Ts(m)},

hence (6.13). A comparison theorem holds for (2.5) so that Tt (−1) ≤ Tt (m) ≤ Tt (1)
which then gives (6.14). ��
Lemma 6.4. There exists a constant c > 0 such that if m ∈ L∞(Q∞,L , [−1, 1]) and
ξ ∈ R then

‖Tt (m)− m̄e
ξ‖∞ ≤ 2e−t + c

(
‖Tt (m)− m̄e

ξ‖2 + e−t‖m − m̄e
ξ‖2

)2/3
.

Proof. We may assume ξ = 0 and write simply m̄e. The function ψ = Tt (m) − m̄e −
e−t (m − m̄e) has bounded derivative hence (see for instance [20]) there exists c > 0
(which depends on the L∞ norm of the derivative) so that ‖ψ‖∞ ≤ c‖ψ‖2/3

2 . Thus

‖Tt (m)− m̄e‖∞ ≤ ‖ψ‖∞ + 2e−t ≤ 2e−t + c
(‖Tt (m)− m̄e − e−t (m − m̄e)‖2

)2/3
.

��
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Lemma 6.5. If m ∈ L∞(Q∞,L , [−1, 1]) and m − m̄e
ξ ∈ L2(Q∞,L), then for all t ≥ 0,

e−2(β+1)t‖m − m̄e
ξ‖2

2 ≤ ‖Tt (m)− m̄e
ξ‖2

2 ≤ e2(β−1)t‖m − m̄e
ξ‖2

2 (6.15)

and

∣∣ d

dt
‖Tt (m)− m̄e

ξ‖2
2

∣∣ ≤ 2(β − 1)‖Tt (m)− m̄e
ξ‖2

2. (6.16)

Proof. Suppose again ξ = 0 and write simply m̄e. Let v = Tt (m)− m̄e, then vt = −v +
tanh{β J neum ∗ Tt (m)}− tanh{β J neum ∗ m̄e}. Since | tanh{βA}− tanh{βB}| ≤ β|A − B|
and since J neum(r, r ′) is a symmetric transition probability kernel,

1

2

d

dt
‖v‖2

2 + ‖v‖2
2 ≤ β(|v|, J neum ∗ |v|)| ≤ β‖v‖2

2,

1

2

d

dt
‖v‖2 + ‖v‖2 ≥ −β(|v|, J neum ∗ |v|)| ≥ −β‖v‖2

2.

Hence (6.16) which, by integration, yields (6.15). ��
Proof of Theorem 6.1. To simplify notation we omit in this proof the superscript “e”
to denote extensions to Q∞,L and start by establishing some preliminary results. By
Lemma 6.5 at any time t and for any ξ , ‖Tt (m)− m̄ξ ‖2

2 < ∞, as this holds at time 0 by
assumption. Moreover by (6.16) for any ξ , ‖Tt (m)− m̄ξ ‖2

2 is a continuous function of t
and for any t , ‖Tt (m)− m̄ξ ‖2

2 is a continuous function of ξ which diverges as |ξ | → ∞,
(recall the properties of m̄ in Subsect. 6.2). It then follows that infξ ‖Tt (m)− m̄ξ ‖2

2 is a
min and it is a continuous function of t .

We can now start the proof of Theorem 6.1 and consider first inf
ξ∈R

‖m−m̄ξ‖2
2>L−24β−8.

There are then two possible alternatives: (a) at all times infξ ‖Tt (m) − m̄ξ ‖2
2

> L−24β−8; (b) there is a time t < ∞ when infξ ‖Tt (m) − m̄ξ ‖2
2 ≤ L−24β−8. Case

(b). Since infξ ‖Tt (m) − m̄ξ ‖2
2 is a continuous function of t , there is a time t0 when

infξ ‖Tt0(m) − m̄ξ‖2
2 = L−24β−8 and since FQ∞,L (Tt0(m)) ≤ FQ∞,L (m), this case is

actually contained in the case when inf
ξ∈R

‖m − m̄ξ‖2
2 ≤ L−24β−8, which is examined next

(postponing the analysis of case (a)). We thus suppose

inf
ξ∈R

‖m − m̄ξ‖2
2 =: ‖m − m̄

ξ̂
‖2

2 ≤ L−24β−8 (6.17)

and set e−τ := L−6 and m∗ := Tτ (m). By Lemma 6.5, ‖m∗−m̄
ξ̂
‖2 ≤ L6(β−1)−12β−4 <

ε, ε as in Lemma 6.1, for L large enough. Then there exists ξm∗ =: ξ∗ and (6.5)–(6.6)
hold. By definition we have

FQ∞,L (m
∗)− FQ∞,L (m̄ξ∗)

= − 1

β

∫

Q∞,L

S(m∗)− S(m̄ξ∗)

−1

2

∫

Q∞,L×Q∞,L

J neum(r, r ′)
{
m∗(r)m∗(r ′)− m̄ξ∗(r)m̄ξ∗(r ′)

}
.
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Calling v = m∗ − m̄ξ∗ and α = max(‖m∗‖∞, ‖m̄ξ∗‖∞),

− (S(m∗)− S(m̄ξ∗)
) ≥ −S ′(m̄ξ∗)v +

1

2(1 − m̄2
ξ∗)
v2 − α

3(1 − α2)2
|v|3.

By (6.14) if L is large enough, α ≤ (1 + mβ)/2 < 1. Calling

Lξ = p−1
ξ �ξ , Lξ v = J neum ∗ v − p−1

ξ v, pξ = β(1 − m̄2
ξ ),

where�ξ∗ is defined in (6.7). We denote by (v,w) the scalar product on L2(Q∞,L) and
regard Lξ as an operator on L2(Q∞,L). We have

FQ∞,L (m
∗)− FQ∞,L (m̄ξ∗) ≥ −1

2
(v,Lξ∗v)− α‖v‖∞

3β(1 − α2)2
(v, v).

Since (v,Lξ∗v) = 〈v,�ξ∗v〉ξ∗ , recalling that 〈v, m̄′
ξ∗〉ξ∗ = 0, by the L2 spectral gap

theorem, (6.8), and using that pξ∗ ≥ β[1 − m2
β ] we get

FQ∞,L (m
∗)− FQ∞,L (m̄ξ∗) ≥ κ

2L2 〈v, v〉ξ∗ − (v, v)
α‖v‖∞

3β(1 − α2)2

≥ (v, v)

(
κ

2L2β(1 − m2
β)

− α‖v‖∞
3β(1 − α2)2

)
.

By Lemma 6.4 with t = τ and ξ = ξ∗ after recalling that v = Tτ (m)− m̄ξ∗ ,

‖v‖∞ ≤ 2L−6 + c
(‖m∗ − m̄ξ∗‖2 + L−6‖m − m̄ξ∗‖2

)2/3
.

Let ξ̂ ∈ R be as in (6.17), then by (6.6) and Lemma 6.5,

‖m∗ − m̄ξ∗‖2 ≤ 1√
1 − m2

β

‖m∗ − m̄
ξ̂
‖2 ≤ 1√

1 − m2
β

e(β−1)τ‖m − m̄
ξ̂
‖2

≤ 1√
1 − m2

β

L6(β−1)−12β−4.

By Lemma 6.5, e−(β+1)τ‖m − m̄ξ∗‖2 ≤ ‖m∗ − m̄ξ∗‖2 so that, for L large enough,

‖v‖∞ ≤ 2L−6 + c
(

L6(β−1)−12β−4 + L−6+6(β+1)+6(β−1)−12β−4
)2/3 ≤ 3L−6,

and

FQ∞,L (m
∗)− FQ∞,L (m̄ξ∗) ≥ κ

4L2β(1 − m2
β)
(v, v).

By (6.15), ‖v‖2
2 ≥ ‖m − m̄ξ∗‖2

2e−2(β+1)τ ≥ inf
ξ

‖m − m̄ξ‖2
2e−2(β+1)τ . Recalling that

e−τ = L−6,

FQ∞,L (m)− FQ∞,L (m̄ξ∗) ≥ κ

4β(1 − m2
β)

L−[2+12(β+1)] inf
ξ

‖m − m̄ξ‖2
2.
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Case (a), namely when at all times t , infξ ‖Tt (m)− m̄ξ ‖2
2 > L−24β−8. By Theorem 6.2

for any ε > 0 there are t and ξ so that ‖Tt (m)− m̄ξ‖∞ < ε. Call m∗ = Tt (m) and write

FQ∞,L (m
∗)− FQ∞,L (m̄ξ ) ≥

∫

|x−ξ |>L

φβ(m
∗) dr − c

{
εL2 + Le−αL

}

having used (6.3) to bound the contribution of {|x − ξ | > L} to FQ∞,L (m̄ξ ). As already
remarked there is c′ > 0 so that

φβ(m
∗) = φβ(m

∗)− φβ(mβ) ≥ c′|m∗ − mβ |2, m∗ > 0,

hence ∫

|x−ξ |>L

φβ(m
∗) dr ≥ c′

2

∫

|x−ξ |>L

|m∗ − m̄ξ |2 − c′′Le−αL .

Thus there is a new constant c > 0 so that

FQ∞,L (m
∗)− FQ∞,L (m̄ξ ) ≥ ‖m∗ − m̄ξ‖2

2 − c
{
εL2 + Le−αL

}
,

and since ‖m∗ − m̄ξ‖2
2 ≥ L−24β−8 we obtain (6.1) for ε small enough. ��

7. Proof of Theorem 3.1

In this section we will prove that orbits whose penalty is close to optimal approxi-
mately have an instanton shape at times when the total magnetization is small. Given
θ0 ∈ (0, θcrit), see (3.4), we fix once and for all θ1 and θ2 so that

1

2
> θ2 > θ1 > θ0 (7.1)

(the values of L for which our analysis applies depend on the actual choice of such
parameters). Let Wα,L be as in (5.1) and for any δ > 0 set

Nδ,L :=
⋃

|ϑα |≤θ0

⎧⎪⎨
⎪⎩m ∈ 
α : −

∫

QL

|m − Wα,L | < δ

⎫⎪⎬
⎪⎭ , (7.2)

and in the sequel we will restrict to functions m which satisfy

m ∈ Nδ,L , FL(m) < cβL + εL , cβ = F (1)(m̄). (7.3)

We will see that as ε > 0 gets small (7.3) forces m progressively closer to m̄e
ξ , for a

suitable value of ξ . Before entering into the whole issue we remark:

Lemma 7.1. For every a > 0 there is La so that for all L ≥ La the following holds. Let
(un, Tn) be an optimizing orbit, namely such that lim inf

n→∞ IL ,Tn (un) ≤ F (1)L (m̂L)L. Then

for all n large enough and all t ∈ [0, Tn],

FL(un(·, t)) < cβL +

(
1

La

)
L , L ≥ La . (7.4)
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Proof. For any δ > 0 if n is large enough, FL(un(·, t)) < F (1)L (m̂L)L + δ. By (6.4)

FL(un(·, t)) < L(cβ + ce−ωL) + δ.

