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The interacting Bose gas

A quantum system of N particles in a box Λ ⊂ Rd with mutually repellent interaction is

described by the Hamilton operator

H(N)

a,W,v = −a

N∑
i=1

∆i +
N∑
i=1

W (xi) +
N∑

i,j=1

v(xi − xj), x1, . . . , xN ∈ Rd,

■ The kinetic energy term ∆i acts on the i-th particle.

■ The trap potential W : Rd → [0,∞] satisfies lim|x|→∞ W (x) = ∞ and∫
Rd e

−βW (x) dx < ∞ for any β > 0.

■ The pair potential v : Rd → [0,∞) is assumed (for simplicity) to be bounded and

continuous.

We concentrate on Bosons and introduce a symmetrisation. The symmetrised trace of

exp{−βH(Λ)

N } at fixed temperature 1/β ∈ (0,∞) in Λ is the

partition function: ZN (β, a,W, v) = Tr+
(
e−βH(N)

a,W,v
)
= ZN (βa, 1, 1

a
W, 1

a
v).

(the trace of the projection on the set of symmetric (= permutation invariant) wave functions).

The interacting Bose gas in the semiclassical limit · Munich, 31 August 2023 · Page 2 (16)



The interacting Bose gas

A quantum system of N particles in a box Λ ⊂ Rd with mutually repellent interaction is

described by the Hamilton operator

H(N)

a,W,v = −a

N∑
i=1

∆i +
N∑
i=1

W (xi) +
N∑

i,j=1

v(xi − xj), x1, . . . , xN ∈ Rd,

■ The kinetic energy term ∆i acts on the i-th particle.

■ The trap potential W : Rd → [0,∞] satisfies lim|x|→∞ W (x) = ∞ and∫
Rd e

−βW (x) dx < ∞ for any β > 0.

■ The pair potential v : Rd → [0,∞) is assumed (for simplicity) to be bounded and

continuous.

We concentrate on Bosons and introduce a symmetrisation. The symmetrised trace of

exp{−βH(Λ)

N } at fixed temperature 1/β ∈ (0,∞) in Λ is the

partition function: ZN (β, a,W, v) = Tr+
(
e−βH(N)

a,W,v
)
= ZN (βa, 1, 1

a
W, 1

a
v).

(the trace of the projection on the set of symmetric (= permutation invariant) wave functions).

The interacting Bose gas in the semiclassical limit · Munich, 31 August 2023 · Page 2 (16)



The model

In this talk, we consider the semiclassical limit:

a = N−d/2 and
1

N
v instead of v.

Hence, we consider

Z(MFSC)

N (β) = ZN (β,N−2/d,W, 1
N
v).

This regime is sometimes called (mean-field) semiclassical, since the squared Planck constant

in the front of the Laplace operator is replaced by N−2/d, while the interaction is of mean-field

type.

■ Every particle interacts with every particle on the same scale one,

■ The total interaction of the system is scaled to order N .

■ Each of the three energies (kinetic, trap, interaction) contributes on the same scale.

■ The N particles are confined in a finite region (not dependent on N ).

(The special case d = 3, W (x) = 1
4
ω2|x|2, ||Hess(v)|| ≤ 1

2
ω was handled in

[DEUCHERT/SEIRINGER (2021)], see later.)
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Purpose and comments

■ We derive a variational formula for the free energy in which all parts (condensate and

remaining particles) appear with spatial information.

■ We want to start from the Feynman–Kac formula, and the variational formula explicitly

shows the family of cycles of all lengths and their spatial distribution, and the remaining

particles in all long cycles.

■ The long cycles come with interaction energy only and have no entropy term .

■ This formula will have always minimizers; the term coming from the long cycles might be

zero or non-trivial. We want to see a phase transition in β here.

■ We want to employ combinatorial and probabilistic arguments (theory of large deviations

of sums of i.i.d. random variables).

■ The FK formula seems too cumbersome to handle also the off-diagonal long-range order

(ODLRO) explicitly. However, (work in progress), we will give evidence for the relation

long loops ⇐⇒ condensate.
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Illustration of condensate phase transition

Subcritical (low β) Bose gas

without condensate

Supercritical (large β) Bose gas

with additional condensate (red)
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Main result

Limiting free energy: fMFSC(β) = − 1

β
lim

N→∞

1

N
logZ(MFSC)

N (β).

Variational characterisation

fMFSC(β) = inf
µ,µc∈M(Rd) :

µ+µc∈M1(Rd)

(〈
(µ+ µc), v ⋆ (µ+ µc)

〉
+ ⟨W,µ+ µc⟩+

1

β
I(µ)

)
,

where

I(µ) = inf
p=(pk)k∈N∈[0,1]N :∑

k kpk=µ(Rd)

(
S(p) + inf

(ρk)k∈M1(Rd)N :

µ=
∑

k kpkρk

∑
k∈N

pk
〈
ρk, log

dρk
dLeb

〉)
,

and

S(p) =
∑
k∈N

pk log
(k
e
pk(4πβk)

d/2
)
.

Remark: ⟨W,µ⟩ =
∑

k∈N kpk⟨W,ρk⟩ = − 1
β

∑
k∈N pk⟨ρk, log

1
e−βkW ⟩, and an entropy

formula can be substituted.
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Interpretation and comments

We are based on the Feynman–Kac formula, which writes the partition function in terms of a

family of Brownian cycles (=⇒ later).