Choose δ = (2La)−1 and La so that ce−ωLa < (2La)−1 and (7.4) follows. ��
Thus we can take in (7.3) ε = L−a with a as large as desired, provided L ≥ La and

that we restrict to optimizing sequences. Our first result is a corollary of the convergence
theorem to the Wulff shape of Subsect. 2.5.

Proposition 7.1. For any δ > 0 there exist ε > 0 and L̄ such that if L ≥ L̄, m ∈ 
α
with |ϑα| ≤ θ0 and FL(m) < cβL + εL, then m ∈ Nδ,L (modulo a rotation of an integer
multiple of π/2).

Proof. In the course of the proof we use the following notation: given a set A ⊂ Q1 we
call f A the function equal to mβ in A and to −mβ in Q1 \ A and f A,L its image as a
function on QL , i.e. f A,L(Lr) = f A(r). If L = 1 we simply write f A. Let Eϑα ⊆ Q1
be a solution of (2.14) with |Eϑα | = 1/2 − ϑα .

We argue by contradiction. Thus we suppose that there is δ > 0 such that for any
ε > 0 and any L̄ positive the following holds. There exist α such that |ϑα| ≤ θ0, L > L̄
and m ∈ 
α such that FL(m) < cβL + εL and

min
Eϑα

−
∫

QL

|m − fEϑα ,L dr | ≥ δ.

We can then find an increasing sequence {Lh} converging to +∞ as h → +∞, αh such
that |ϑαh | ≤ θ0, and functions mh ∈ 
αh satisfying

FLh (mh)

Lh
< cβ +

1

h
, min

Eϑαh

−
∫

QLh

|mh − fEϑα ,Lh dr | ≥ δ. (7.5)

Rescale the functions mh by defining vh(r) := mh(Lhr), r ∈ Q1. Then there is a (not
relabelled) subsequence so that αh → α as h → +∞ with |ϑα| ≤ θ0 while {vh} con-
verges in L1(Q1) to a function f A, i.e. equal to mβ in A and to −mβ in Q1 \ A, A ∈ BV ,
and

∫− f A = α, [2]. Using the �-convergence of the rescaled sequence of functionals,

cβ ≥ lim inf
FLh (mh)

Lh
≥ cβ P(A, int(Q1)). (7.6)

Since |A| ∈ [ 1
2 − θ0,

1
2 + θ0], P(A, int(Q1)) ≥ 1 (1 being the minimal perimeter when

the area is in [ 1
2 −θ0,

1
2 +θ0]) hence from (7.6) P(A, int(Q1)) = 1 and A is a minimizer

of the perimeter. By rescaling the second equation in (7.5),

min
Eϑαh

−
∫

Q1

|vh − fEϑαh
| ≥ δ.

As h → ∞ (along the converging subsequence)

min
Eϑα

−
∫

Q1

| f A − fEϑα | ≥ δ, (7.7)

which gives the desired contradiction because the left-hand side on (7.7) vanishes. ��
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All functions Wα,L in Nδ,L have value +mβ in {(x, y) : x ≥ θ0 L} and value −mβ

in {(x, y) : x ≤ −θ0 L}, a property which evidently fails for the generic element of
Nδ,L . A weaker property however holds, namely there are two vertical strips (a precise
definition is given below), one in A+ = {(x, y) : x ∈ [θ0 L , θ1L]} (see (7.1)) and the
other one in A− = −A+, where on a large fraction of points�(ζ,�−,�+) = 1, respectively
�(ζ,�−,�+) = −1. Under the additional assumption that (7.3) holds with ε small enough
(yet independent of L) there are “vertical connections” (see Definition 5.2) where iden-
tically �(ζ,�−,�+) = 1 and �(ζ,�−,�+) = −1. If we further strengthen the assumption by
supposing ε = L−2 and L large, then η(ζ,�−) = 1 for x ≥ θ2L and η(ζ,�−) = −1 for
x ≤ −θ2 L .

We define the [vertical] strips S(n) by

S(n) := [n�+, (n + 1)�+)× [−L/2, L/2)

and call Z±
L ⊂ Z the set of all n ∈ Z such that S(n) ⊂ A± and ZL = Z+

L ∪ Z−
L .

Proposition 7.2. There exists a constant c = c(ζ, �−, �+) such that for any m ∈ Nδ,L

there are n± ∈ Z±
L such that�(ζ,�−,�+)(m, ·) �= ±1 in at most Nδ := cδ

θ1 − θ0
L squares

of D(�+) inside S(n±).

Proof. The value of �(ζ,�−,�+)(m, ·) on S(n) is determined by the value of η(ζ,�−) on a
strip which is three times larger than S(n). With reference to Fig. 2 in fact if the middle
square is in S(n) then all 9 squares are needed to determine the value of�(ζ,�−,�+) in the
middle one. Set then S(3)(n) := [(n − 1)�+, (n + 2)�+) × [−L/2, L/2). By definition
of Nδ,L ,

∑
n∈Z−

L

∫
S(3)(n)

|m + mβ | +
∑

n∈Z+
L

∫
S(3)(n)

|m − mβ | ≤ 3
∫

QL

|m − Wα,L | < 3δL2.

Since the cardinality of Z−
L is ≥ L((θ1−θ0)/2 (for L large), there are two strips S(3)(n±)

such that
∫

S(3)(n±)
|m ∓ mβ | ≤ 3δL2

(
2�+

L(θ1 − θ0)

)
= 6�+δ

θ1 − θ0
L

which implies that η(ζ,�
−)(m, ·) �= ±1 on at most

Nδ :=
(

6�+δL

θ1 − θ0

)
1

ζ(�−)2

squares of D(�−) inside S(3)(n±). Thus there are at most 9Nδ squares in S(n+) (resp. in
S(n−)) where �(ζ,�−,�+) �= 1 (resp. �(ζ,�−,�+) �= −1). ��
Proposition 7.3. There are δ, L∗ and ε∗ all positive so that if m satisfies (7.3) with
L ≥ L∗ and ε ∈ (0, ε∗), then there are two vertical connections B∓, one in B− =
{(x, y) : x ∈ [−Lθ2,−Lθ0]} and the other one in B+ = {(x, y) : x ∈ [Lθ0, Lθ2]},
where �(ζ,�−,�+)(m, ·) is identically equal to −1 and respectively to +1.
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Proof. The proof by contradiction is based on successive modifications of m into new
functions so that if the vertical connections were absent then the final function would
have both energy smaller than the initial one and larger than cβL + εL , which is the
desired contradiction. We next outline the main steps postponing their proofs. By sym-
metry we may restrict to the case where the vertical connection is absent in B− and it
may or may not be absent in B+.

1. The absence of a vertical connection in B− implies that the set

{
r ∈ QL : �(ζ,�−,�+)(m; r) > −1

}

connects S(n−) to {(x, y) ∈ QL : x = −θ2 L}. From this it will follow that the num-
ber K0 of D(�+)-squares strictly to the left of S(3)(n−), where�(ζ,�−,�+)(m; ·) = 0 is
K0 ≥ c0(θ2 − θ1)L , c0 a positive constant.

2. It is possible to modify m only in S(3)(n−) in such a way that the new function m̃
verifies �(ζ,�−,�+)(m̃; r) = −1, r ∈ S(n−) and FL(m̃) ≤ FL(m) + c′�2

+δL , c′ a
positive constant.

3. By Theorem 5.6 applied to m̃ with � the region strictly to the left of S(n−) there
exists m∗ = m̃ on �c such that η(ζ,�−)(m∗; ·) = −1 on � and FL(m∗) ≤ FL(m̃)−
c1ζ

2�2−K0.
4. By Theorem 5.5 we can further modify m∗ into a new functionψ− equal to m∗ outside
� in such a way that η(ζ,�−)(ψ−; r) = −1, r ∈ �, ψ−(x, y) = −mβ , x < −Lθ2 −1
and FL(ψ−) ≤ FL(m∗) + c′′e−ω(1/2−θ2)L , c′′ a positive constant.

Conclusion of proof. Call ψ the function where the analogous modifications are made
to the right of the origin, namely by repeating Steps 2-4 above (notice that a vertical
connection in B+ may very well exist, in which case we do not have the lower bound for
the corresponding K0 as in Item 1). The “previous errors” occur therefore twice while
the gain term occurs only once, in the worst case, then

FL(m) ≥ FL(ψ)− 2c′�2
+δL�− − 2c′′e−ω(1/2−θ2)L + c1ζ

2�2− {c0(θ2 − θ1)L} . (7.8)

Since ψ(x, y) = ±mβ in x ≥ L/2 − 1 and respectively x ≤ −L/2 + 1, FL(ψ) =
FQ∞,L (ψ̃), where ψ̃(x, y) = −mβ for x ≤ −L/2 and = mβ for x ≥ L/2. Then by
(6.12),

FL(m) ≥ cβL − 2c′�2
+δL − 2c′′e−ω(1/2−θ2)L + c1ζ

2�2− {c0(θ2 − θ1)L} , (7.9)

which for δ small enough yields for all L ≥ L∗, L∗ large enough,

FL(m) ≥ cβL +
c1

2
ζ 2�2− {c0(θ2 − θ1)L} . (7.10)

Choosing ε∗ = c1

2
ζ 2�2−{c0(θ2 − θ1)},

FL(m) ≥ cβL + ε∗L (7.11)

which contradicts FL(m) < cβL + εL because ε < ε∗. ��
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Remarks. The above argument is strictly two dimensional. Indeed the lower bound on
K0 grows like L in all dimensions (the “thin fingers effect”), while the error in Item 2
grows as cδLd−1 which in d > 2 wins against the “gain term”. A different argument
developed by Bodineau and Ioffe, [5], applies in d > 2 and since the theory of Wulff
shape can be partially extended to d = 3 the result extends to d = 3 as sketched in
Sect. 11.

While Items 3 and 4 are self explanatory, Items 1 and 2 do need a proof.:

Proof of Item 1. We call ± or 0 a D(�+)-square where�(ζ,�−,�+)(m, ·) is ±1 or 0, respec-
tively and, given C ∈ D(�+), we set

Sleft(C) :=
{

Ĉ ∈ D(�+) ∩ QL : for any (x, y) ∈ Ĉ there is x ′ > x with (x ′, y) ∈ C
}
,

Svert(C) :=
{
Ĉ ∈D(�+) ∩ QL : for any (x, y) ∈ Ĉ there is y′ ∈

(
− L

2
,

L

2

)

with (x, y′) ∈ C

}
.

Denote by K the number of 0-squares to the left of S(n−) (included). Item 1 then follows
from the two alternatives below:
Case (i). Assume that there exists a − square C0 ∈ D(�+) ∩ S(n−) such that the strip
Sleft(C0)∩ {(x, y) ∈ QL : −θ2 L ≤ x ≤ n−�+} contains only − squares. For each C ′ in
the strip we have that Svert(C ′) contains at least one − square, because C ′ ⊂ Svert(C ′).
On the other hand Svert(C ′) cannot consist entirely of − squares by our assumption that
there is no vertical connection. Since the sets �(ζ,�−,�+) = 1 and �(ζ,�−,�+) = −1 are

not connected, there must be at least one 0-square in Svert(C ′). Thus K ≥ (θ2 − θ1)L

2�+
.

Case (ii). Any − square C0 ∈ D(�+) ∩ S(n−) is such that Sleft(C0) contains at least a

0-square. In this case K ≥ L

�+
− Nδ by definition of S(n−). ��

Proof of Item 2. Call m̃ the function obtained from m by putting −mβ on all squares
connected to those in S(3)(n−), where η(ζ,�−)(m, ·) is not identically −1. Then

FL(m) ≥ FL(m̃)− cJ �
2
+ Nδ,

where cJ > 0 is a constant depending only on J hence by Proposition 7.2 Item 2 is
proved. ��

As already remarked Items 3 and 4 are self explanatory and the proposition is there-
fore proved. ��
Corollary 7.4. In the same context as in Proposition 7.3 assume in addition that (7.3)
is verified with ε = L−2. Then η(ζ,�−)(m, (x, y)) = ±1 for all x ≥ θ2L − 1 and
respectively x ≤ −θ2L + 1.

Proof. By Proposition 7.3 there are two vertical connections B∓ respectively to the
right of x = −θ2 L and to the left of x = θ2L , where �(ζ,�−,�+)(m, ·) = ∓1. Arguing
again by contradiction and referring for definiteness to what happens to the left of B−,
if �(ζ,�−,�+)(m, ·) �= −1 somewhere on the left of B−, necessarily �(ζ,�−,�+)(m, ·) = 0
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somewhere to the left of B−. Then by Theorem 5.6 there is ψ equal to m to the right of
B− (included) with �(ζ,�−,�+)(ψ, ·) = −1 on the left of B− and such that

FL(m) ≥ FL(ψ) + c1ζ
2�2−.

The same argument used in the proof of Proposition 7.3 shows then that

FL(m) ≥ cβL − c′′e−ω(1/2−θ2)L + c1ζ
2�2−

which leads to a contradiction because Lε = L−1 < c1ζ
2(�−)2 − c′′e−ω(1/2−θ2)L for L

large enough. ��
Lemma 7.1 and Theorem 7.5 below conclude the proof of Theorem 3.1.

Theorem 7.5. Assume m ∈ 
α , |ϑα| ≤ θ0 and that

FL(m) ≤ L F (1)(m̄) + ε, ε < L−600−[2+24(β−1)]. (7.12)

Then there exists ξ with |ξ | ≤ θ0 L + 1 such that

‖m̄e
ξ − m‖2

2 ≤ L−100.

Proof. To simplify notation we omit also in this proof the superscript “e” to denote
extension to Q∞,L . We distinguish two cases, Case 1 is when (7.13) below is satisfied
and Case 2 when it is not (we will see that the second case contradicts the assumptions
of the theorem and thus it will not occur). Let θ2 be as in Corollary 7.4.
Case 1. There exists |ξ | ≤ θ1L such that,

‖m̄ξ − m‖2
L2(Qθ2 L ,L )

≤ L−300. (7.13)

We split the free energy as

FL(m) = FQθ2 L−1,L

(
m Qθ2 L−1,L | m Qc

θ2 L−1,L

)
+ FQc

θ2 L−1,L

(
m Qc

θ2 L−1,L

)
, (7.14)

where for f, g ∈ L∞(QL , (−1, 1)) and A ⊆ QL ,

FA( f ) :=
∫

A

φβ( f ) dr +
1

4

∫
A×A

J neum(r, r ′)[ f (r)− f (r ′)]2dr dr ′,

FA( f |g) := FA( f ) +
1

2

∫
A×(QL\A)

J neum(r, r ′)[ f (r)− g(r ′)]2dr dr ′.

Since |φβ(m)− φβ(m̄)| ≤ c|m − m̄|, there is a new constant c so that
∣∣∣FQθ2 L−1,L

(
m Qθ2 L−1,L | m Qc

θ2 L−1,L

)
− FQθ2 L−1,L

(
m̄ξ1Qθ2 L−1,L | m̄ξ1Qc

θ2 L−1,L

)∣∣∣
≤ cL‖m̄ξ − m‖L2(Qθ2 L ,L )

.

By (7.13) and the exponential convergence of m̄ξ to its asymptotes, for L large enough,

FQθ2 L−1,L

(
m Qθ2 L−1,L | m Qc

θ2 L−1,L

)
≥ L F (1)(m̄)− L−148.
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By (7.14) and (7.12)

L F (1)(m̄) + ε − L F (1)(m̄) + L−148 ≥ FQc
θ2 L−1,L

(
m Qc

θ2 L−1,L

)
. (7.15)

Using again the exponential convergence of m̄ξ , there are positive constants c̄ and c̄′ so
that

‖m − m̄ξ‖L2(Qc
θ2 L−1,L )

≤ ‖m − sign(x)mβ‖L2(Qc
θ2 L−1,L )

+ c̄e−c̄′L . (7.16)

We postpone the proof that there is a constant c > 0 so that

FQc
θ2 L−1,L

(
m Qc

θ2 L−1,L

)
≥ c

∫

|x |≥Lθ2−1

|m − sign(x)mβ |2. (7.17)

By (7.13) and(7.16)-(7.17)-(7.15), ‖m̄ξ − m‖2
2 ≤ L−300 + L−147, for L large enough.

Since by assumption m ∈ 
α with |ϑα| ≤ θ0, then, for L large enough, |ξ | ≤ θ0 + 1 so
that the analysis of Case 1 will be complete once we prove (7.17), which we do next.

By Corollary 7.4, for L sufficiently large, η(ζ,�−)(m, r) = ∓1 when x < −θ2L + 1
and x > θ2L − 1. Using this we are going to prove that for any r ∈ Qc

θ2 L−1,L ,

φβ(m(r)) +
1

2

∫

Qc
θ2 L−1,L

J neum(r, r ′)[m(r)− m(r ′)]2 dr ′ ≥ c(m(r)− mβ)
2 (7.18)

which yields (7.17). We consider only x > 0 as the case x < 0 is proved in exactly
the same way. To prove (7.18), we first observe that φβ(±mβ) = 0, φβ(m) > 0 for
m �∈ {±mβ} and φβ(m) is strictly convex in ±mβ. Therefore there exists a constant
c > 0 such that

φβ(m) ≥ c min{|m − mβ |2, |m + mβ |2}.
Thus if m(r) > 0 the first term on the l.h.s. of (7.18) already yields the bound.

If m(r) ≤ 0 we call J (�−)(r, r ′) = −
∫

C
(�−)
r ′

J neum(r, r ′′)dr ′′, r ′ ∈ Qc
θ2 L−1,L , and, by the

Lipschitz continuity of J ,
∫

Qc
θ2 L−1,L

J neum(r, r ′)
(
m(r)− m(r ′)

)2

≥
∫

Qc
θ2 L−1,L

J (�−)(r, r ′)
(
m(r)− m(r ′)

)2 − c�−. (7.19)

By Cauchy-Schwartz,

−
∫

C
(�−)
r ′

(
m(r)− m(r ′′)

)2 ≥
(

m(r)− −
∫

C
(�−)
r ′

m(r ′′)
)2

≥ (mβ − ζ
)2
,
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which inserted in (7.19) gives

∫

Qc
θ2 L−1,L

J neum(r, r ′)
(

m(r)− m(r ′)
)2 ≥ 1

2
(mβ − ζ )2 − c�−

because
∫

Qc
θ2 L−1,L

J neum(r, r ′) > 1

2
. Supposing ζ small enough, recall �− ≤ ζ 2/2, the

r.h.s. ≥ m2
β/4 and (7.18) follows.

Case 2. The complementary case is when (7.13) does not hold, we will prove that
such a case cannot actually happen. Indeed by Corollary 7.4 and Theorem 5.5 there is
a function ψ equal to m on |x | ≤ θ2L , such that ψ = ±mβ on x > L/2 − 1 and
x < −L/2 + 1 and

FL(m) ≥ FL(ψ)− ce−ω(1/2−θ2)L . (7.20)

Calling φ the function on Q∞,L equal to ψ on QL and to ±mβ on x < −L/2 and
x > L/2, by Theorem 6.1 we have

FL(ψ) = FQ∞,L (φ) ≥ cβL + inf
ξ

cL−[2+24(β−1)]
∫

|x |<θ2 L

|m − m̄ξ |2

≥ cβL + cL−[2+24(β−1)]−300. (7.21)

Equations (7.20)–(7.21) contradict (7.12) for L large. ��

8. Proof of Theorems 3.2 and 3.3

The proof follows the one dimensional analysis in [6], see also [7, 8, 14], and uses some
spectral properties proved in an appendix, Sects. 9 and 10.

Recalling that gL(m) := −m + tanh{β J neum ∗ m}, the first order term in f in the
expansion of gL(m̄ξ,L + f ), |ξ | < L/2, gives

�ξ,L f = − f + pξ,L J neum ∗ f, pξ,L = β cosh−2{β J neum � m̄e
ξ,L} (8.1)

(the zero order term is however not missing because m̄ξ,L is not a critical point unless
L = ∞). We will regard here�ξ,L as an operator on L∞(QL), fix in the sequel r ∈ (0, 1)
and restrict to ξ such that |ξ | ≤ r L/2. �ξ,L is a shorthand for �m̄ξ,L which is among
the operators�m considered in Sect. 9. Due to the planar symmetry some of its spectral
properties just follow from the d = 1 analysis and are valid for all L large enough, see
Subsect. 9.1, here we just mention that the maximal eigenvalue is λξ,L with eigenvector
a strictly positive, planar function eξ,L(·). In the notation of Subsect. 9.1 eigenvalue and
eigenfunction are denoted by λm and em respectively, where m = m̄ξ,L .
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8.1. Fibers. Following [6], we introduce fibers in the space L∞(QL ; [−1, 1]), defined
as

Bξ,L := {m ∈ L∞(QL ; [−1, 1]) : m = m̄ξ,L + φ, πξ,L(φ) = 0
}
, (8.2)

where

πξ,L(φ) = 〈eξ,Lφ〉ξ,L
〈eξ,L eξ,L 〉ξ,L , 〈 f, g〉ξ,L :=

∫

QL

f g p−1
ξ,L (8.3)

and call

Bε,ξ,L := {m̄ξ,L + φ ∈ Bξ,L : ‖φ‖∞ ≤ ε
}
,

B′
ε,ξ,L := {m ∈ Bε,ξ,L : m(x, y) = m(x, 0)

}
. (8.4)

8.2. Spectral analysis. The crucial property of�ξ,L is invertibility: the inverse�−1
ξ,L of

�ξ,L exists and it is a bounded operator on the space {φ : πξ,L(φ) = 0}, namely on
the points of the fiber Bξ,L parameterized by φ = m − m̄ξ,L . More precisely there is a
constant κ > 0 so that

sup
φ:πξ,L (φ)=0,‖φ‖∞=1

‖�−1
ξ,Lφ‖∞ ≤ κL2. (8.5)

In d = 1 the bound on the r.h.s. is independent of L , the extension to d = 2 is proved
in the appendix as a direct consequence of Theorem 9.4, see (9.26).

Theorem 8.1. For any r < 1 and all L large enough, the only solution of gL(m) = 0
with m ∈ BL−3,ξ,L , |ξ | ≤ r L/2 is m̂e

L .

Proof. The analogous property in d = 1 has been proved in a stronger form in [6], thus
the theorem will follow once we show that any solution of gL(m) = 0 in {BL−3,ξ,L , |ξ | ≤
r L/2} is necessarily in {B′

L−3,ξ,L , |ξ | ≤ r L/2}.
Following Sect. 4 of [6], we consider the auxiliary equation

gL(m)− πξ,L
(
gL(m)

)
eξ,L = 0, m ∈ BL−3,ξ,L . (8.6)

We will prove that any solution of (8.6) is in B′
L−3,ξ,L . The theorem will then follow

because if gL(m) = 0 then m satisfies (8.6).
For φ as above we define

Rξ,L(φ) = gL(m̄ξ,L + φ)− gL(m̄ξ,L)−�ξ,Lφ.

By a Taylor expansion to second order, there is c so that

‖Rξ,L(φ)‖∞ ≤c‖φ2‖∞, ‖Rξ,L(φ1)−Rξ,L(φ2)‖∞ ≤c{‖φ1‖∞+‖φ2‖∞}‖φ1−φ2‖∞.
(8.7)

For L large enough, let Aξ,L be the following operator on Bξ,L :

Aξ,L(φ) :=−�−1
ξ,L

{[
gL(m̄ξ,L)−πξ,L

(
gL(m̄ξ,L)

)
eξ,L
]

+
[
Rξ,L(φ)− πξ,L(Rξ,L(φ))eξ,L

]}
.
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If φ is a fixed point of Aξ,L(·) and ‖φ‖ ≤ L−3, then m̄ξ,L + φ solves (8.6).
In [13] it has been proved that there is C so that, for α as in (6.3),

‖gL(m̄ξ,L)‖∞ ≤ Ce−α(L−2|ξ |)

which implies that for L large enough

‖gL(m̄ξ,L)− πξ,L
(
gL(m̄ξ,L)

)
eξ,L‖∞ ≤ Ce−c̄L .

From (8.5) and (8.7) it then follows that

‖Aξ,L(φ)‖∞ ≤ c0 L2
[
Ce−c̄L + L−6

]
.

Thus, for all L large enough Aξ,L maps the set BL−3,ξ,L into itself. Moreover Aξ,L maps
B′

L−3,ξ,L
into itself. By (8.7) and (8.5) we have

‖Aξ,L(φ1)− Aξ,L(φ2)‖∞ ≤ δ‖φ1 − φ2‖∞, δ < L−1
1 ,

so that Aξ,L is a contraction on BL−3,ξ,L and since B′
L−3,ξ,L

is invariant, the unique fixed

point φξ is in B′
L−3,ξ,L

, namely it has planar symmetry. As already remarked, solutions
of (8.6) are fixed points of Aξ,L .We have thus shown that solutions of (8.6) have planar
symmetry, which, as argued before, proves the theorem. ��

8.3. Proof of Theorem 3.2. Let m, L and ε as in Theorem 3.2. Since the function
t → α(t), α(t) = −

∫
QL

Tt (m), t ≥ 0, is continuous and since |ϑα(0)| ≤ θ0, either there is

a time t∗ ≥ 0 when |ϑα(t∗)| = θ0 or else any limit point m∗ (in L∞) of Tt (m) is in 
α
with |ϑα| ≤ θ0.

Being a limit point, m∗ is stationary and by lower semi-continuity, FL(m∗) ≤
FL(m) < L F (1)L (m̂L) + ε. Since ε < ε0(L), by Theorem 3.1 there is ξ , |ξ | ≤ θ0 L + 1,
so that ‖m∗ − m̄ξ,L‖2 < L−100. Since m∗ is stationary its derivative is bounded, hence
there is a constant c so that

‖m∗ − m̄ξ,L‖∞ ≤ c
(‖m∗ − m̄ξ,L‖2

)2/3
< c(L−100)2/3. (8.8)

We omit the proof that if ‖m − m̄ξ,L‖∞ < ζ , ζ small enough, then m is in a fiber Bξ ′,L
with |ξ ′ − ξ | ≤ cζ , which is analogous to its d = 1 version proved in [6]. Using such
a statement by (8.8) for L large enough m ∈ BL−3,ξ ′,L , |ξ ′| ≤ r L/2, r < 1 and by
Theorem 8.1 we then conclude that m∗ = m̂e

L . Theorem 3.2 is proved.

8.4. Proof of Theorem 3.3. By symmetry we may restrict to m ∈ 
α with ϑα = −θ0.
By assumption ‖m − m̄ξ,L‖2 < L−100; we are going to show that for L large enough,

| − θ0 − ξ

L
| ≤ L−100. (8.9)

Indeed, ‖m−m̄ξ,L‖1 ≤ 4‖m−m̄ξ,L‖2 < 4L−100, so that | −
∫

QL

m − −
∫

QL

m̄ξ,L | ≤ 4L−100

L2

and (8.9) follows for L large enough because −
∫

QL

m = α, ϑα = −θ0 and using (6.3).
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Theorem 8.2. For any ε and r ∈ (0, 1) there is L(ε, r) so that for all L > L(ε, r)
the following holds. Let m ∈ L∞(QL) be such that there is ξ0 ∈ (− L

2 ,− r L
2 ) so that

‖m − m̄ξ0,L‖∞ ≤ ε, then

lim
t→∞ ‖Tt (m)− m+‖∞ = 0. (8.10)

Proof. By assumption

m(x, y) ≥ m̄ξ0(x)− 2ε, for all (x, y) ∈ QL .

In Proposition 8.2, Theorem 8.3 and Proposition 8.4 of [4] it has been proved that for
L large (how large depending on ε and r ) Tt

(
m̄ξ0 − 2ε

)
converges to m+. Thus (8.10)

follows from the comparison theorem. ��
By Lemmas 6.4 and 6.5,

‖Tt (m)− m̄ξ,L‖∞ ≤ 2e−t + c
([

e−t + e2(β−1)t
]
‖m − m̄ξ,L‖2

)2/3
.

Choosing t suitably large (independently of L) the r.h.s. becomes < ε and by (8.9),
Tt (m) satisfies the assumption of Theorem 8.2 with r < θ0 and L large enough. Then
Theorem 3.3 follows from Theorem 8.2, noticing that convergence in L∞(QL) implies
convergence in L2(QL), because QL is bounded.

Appendix

9. Spectral Estimates, sup Norms

The analysis in this appendix refers to functions on the square QL and on the channel
Q∞,L ; in the latter case we will consider only one function, the instanton m̄e. For brevity
we call planar a function or a kernel where the dependence on the point r is only via its
x coordinate x = r · e1.

Definition. The set ML consists of the instanton m̄e ∈ L∞(Q∞,L , (−1, 1)) and of
the family of planar functions m ∈ L∞(QL , [−1, 1]) which are in either one of the
following two classes (r below a fixed number in (0, 1)):

• m̄ξ,L , |ξ | ≤ r L

2• ‖m − m̂e
L‖∞ ≤ ε(L), ε(L) > 0 a small number which will be fixed later.

9.1. Maximal eigenvalue and eigenvector. We call Am , m ∈ ML , the operator on
L∞(QL) or L∞(Q∞,L) if m = m̄e, whose kernel is

Am(r, r
′) = pm(r)J

neum(r, r ′). (9.1)

If m = m̄ξ,L , then pm = cosh−2{β J neum ∗ m}, otherwise pm = β(1 − m2). If m = m̄e

or m = m̂e
L the two expressions coincide. The different choices are due to different

applications, e.g. if we linearize around the flow Tt (m) or St (m).
In [13] it is proved that given r ∈ [0, 1) there are Lr and ε(L) so that for all L ≥ Lr

and any m ∈ ML , there are λm > 0 and em so that, with sm = p−1
m em ,∫

Am(r, r
′)em(r

′)dr ′ = λmem(r),
∫

sm(r)Am(r, r
′)dr ′ = λmsm(r

′). (9.2)



Tunneling in Two Dimension 747

em is a strictly positive, smooth planar function in L∞(QL) that we normalize so that
∫

smem =
∫

e2
m p−1

m = 〈em, em〉m = 1. (9.3)

λm is an eigenvalue of Am with strictly positive right and left eigenvectors, em and sm , in
agreement with the Perron-Frobenius theorem which is indeed behind the proof of the
above statements. The function e(1)m (x) on [−L/2, L/2] or R for the instanton, defined
by x → em(r), r · e1 = x , is the eigenvector for the d = 1 problem with interaction j
as in (2.2), however

∫
e(1)m (x)2dx = L−1 due to (9.3). In the case m = m̄e, λm = 1 and

em(r) = cm̄′(r · e1)/
√

L , c a normalization independent of L .
The above statements are verified in a large class of functions m, those which follow

are instead more restrictive. All bounds below are uniform in ML but we keep reference
to the specific m ∈ ML for future applications.

• There are c± > 0 and α′
m > 0 so that

1 − c+e−2α′
m L ≤ λm ≤ 1 + c+e−2α′

m L . (9.4)

• For each m ∈ ML define xm as xm = 0 if m = m̄e, xm = ξ if m = m̄ξ,L and xm = 0
for the remaining m. Then there are s > 0 and δ < 1 so that

pm(r) ≤ δ, |r · e1 − xm | ≥ s, (9.5)

and there are αm > 0, α′′
m > 0 and c so that

em(r) ≤ c√
L

e−αm |r ·e1−xm |, em(r)
−1 ≤ c

√
L eα

′′
m |r ·e1−xm |. (9.6)

• We will also use that there is a constant c so that

‖p−1
m ‖∞ ≤ c. (9.7)

• As mentioned, all the previous bounds are uniform in ML , by suitably resetting the
coefficients.

9.2. Reduction to Markov chains. Let Km be the Markov operator whose transition
probability kernel is

Km(r, r
′) = Am(r, r ′)em(r ′)

λmem(r)
. (9.8)

Since An
m(r, r

′) = em(r)λn
m K n

m(r, r
′)em(r ′)−1 we will derive bounds on An

m and con-
sequently on the spectrum of Am and of �m := Am − 1 from properties of K n

m . The
important point of the transformation (9.8) is that Km is a Perron-Frobenius Markov
kernel to which the high temperature Dobrushin techniques apply.

Calling x = r · e1 and y = r · e2 we can write Km(r, r ′) as

Km(r, r
′) = Pm(x, x ′)qx,x ′(y, y′), (9.9)
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where, relative to the measure Km(r, r ′)dr ′, Pm(x, x ′) is the marginal distribution of x ′
and qx,x ′(y, y′) is the conditional distribution of y′ given x ′ (to simplify notation we
drop sometimes the suffix m). The explicit expression of Pm(x, x ′) is

Pm(x, x ′) = pm(x) jneum(x, x ′)em(x ′)
λmem(x)

, (9.10)

where j (x, x ′) is defined in (2.2) and em(x) ≡ em(x, y) (recall that em(r) is planar).
Equation (9.10) is (9.8) in the d = 1 case with interaction j (x, x ′). Notice that due
to the planar symmetry assumption the marginal Pm(x, x ′) does not depend on the y
coordinate of r . In the sequel we will consider the probability density

qx,x ′(z) = J ((x, 0), (x ′, z))

j (x, x ′)
(9.11)

on R noticing that the variable y′ := y + z modulo reflections at ±nL/2 has the law
qx,x ′(y, y′) and sometimes, by an abuse of notation, we will write qx,x ′(z) for qx,x ′(y, y′).

9.3. One dimensional results. To study the dependence on the initial point r of the
Markov chain with transition probability kernel Km(r, r ′) we will use couplings (for
brevity we may shorthand x = r · e1 and y = r · e2). We first recall some one dimen-
sional results proved in [13]. Call

W (1)[x, x ′] = [wm(x) + wm(x
′)
]

1{x �=x ′}, wm(x) := em(x)
−1; (9.12)

em and m ∈ ML below are regarded as functions of x .

Theorem 9.1. There are c and ω(1) positive and for any (x0, x ′
0) ∈ [−L/2, L/2]2 (or

R
2) a process on ([−L/2, L/2]2)N (or (R2)N) whose expectation is denoted by E (1)x0,x ′

0
so

that its marginal distributions are the Markov chains with transition probability (9.10)
and, for any L large enough and n ≥ 1,

E (1)x0,x ′
0

(
W (1)[x(n), x ′(n)]

)
≤ cW (1)[x(0), x ′(0)]e−ω(1)n . (9.13)

Moreover if for some n, x(n) = x ′(n) then x(n + k) = x ′(n + k) for all k ≥ 0.

9.4. Couplings and Wasserstein distance. For any (r0, r ′
0) ∈ QL×QL (or Q∞,L×Q∞,L

if m = m̄e) we define a process {r(n), r ′(n), n ∈ N}, r(0) = r0, r ′(0) = r ′
0, with values

on QL×QL (or Q∞,L×Q∞,L ) as follows: The marginal distribution of {x(n), x ′(n), n ∈
N} is set equal to the law P(1)

x0,x ′
0

of the process defined in Theorem 9.1. To complete the

definition we must give the law of {y(n), y′(n), n ∈ N} conditioned on the trajectory

(x, x ′) = {(x(n), x ′(n)), n ∈ N},
which we consider in the sequel as fixed. Define then n0, n1 ∈ N ∪ {+∞} as

n0 := inf
{
n ∈ N : x(n0)= x ′(n0)

}
, n1 := inf

{
n ∈N : n ≥n0 and |y(n)−y′(n)|≤1

}
,
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where the infimum over the empty set is defined as +∞. This means that n0 is the first
time when the x-coordinates couple, and n1 is the first time at which the y-coordinates
get close after the x-coordinates have coupled.

For n ≤ n1, y(n) and y′(n) are independent of each other and distributed with the
law of the Markov chain with transition probability (9.11) which starts respectively from
y0 and y′

0. If n1 < ∞ the conditional law of {y(n), y′(n), n ∈ [n1, n1 + k0]}, k0 as in
Lemma 9.2 below, given y(n1), y′(n1) is �, � the probability in Lemma 9.2 below. If
y(n1 + k0) = y′(n1 + k0), y′(n) = y(n) for n ≥ n1 + k0 with y(n) having the law of the
Markov chain with transition probability (9.11). If instead y(n1 + k0) �= y′(n1 + k0) we
repeat the previous procedure with n0 replaced by n1 + k0 and so forth.

Lemma 9.2. There are π0 and k0 positive and for any (y0, y′
0, X), |y0 − y′

0| ≤ 1,
X = (x0, .., xk0), a probability� = �(y0,y′

0,X)
on [−L/2, L/2]k0+1 ×[−L/2, L/2]k0+1

such that the marginal distributions of y(·) and y′(·) are the Markov chains with tran-
sition probability (9.11) starting from y0 and y′

0 and (E (1)x0,x ′
0

below as in Theorem 9.1),

E (1)x0,x ′
0

(
�(y0,y′

0,X)
({y(k0) = y′(k0)}

)) ≥ π0. (9.14)

The lemma follows easily from the smoothness properties of the transition kernel, its
proof is just as in its one dimensional version in [13] and it is omitted.

We call Pr0,r ′
0

the joint law of {r(n), r ′(n), n ∈ N} as defined above and denote
by Er0,r ′

0
expectation w.r.t. Pr0,r ′

0
. Pr0,r ′

0
is a coupling of the Markov chains starting

from r0 and r ′
0 and with transition probability Km . Indeed, for any f ∈ L∞(QL) or

f ∈ L∞(Q∞,L), and any n ≥ 1,

Er0,r ′
0

(
f (r(n)

)=
∫

QL

K n
m(r0, r) f (r), Er0,r ′

0

(
f (r ′(n))

)=
∫

QL

K n
m(r

′
0, r) f (r). (9.15)

Recalling (9.12) we define a distance W [r, r ′], on QL × QL or on Q∞,L × Q∞,L as

W [r, r ′] =[wm(r)+wm(r
′)
]

1{r �=r ′} = W (1)[x, x ′], wm(r) :=em(r)
−1 (9.16)

(x = r · e1 above) and call

Rn,r0,r ′
0

= Er0,r ′
0

(
W [(r(n), r ′(n)]) . (9.17)

Rn,r0,r ′
0

is an upper bound for the Wasserstein distance between K n
m(r0, ·) and K n

m(r
′
0, ·)

relative to the distance (9.16).

Theorem 9.3. There are positive constants L∗, c and ω so that for any of the above
chains and any L > L∗, n ≥ 1:

Rn,r0,r ′
0

≤ ce−(ω/L2)nW [r0, r
′
0]. (9.18)

The proof of Theorem 9.3, which is postponed, uses Theorem 9.1 to reduce to the case
when x(·) = x ′(·). Then the y coordinates (regarded on the whole axis and then reduced
to [−L/2, L/2] by reflections) perform independent random walks with increments hav-
ing the same law (which depends on x) till when they get to distance ≤ 1. By Lemma 9.2
after a time they couple k0 with probability π0 > 0 and the proof of Theorem 9.3 will
then be concluded with an estimate of the probability of the time when two independent
walks get closer than 1. We will see that such a probability is positive independent of
L and of the starting points provided the time is proportional to L2 (recall that the y
coordinates are defined modulo reflections at ±nL/2).
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9.5. L∞ bounds. The Markov chain Km has an invariant probability measure μ(r)dr
(recall the normalization of em and sm in Subsect. 9.1)

μ(r) := sm(r)em(r) = em(r)
2 pm(r)

−1,

∫
μ(r)Km(r, r

′)dr = μ(r ′). (9.19)

Let ψ ∈ L∞(QL) and u = ψwm . By the invariance of μ,
∫

K n
m(r0, r

′)[u(r ′)− μ(u)]dr ′ =
∫
μ(r ′

0)Er0,r ′
0

(
u(r(n))− u(r ′(n))

)
dr ′

0. (9.20)

We write u(r)− u(r ′) = ũ(r)

wm(r)
wm(r)− ũ(r ′)

wm(r ′)
wm(r

′), ũ = u − μ(u) where, by an

abuse of notation, μ(u) = ∫ μ(r)u(r)dr . Thus

∣∣u(r)− u(r ′)
∣∣ ≤ ‖ ũ

wm
‖∞W [r, r ′]. (9.21)

Hence by (9.18)
∣∣∣∣
∫

K n
m(r0, r

′)
[
u(r ′)−μ(u)]

∣∣∣∣ ≤ ‖ ũ

wm
‖∞ce−(ω/L2)n (wm(r0)+C ′) . (9.22)

The term with C ′ is obtained by writing
∫
wm(r)μ(r) =

∫
em p−1

m which, by (9.6) and

(9.7), is bounded. Moreover, recalling that u = ψwm ,

ũ(r)

wm(r)
= ψ̃(r), ψ̃ := ψ − em〈ψ, em〉m . (9.23)

By (9.22) and (9.8),
∣∣∣∣
∫

An
m(r0, r

′)ψ̃(r ′)
∣∣∣∣ ≤ em(r0)

{
‖ψ̃‖∞c

[
λme−(ω/L2)

]n (
wm(r0)+C ′)} (9.24)

which using (9.6) proves:

Theorem 9.4. There are positive constants L∗, c and ω so that for any of the above
chains, any L > L∗, n ≥ 1 and any ψ such that 〈ψ, em〉m = 0,

‖An
mψ‖∞ ≤ c′[λme−(ω/L2)]n‖ψ‖∞, (9.25)

where c′ = c
[
1 + C ′‖em‖∞

]
and for any t > 0, (recalling that �m = Am − 1)

‖e�m tψ‖∞ ≤ e−t c′‖ψ‖∞
∞∑

n=0

(λme−(ω/L2)t)n

n! ≤ c′e−(ω/2L2)t‖ψ‖∞. (9.26)

The last bound follows for L large enough by bounding −1+λme−x < |λm −1|+e−x −1,
e−x − 1 ≤ −3x/4 (x > 0 small enough), |λm − 1| ≤ ω/(4L2), by (9.4) for L large
enough.
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9.6. A preliminary lemma. In the proof of Theorem 9.3 and in Sect. 10 as well we will
use Lemma 9.5 below. With reference to (9.6), define for m ∈ ML ,

wm;a(r) = wm(r)e
a|r ·e1−xm |, a ≥ 0, (9.27)

km(n, r) := min
{
n, (|r · e1 − xm | − (s + 1))1|r ·e1−xm |−(s+1)>0

}
, (9.28)

where s is as in (9.5).

Lemma 9.5. Let δ be as in (9.5). Then there exist positive constants L∗, a0, c and
δ1 ∈ (δ, 1) such that for any 0 < a < a0 and L∗ > L the following holds. If m ∈ ML
then for any n ≥ 1, ∫

K n
m(r, r

′)wm;a(r ′)dr ′ ≤ cδkm (n,r)
1 wm;a(r). (9.29)

All the above coefficients can be taken uniformly in m ∈ ML .

Proof. Call x = r · e1 and Ps(r, r ′) = Km(r, r ′)1|x−xm |≥s and = 0 otherwise; let Er be
the expectation of the Markov process with transition probability Km starting from r so
that ∫

K n
m(r, r

′)wm;a(r ′)dr ′ = Er
(
wm;a(r(n))

)
.

We decompose the expectation on the r.h.s. by using the sets A0 ={r(·) : |x(0)−xm |≤s},
Ak :=

{
r(·) : |x(t)− xm | > s, t = 0, .., k − 1; |x(k)− xm | ≤ s

}
, k ≥ 1,

Bh :=
{

r(·) : |x(t)− xm | > s, t = h, .., n; |x(h − 1)− xm | ≤ s
}
, h ≥ 1,

Cn =
{

r(·) : |x(t)− xm | > s, t = 0, .., n
}
, Dn =

{
r(·) : |x(n)− xm | ≤ s

}
.

Then, ∫
K n

m(r, r
′)wm;a(r ′)dr ′ =

∫
Pn

s (r, r
′)wm;a(r ′)dr ′

+
∑

n≥h>k

∫
Pk

s (r, r0)1|x0−xm |≤s Er0

× (1|r(h−k−1)·e1−xm |≤sφn−h(r(h−k))
)

dr0,(9.30)

where φl(r) :=
∫

Pl
s (r, r

′)wm;a(r ′)dr ′ for l ∈ N. By (9.8), (9.5) and (9.7) there is c so

that ∫
Pl

s (r, r
′)wm;a(r ′)dr ′ ≤ c

[
λ−1

m eaδ
]l
wm;a(r) (9.31)

because |x ′ − x | ≤ l. By (9.4) for L large and a small enough λ−1
m eaδ =: δ1 < 1. Note

that only for k ≥ km(r, n) the corresponding terms in (9.30) are nonzero, hence∫
K n

m(r, r
′)wm;a(r ′)dr ′ ≤ c

∑
n≥h>km (r,n)

δk+n−h
1 wm;a(r),

and (9.29) then follows. By the last item in Subsect. 9.1 all coefficients in the above
bounds can be chosen uniformly in m ∈ ML so that the proof of the lemma is
complete. ��
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9.7. Proof of Theorem 9.3. Given n call n0 the integer part of n/2 and shorthand ξn =
(r(n), r ′(n)). Then

Eξ0

(
W [ξn]

) = Eξ0

(
Eξn0

(
W [ξn]

) {
1xn0 �=x ′

n0
+ 1xn0 =x ′

n0

})
. (9.32)

When xn0 �= x ′
n0

we bound W [ξn] ≤ wm
(
x(n)

)
+wm

(
x ′(n)

)
, namely we drop the char-

acteristic function that r(n) �= r ′(n) so that the expectations relative to r(·) and r ′(·)
uncouple. Then by Lemma 9.5 with a = 0, Eξn0

(
W [ξn])1xn0 �=x ′

n0
≤ cW (1)[xn0 , x ′

n0
],

hence by Theorem 9.1,

Eξ0

(
Eξn0

(
W [ξn])1xn0 �=x ′

n0

)
≤ c′W [ξ0]e−ω(1)n0 . (9.33)

To bound Eξn0

(
W [ξn]

)
with xn0 = x ′

n0
we recall from Theorem 9.1 and the definition of

Pξ0 that x(i) = x ′(i) for all i ≥ n0, so that

W [ξn] = 2wm(x(n))1yn0 �=y′
n0
. (9.34)

We distinguish two cases: First case, |x0 − xm | > n. We bound W [ξn] ≤ 2wm(x(n))
and get

Eξ0

(
Eξn0

(
W [ξn])1xn0 �=x ′

n0

)
≤ 2Er0

(
wm(r(n))

)
≤ cδn

1wm(r0) (9.35)

having used Lemma 9.5 with a = 0 and with c above a suitable constant.
Second case, |x0−xm | ≤ n. To decouple x from (y, y′)we use Hölder. Let p−1+q−1 = 1
then, supposing (for instance) wm(x0) ≤ wm(x ′

0),

Eξ0

(
Eξn0

(
W [ξn]

)
1xn0 =x ′

n0

)
≤ 2Er0

(
wm(r(n))

p
)1/p

×Pξ0

( {
x(n0) = x ′(n0); y(n) �= y′(n)

} )1/q
. (9.36)

We use the second inequality in (9.6) to write

wm(r)
p ≤
[
(c

√
L)eα

′′
m |x−xm |]p−1

e−1
m (r) = (c

√
L)p−1wm;a(r), a = α′′

m(p − 1).

(9.37)

Taking p−1 > 0 small enough we can apply Lemma 9.5 and recalling that |x0−xm | ≤ n
we get

Er0

(
wm(x(n))

p
)

≤ c′(
√

L)p−1wm;a(r0)δ
|x0−xm |
1 ≤ c′′(

√
L)p−1wm(r0). (9.38)

The last inequality is valid for p − 1 > 0 small enough. Then
{

Er0

(
wm(x(n))

p
)}1/p ≤ C(

√
L)1−1/pwm(r0)em(r0)

1−1/p ≤ C ′wm(r0), (9.39)

having used the first inequality in (9.6).
Conclusions. In the first case, |x0 − xm | > n, the bound (9.35) concludes the proof,

while in the second case we need to prove that Pξ0

( {
x(n0) = x ′(n0); y(n) �= y′(n)

} )
is exponentially small, which is done in the next subsection.
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9.8. Coupling the y coordinates. In this subsection we suppose r0 = (x0, y0) and r ′
0 =

(x0, y′
0), namely that the initial x coordinates are the same. This is indeed what happens

at time n0 in the case we have to study and, to simplify notation, we have just reset
time n0 equal to 0. We will prove that at a time cL2 the y coordinates are the same with
probability not smaller than a number π > 0, uniformly in ξ0 and L . By iteration this
will prove that (shorthanding ξ0 = (r0, r ′

0))

Pξ0

(
{y(n) �= y′(n)}

)
≤ (1 − π)e−n/(cL2) (9.40)

which inserted in (9.36) will conclude the proof of (9.18). Let

τ = inf
{
n ∈ N : |y(n)− y′(n)| ≤ 1

}
. (9.41)

We will prove that

Proposition 9.6. There are k1 > 0 and π1 > 0 so that

inf
x0,y0,y′

0

Pξ0

(
{τ ≤ k1L2}

)
≥ π1. (9.42)

Proposition 9.6 and Lemma 9.2 prove (9.40) with π = π0π1 and cL2 > k0 + k1L2. In
the sequel we will prove Proposition 9.6. Since y(n) and y′(n) are independent of each
other till τ , we may as well and will in the sequel consider Pξ0 defined so that y(n) and
y′(n) are independent of each other at all times. Shorthand,

Zn = [y′(n)− y′(0)] − [y(n)− y(0)],
and call

σ := inf
x

∫
P(x, x ′) qx,x ′(z)z2 dx ′dz > 0.

Positivity follows because there is c so that
em(r ′)
em(r)

≤ c for any |(r ′ − r) · e1| ≤ 2, see

[13].

Lemma 9.7. There is c so that for any n ≥ 1 for any ξ0 with x0 = x ′
0,

Eξ0

(
Zn
) = 0, Eξ0

(
Z2

n

) ≥ 2σ n, Eξ0

(
Z4

n

) ≤ c n2. (9.43)

Proof. We write zn = Zn − Zn−1, n ≥ 1, so that Zn = z1 + · · · + zn . For any k, n
with k < n and any measurable function f on R, using that J (0, r) depends on |r | and
qx,x ′(z) = qx,x ′(−z),

Eξ0

(
f (zk)zn

) = Eξ0

(
f (zk)

∫
(u′ − u)qxn−1,x (u)qxn−1,x (u

′)P(xn−1, x)dudu′dx
)
,

= 0

hence the first equality in (9.43) after setting f = 1. Analogously, recalling also the
definition of σ ,

Eξ0

(
z2

n

) = Er0,r ′
0

( ∫
(u′ − u)2qxn−1,x (u)qxn−1,x (u

′)P(xn−1, x)dudu′dx
)

= Eξ0

( ∫
(u′2 + u2)qxn−1,x (u)qxn−1,x (u

′)P(xn−1, x)dudu′dx
)

≥ 2σ,
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hence the lower bound in (9.43). The upper bound in (9.43) is derived by noticing that
by symmetry

Eξ0

(
Z4

n

) = Eξ0

(∑
j≤n

z4
j + 12

∑
i< j≤n

z2
i z2

j

)
≤ cn2.

��
Proof of Proposition 9.6. We have {τ ≤ n} ⊇ {|Zn| > L , sign(Zn) �= sign(y′(0) −
y(0))} because y′(k)− y(k) jumps at most by 2. By symmetry,

Pξ0

(|Zn| > L , sign(Zn) �= sign(y′
0 − y0)

) = 1

2
Pξ0

(|Zn| > L
)

so that

Pξ0

(
τ ≤ n

) ≥ 1

2
Pξ0

(|Zn| > L
)
.

We have

Eξ0(Z
2
n) = Eξ0(Z

2
n1|Zn |≤L) + Eξ0(Z

2
n1|Zn |>L)

≤ L2 + Eξ0(Z
4
n)

1/2Pξ0(|Zn| > L)1/2.

Moreover, using (9.43) and the choice of σn, we obtain that for n > L2σ−1,

Pξ0(|Zn| > L)1/2 ≥ 2σn − L2

(cn2)1/2
≥ σ√

c
,

hence (9.42). ��

10. Spectral Gap

We regard here �m = Am − 1, m ∈ ML , as an operator on the weighted L2-spaces
L2(QL , p−1

m dr) or on L2(Q∞,L , p−1dr) if m = m̄e and denote by 〈·, ·〉m the scalar
product. On such spaces �m is self-adjoint, it has eigenvalue λm − 1 with eigenvector
the planar function em . We will prove here that:

Theorem 10.1. There is a > 0 so that for all L large enough,

sup
f :〈 f,em 〉m=0

〈 f,�m f 〉m

〈 f, f 〉m
≤ − a

L2 . (10.1)

A crucial point in the proof of Theorem 10.1, which is given in the remaining of this
section, is that the operator �m is self-adjoint. The mere existence of a spectral gap
then follows from Weyl’s theorem by the same argument used in [16] for the d = 1
case. The argument is however abstract and does not allow to determine the dependence
on L of the spectral gap. Notice on the other hand that for the Allen-Cahn equation
mt = �m − V ′(m) the question trivializes because the linearized operator is a sum of

two commuting operators, { d2

dx2 − V ′′(m̄(x))} +
d2

dy2 , so that it is the non-local nature

of the interaction which is behind all difficulties we find here.
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Notation. To simplify notation we fix m ∈ ML and shorthand 〈·, ·〉 for 〈·, ·〉m . We call
M the self adjoint operator equal to Am on { f : 〈 f, em〉 = 0}, while Mem = 0. We
denote by ‖M‖ its norm:

‖M‖ = sup
f �=0

|〈 f,M f 〉|
〈 f, f 〉 = sup

f :〈 f,em 〉=0

|〈 f, Am f 〉|
〈 f, f 〉 . (10.2)

Lemma 10.2. If there is a > 0 so that for all L large enough,

log ‖M‖ ≤ − 2a

L2 (10.3)

then (10.1) holds.

Proof. If (10.3) holds, then

sup
f :〈 f,em 〉=0

〈 f, (Am − 1) f 〉
〈 f, f 〉 ≤ −1 + ‖M‖ ≤ −1 + e−2a/L2 ≤ − a

L2

for L large enough. ��
To bound log ‖M‖ we use the spectral theorem:

Proposition 10.3.

log ‖M‖ = sup
f �=0,‖ f ‖∞<∞

lim inf
n→∞

1

2n
log

{ 〈 f,M2n f 〉
〈 f, f 〉

}
. (10.4)

Equality holds with limsup as well.

Proof. Equation (10.4) is a direct consequence of the spectral theorem for self-adjoint
operators, as we are going to see. Let 〈 f, f 〉 = 1 and n be even. Since 〈 f,Mn f 〉 ≤ ‖M‖n ,

lim sup
n→∞

1

2n
log〈 f,M2n f 〉 ≤ log ‖M‖. (10.5)

For the reverse inequality we use the spectral theorem to say that for any 0 ≤ λ < ‖M‖
there is a non-zero orthogonal projection Pλ which commutes with M and such that
for any n ≥ 1, M2n Pλ ≥ λ2n Pλ. Since L∞ is dense in L2, given any 0 ≤ λ < ‖M‖
there are f and R such that ‖ f ‖∞ < R and Pλ f �= 0. Then writing f in 〈 f,M2n f 〉 as
f = Pλ f + (1 − Pλ) f and expanding,

〈 f,M2n f 〉 ≥ 〈Pλ f,M2n Pλ f 〉 ≥ λ2n〈Pλ f, Pλ f 〉, 〈Pλ f, Pλ f 〉 > 0,

the first inequality using that M and Pλ commute, so that the mixed terms vanish. Hence

sup
f :〈 f, f 〉=1,‖ f ‖∞<∞

lim inf
n→∞

1

2n
log〈 f,M2n f 〉 ≥ log λ,

thus

sup
f :〈 f, f 〉=1,‖ f ‖∞<∞

lim inf
n→∞

1

2n
log〈 f,M2n f 〉m ≥ log ‖M‖

which, together with (10.5), yields (10.4). ��
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Proof of (10.3). We consider f such that 〈 f, em〉 = 0, 〈 f, f 〉 = 1 and ‖ f ‖∞ ≤ R and
we look for upper bounds on 〈 f,Mn f 〉, n even. We define g = f/em . Recalling (9.19),∫

gμ = 〈 f, em〉 = 0. By (9.8) and shorthanding K for Km ,

λ−n
m 〈 f,Mn f 〉 =

∫
g[K ng]μ dr =

∫
g(r)g(r ′)[K n(r, r ′)− μ(r ′)] dr ′μ(r)dr

=
∫

g(r)g(r ′)[K n(r, r ′)− K n(r ′′, r ′)]μ(r ′′) dr ′′dr ′μ(r)dr,

where we have used the invariance of μ with respect to K , see (9.19). Calling Qn
r0,r ′

0

(dr, dr ′) the distribution of (r(n), r ′(n)) of the Markov chain with law Pr0,r ′
0

defined in
Subsect. 9.4 we have∫

g(r ′)[K n(r, r ′)− K n(r ′′, r ′)]dr ′ =
∫

[g(r1)− g(r2)] Qn
r,r ′′(dr1dr2). (10.6)

With such notation,

λ−n
m 〈 f,Mn f 〉 =

∫
g(r) [g(r1)−g(r2)] Qn

r,r ′′(dr1dr2)μ(r
′′) dr ′′μ(r)dr.

With reference to (9.5)-(9.6), we split the domain of integration into the two sets {|x −
xm | ≤ n, |x ′′ − xm | ≤ n} and its complement, denoting by x and x ′′ the x coordinates
of r and r ′′. We call

I :=
∫

{|x−xm |≤n,|x ′′−xm |≤n}
g(r) [g(r1)−g(r2)] Qn

r,r ′′(dr1dr2)μ(r
′′) dr ′′μ(r)dr. (10.7)

Recalling that g = f/em , ‖ f ‖∞ ≤ R and with W defined in (9.16), proceeding as in
(9.21),

I ≤ R2
∫

{|x−xm |≤n,|x ′′−xm |≤n}

W [r1, r2]
em(r)

Qn
r,r ′′(dr1dr2)μ(r

′′) dr ′′μ(r)dr

≤ cR2e−(ω/L2)n
∫

{|x−xm |≤n,|x ′′−xm |≤n}

W [r, r ′′]
em(r)

μ(r ′′) dr ′′μ(r)dr,

where we have used (9.18). By the definition of W [r, r ′′] we have for r �= r ′′,

W [r, r ′′]
em(r)

= 1

e2
m(r)

+
1

em(r ′′)em(r)
,

hence ∫

{|x−xm |≤n,|x ′′−xm |≤n}

W [r, r ′′]
em(r)

μ(r ′′) dr ′′μ(r)dr

≤
∫

{|x−xm |≤n}
p−1

m dr +

[∫
em p−1

m dr

]2

.
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By (9.6) and (9.7),
∫

em ≤ c
√

L , so that for a suitable constant c,

I ≤ cR2e−(ω/L2)nnL . (10.8)

Note that in the case QL the better bound

〈 f,Mn f 〉 ≤ cR2e−(ω/L2)n L2

follows directly from the spectral gap in L∞, see (9.25). For the channel QL , however,
the entire analysis presented in this section is necessary.

We will see below that all other contributions to λ−n
m 〈 f,Mn f 〉 are smaller (for L

large enough). In the complement of {|x − xm | ≤ n, |x ′′ − xm | ≤ n} we use (10.6)
backwards to rewrite the integrals in terms of g(r ′)[K n(r, r ′)− K n(r ′′, r ′)]. We will not
exploit the minus sign and bound separately the two terms in the difference. We start
with the term

Z : =
∫

{|x−xm |≥n;|x ′′−xm |≤n}
g(r)g(r ′)K n(r, r ′) μ(r ′′) dr ′′dr ′μ(r)dr

≤
∫

{|x−xm |≥n}
|g(r)g(r ′)|K n(r, r ′) dr ′μ(r)dr =: Ẑ . (10.9)

Call Ks(r, r ′) = K (r, r ′) if |x − xm | ≥ s and 0 otherwise. Then Ẑ =
n∑

h=0

Zh , where

Z0 =
∫

{|x−xm |≥n}
|g(r)g(r ′)|K n

s (r, r
′) dr ′μ(r)dr,

Zh =
∫

{|x−xm |≥n,|x ′′−xm |≤s}
|g(r)g(r ′)|K n−h

s (r, r ′′)K h(r ′′, r ′) dr ′′dr ′μ(r)dr.

(10.10)

To bound Z0 we use (9.5) to write

Ks(r, r
′) ≤ δ J neum(r, r ′) em(r ′)

λmem(r)

and get, with ‖ f ‖2
2 =

∫
f 2,

Z0 ≤ λ−n
m δn−1

∫
| f (r) f (r ′)|(J neum)n(r, r ′) dr ′dr

≤ ‖ f ‖2
2λ

−n
m δn−1, (10.11)
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Zh ≤ γh R
∫

{|x−xm |≥n,|x ′′−xm |≤s}
|g(r)|K n−h

s (r, r ′′) dr ′′μ(r)dr

≤ γh R2
∫

{|x−xm |≥n}
em(r),

γh := sup
|x ′′−xm |≤s

∫
em(x

′)−1 K h(r ′′, r ′)dr ′ ≤ c
√

L. (10.12)

The last inequality follows from Lemma 9.5 and (9.6), with c = c(s) a constant inde-
pendent of h. By (9.6),

sup
|x−xm |≥n

∫
em(r) ≤ c

√
Le−(αm/2)n (10.13)

so that Zh ≤ cR2 Le−(αm/2)n . In conclusion, there is c so that

Z ≤ c
(
‖ f ‖2

2λ
−n
m δn + n R2 Le−(αm/2)n

)
. (10.14)

The next term we examine is

B :=
∫

{|x−xm |≥n;|x ′′−xm |≤n}
|g(r)g(r ′)|K n(r ′′, r ′) μ(r ′′) dr ′′dr ′μ(r)dr

≤ cR2
√

Le−(αm/2)n
∫

{|x ′′−xm |≤n}

K n(r ′′, r ′)
em(x ′)

μ(r ′′) dr ′′dr ′

≤ cR2
√

Le−(αm/2)n
∫

μ(r ′)
em(x ′)

dr ′ ≤ c′ R2 Le−(αm/2)n, (10.15)

where we have used (10.13).
The next term is

C :=
∫

{|x−xm |≤n;|x ′′−xm |≥n}
|g(r)g(r ′)|K n(r ′′, r ′) μ(r ′′) dr ′′dr ′μ(r)dr

which is equal to Z , see (10.9). The next one is

D :=
∫

{|x−xm |≤n;|x ′′−xm |≥n}
|g(r)g(r ′)|K n(r, r ′) μ(r ′′) dr ′′dr ′μ(r)dr

which is equal to B, see (10.15). The last two terms are G and H :

G :=
∫

{|x−xm |≥n;|x ′′−xm |≥n}
|g(r)g(r ′)|K n(r, r ′) μ(r ′′) dr ′′dr ′μ(r)dr

≤ ce−2αm n
∫

{|x−xm |≥n}
|g(r)g(r ′)|K n(r, r ′) dr ′μ(r)dr = ce−2αm n Ẑ ,
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where Ẑ is defined in (10.9). By (10.13) and (9.19),

H :=
∫

{|x−xm |≥n;|x ′′−xm |≥n}
|g(r)g(r ′)|K n(r ′′, r ′) μ(r ′′) dr ′′dr ′μ(r)dr

≤ cR2
√

Le−(αm/2)n
∫

K n(r ′′, r ′)
em(r ′)

μ(r ′′) dr ′′dr ′ ≤ c′ R2 Le−(αm/2)n .

In conclusion we have proved that there is a constant c so that

〈 f,Mn f 〉 ≤ cλn
m

(
R2e−(ω/L2)nnL + ‖ f ‖2λ−n

m δn + (n + 1)R2 Le−(αm/2)n
)
.

Hence for L large enough,

lim sup
n→∞

1

2n
log〈 f,M2n f 〉 ≤ log λm − ω

L2

which by (9.4) yields and Proposition 10.3 yields (10.3). ��

11. Extension to d > 2

While the paper is written for a strictly two dimensional system most of the arguments
are not really two dimensional. We will sketch here the proof of the extension to d = 3
and see what is missing in d > 3. Thus we call QL = [−L/2, L/2]d with the cost of
tunneling still denoted by PL .

Theorem 11.1. In d = 3 for L large enough PL = L2 F (1)L (m̂L) and (2.21)–(2.22) are
also valid.

Sketch of proof. The dimensional restriction to d = 3 comes uniquely from the limit
Wulff problem as the isoperimetric inequality below is proved only in d = 3. The
remaining parts of the proof work instead also in d > 3.

The obvious analogy of (5.1) is,

Wα,L := mβ1{x : x1≥Lϑα} − mβ1{x : x1<Lϑα},

and Nδ,L is defined as in (7.2).
As in the two-dimensional case, the first step consists in showing that any minimizing

path has to pass through a small neighborhood of Wα,L for α sufficiently small. This
is a direct consequence of the 3-d version of the limit Wulff-problem (2.14). Indeed,
Proposition 2.1 holds in three dimensions as well:

11.1. Isoperimetric problem in d = 3. For θ = 0 the solution to the isoperimetric prob-
lem in the unit three dimensional cube Q1 has the boundary which is parallel to one of
the planes parallel to the faces of the cube, see Corollary 2 of [29]. On the other hand,
for any θ ∈ (0, 1) the solutions to the isoperimetric problem in Q1 belongs to one of the
five types described in Fig. 9 of [29].

We claim that there exists an ε > 0 such that the solution Eθ with θ ∈ (−ε, ε) having
volume 1/2 − θ is such that Q1 ∩ ∂Eθ is contained in plane parallel to a coordinate
plane.
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Assume now by contradiction that there exists a sequence (θn) ⊂ (0, 1) converging
to 1/2 such that Q1 ∩ ∂Eθn is not contained in a plane parallel to a coordinate plane.
Then Eθn belongs to one of the four remaining types listed in [29]. Passing to a (not
relabeled) subsequence if necessary, by the compactness theorem of bounded variation
functions with uniformly bounded BV norm, it follows that the sequence (Eθn ) con-
verges in L1(Q1) to a finite perimeter set E as n → +∞, the boundary of which cannot
be contained in a plane parallel to a coordinate plane.

11.2. Couplings and Wasserstein distance. We refer here to Subsect. 9.4 (with the same
title) where we have defined the coupling used in the proof of the spectral estimates and
which must be modified in d > 2. Call xi , i = 1, .., d, the coordinates, x1 the one in
the direction of the channel, xi , i > 1 the transversal ones. The coupling is then defined
iteratively so that once x ′

j = x ′′
j , j ≤ k−1, they stay together while the other coordinates

move independently until x ′
k = x ′′

k and so on. Thus at each step the requirement is that
two one dimensional walks meet with each other and the estimate is then the same as
in Sect. 9. The remaining analysis of the spectral estimates is essentially independent of
the dimensions, and details are omitted.

11.3. The Bodineau-Ioffe argument. As a direct consequence of the Wulff estimate
above we obtain Proposition 7.1. The next step consists in passing to the problem in the
channel by finding vertical connections (which are now hyperplanes instead of stripes)
close to the sides of the cube. In other words, we have to show that the interface is “flat”
even on the mesoscopic scale, or, again phrased differently, that fingers do not grow too
far. We sketch the proof for any dimension d ≥ 2.

Define

S(n) := [n�+, (n + 1)�+)× [−L/2, L/2)d−1,

then we immediately obtain from the proof of Proposition 7.2 that for any m ∈ Nδ,L

there are n± ∈ Z±
L such that �(ζ,�−,�+)(m, ·) �= ±1 in at most

Nδ := cδLd−1

(
�+

(θ1 − θ0)ζ�
d−

)
(11.1)

hypercubes of D(�+) inside S(n±). The constant c depends only on the dimension.
Let us now explain what we mean by a vertical connection (Definition 5.2) in higher

dimensions.

Definition 11.2. A vertical connection B is a D(�+)-measurable connected set such
that for any (y2, . . . , yd) ∈ [−L/2, L/2] there exists x ∈ [−L/2, L/2] such that
(x, y2, . . . , yn) ∈ B.

In particular the union of all cubes with sidelength �+ touching a given hyperplane normal
to the x1-axis is a vertical connection.

Now we show that Proposition 7.2 can be extended to higher dimensions. Let us
prove the existence of the positive connection B+, the existence of B− being similar. To
proceed we need the following definitions, see also Fig. 3:

A(i) := {x : x1 ∈ [i�+, (i + 1)�+)} ∩ QL ,

H(i) := A(i) ∩ {x : �(ζ,�−,�+)(m, x) ∈ {0,−1}},
f (i) := |H(i)|.
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S(n  )+

0 A(i) L/2

S(n  )-

Fig. 3. We depict -for simplicity in a two-dimensional setting- the plus-squares (white), the minus- and zero-
squares (dark), the slices A(i), S(n±) and, in gray color, the set H(i)

Proof. Case 1. Let ML := �−1
+ L/2 be the number of slices in the right half of the cube.

Assume that there exists i0 ∈ {n+, . . . ,ML} such that

f (i0) < C0ζ
2�d−

ML∑
j=i0

( f ( j))
d−2
d−1 , (11.2)

where C0 is a constant to be specified later, which depends only on J, β and the dimen-
sion. We show the existence of a connection B+ by contradiction, i.e. if there is no
connection, then we can construct a function m2 such that a connection exists for m2
and F(m) ≥ F(m2) + ε′ for some ε′ > 0, thus deriving the desired contradiction as in
the 2d-case.

The function m2 is constructed in two steps. First, we obtain a function m1 by “cut-
ting” the contour in the most naive way at level i0 : Define m1(x) := mβ for x ∈ H(i0)

and m1(x) = m(x) elsewhere. Then there is a c1 depending only on β, J and the
dimension such that

FL(m1) ≤ FL(m) + c1 f (i0)�
d−1
+ .

m1 has the property that the sets {x : x1 > �+i0 and �(ζ,�−,�+)(m, x) ∈ {0,−1}} and
A(n+) are not connected.

We can then apply Theorem 5.6 and conclude that there exists m2 such that m2 = m
on {x1 < �+n+} and

FL(m2) ≤ FL(m1)− c2ζ
2(�−)d N0 ≤ FL(m) + f (i0)c1�

d−1
+ − c2ζ

2(�−)d N0,

where N0 denotes the number of zero-cubes in {x : (i0 + 1)�+ ≤ x1 ≤ �+ ML}.
It remains to estimate N0. Note that by definition of contours the boundary of⋃

j≥i0
H( j) is a union of 0-cubes, hence

N0 ≥ (2d�d−1
+ )−1

∑
j≥i0

Hd−1(∂P[H( j)]),
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where Hd−1 is the (d-1)-dimensional Hausdorff measure, and P[(x1, . . . , xn)]
= (x2, . . . , xn) is the projection on the plane {x1 = 0}. By the isoperimetric inequality,

Hd−1(∂P[H( j)]) ≥ cd−1 P[H( j)] d−2
d−1 = cd−1 f ( j)

d−2
d−1 ,

where cd−1 is the isoperimetric constant in the interior of [0, L]d−1. (Note that the iso-
perimetric inequality holds because we may assume that | f ( j)| ≤ (1/2)Ld−1 for all
i0 ≤ j ≤ ML , or N0 ∼ ML/4 follows immediately for δ sufficiently small.)

Therefore, if (11.2) holds, then N0 ≥ 2d�d−1
+

C0cd−1ζ
2�d−

f (i0), and

F(m)− F(m2) ≥ f (i0)�
d−1
+ (c1 − 2dc2/(cd−1C0)) > α f (i0),

where we can require α > 0 for an appropriate choice of C0. Note that we may assume
| f (i0)| ≥ 1, or H(i0) contains no cube and therefore A(i0) is a connection. Hence this
contradicts (7.4) for L sufficiently large and C0 chosen appropriately.
Case 2. On the other hand, if (11.2) is false for all i ∈ {n+, . . . , �

−1
+ (L/2)} then, by

solving the resulting difference inequality for the function g(i) :=∑i+1
j=n+

( f ( j))
d−2
d−1 we

obtain that f (n+) ≥ cLd−1, where c does not depend on δ. (See also Sect. 4.12 (proof
of Lemma 4.4) in [5].) This contradicts the fact that f (n+) ≤ δLd−1 for δ sufficiently
small. ��
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