■ ρk = spatial density (normalized) of the loops of length k

■ p = (pk)k∈N = distribution of lengths (normalized by
∑

k kpk = µ(Rd))

■ S(p) = combinatorial entropy

■ µ = spatial distribution (unnormalized) of the short loops

■ µc = spatial distribution of the long loops, normalized such that µ(Rd) + µc(Rd) = 1.

■ Given µ, the distribution µc is an equilibrium measure in the sense that it minimizes

⟨µc, v ⋆ µc⟩+ ⟨µc,W + 2v ⋆ µ⟩ subject to having total mass 1− µ(Rd). In general,

such minimizers are highly non-trivial.

■ In the free case (v = 0), and W = +∞1lQc with a box Q of volume 1/ρ,

fMFSC(β) =
1

β
inf

µ∈M≤1(Q)
I(µ).

and infρk ⟨ρk, log
ρk

LebQ
⟩ = log ρ. Then I(µ) is the variational formula that appears in

the free Bose gas in the thermodynamic limit with ρ equal to the particle density. It shows

the famous phase transition at ρ = ρc(β) = (4πβ)−d/2 ∑
k k

−d/2.
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The Feynman–Kac formula

We write ξ(β)
x,y for the canonical Brownian bridge measure from x to y with time interval [0, β]

and denote the set of integer partitions of N by

PN =
{
l = (lk)k∈N ∈ NN

0 :
∑
k∈N

klk = N
}
.

Starting point of proof

ZN (β, a,W, v) =
∑

l∈PN

( ∏
k∈N

(4πβak)−
d
2
lkγ

lk
βak, 1

a
W

lk! klk

)⊗
k∈N

(
ξ
(βak, 1

a
W ))⊗lk

[
e
−βG(l)

βa,v

]
,

where

ξ
(β,W )

(df) =

∫
Rd dx e−βWβ(f) ξ(β)

x,x(df)

(4πβ)−d/2γβ,W
,

and γβ,W is the normalization such that ξ
(β,W )

is a probability measure.

■ trap interaction: Wβ(f) =
1
β

∫ β

0
W (f(s)) ds.

■ mutual interaction: Vβ(f, g) =
1
β

∫ β

0
v(f(s)− g(s)) ds.

■ All the mutual interactions of the legs of the cycles are summarized in G(l)

βa,v .

Recall: later a = N−2/d, and v is replaced by 1
N
v.
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Mean-field regime with a ≫ N−2/d or a ≪ N−2/d

For v ≡ 0 and W = ∞ outside a box Λ ⊂ Rd and continuous inside Λ, it was shown in

[ADAMS AND K. (2008)] for the case a = 1 that

lim
N→∞

1

N
logZN (β, 1,W, 0) = βλ(W ),

where λ(W ) is the largest L2-eigenvalue of ∆+W . The r.h.s. is the exponential rate for the

contribution from one single Brownian loop of length N (i.e., time interval [0, β]). This admits

the interpretation of 100 percent condensation.

Conjectures:

■ This is true for any a ≫ N−2/d and many v, since all finite-length cycles are

suppressed: all the partition terms 1/lk! with lk ≍ N cannot be balanced by the term

a− d
2
lk ≪ 1

N
that comes from the normalization (4πβak)−d/2 of the Brownian bridge

measure.

■ Furthermore, if a ≪ N−2/d, for the same reason the finite-length cycles give a much

larger contribution than all the long loops =⇒ no condensation.
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Survey on proof of theorem (1)

Stirling’s formula and elementary computation, putting lk ≈ Npk and a = N−2/d, leads to

∏
k∈N

(4πβak)−
d
2
lkγ

lk
βak,W/a

lk! klk
≈ exp

{
−N

[
S(p)−

∑
k∈N

pk log

∫
Rd

e−βkW (x) dx
]}

.

Since the time length βN−2/d of each leg vanishes, we can approximate

VβN−2/d(f, g) ≈ v(f(0)−g(0)) and WβN−2/d(f) ≈ W (f(0)), f, g ∈ CβN−2/d .

The particles of the system are at the sites

X(k,i)

j = B(k,i)

j (0) = B(k,i)(jβN−2/d), j = 1, . . . , k.

Empirical measure of the particles in cycles of length ≤ L:

µ(l,≤L)

N =
1

N

L∑
k=1

lk∑
i=1

k∑
j=1

δ
X

(k,i)
j

≈
L∑

k=1

klk
N

1

lk

lk∑
i=1

δ
X

(k,i)
0

.

This is a mixture of independent empirical measures of i.i.d. points.
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Survey on proof of theorem (2)

Sanov’s theorem gives the rate µ 7→ inf
ρ1,...,ρL∈M1(Rd) :∑L

k=1
pkkρk=µ

L∑
k=1

pk
〈
ρk, log

ρk
fk

〉
,

where fk(x) = e−βkW (x)/
∫
Rd e

−βkW .

(
Hint:

(
ξ
(βN−2/dk,N2/dW ))⊗lk

( 1

lk

lk∑
i=1

δ
X

(k,i)
0

≈ ρk
)
≈ e

−lk⟨ρk,log
ρk
fk

⟩
, lk → ∞.

)

L-condensate: µ(l,>L)

N,c =
1

N

∞∑
k=L+1

lk∑
i=1

k∑
j=1

δ
X

(k,i)
j

Its entropy is of order eO(N
1− 2

d ) (= total time length of underlying Brownian motions)

The interaction is a function of the two empirical measures:

G(l)

βN−2/d,vN2/d ≈
〈
µ(l,≤L)

N + µ(l,>L)

N,c , v ⋆ (µ(l,≤L)

N + µ(l,>L)

N,c )
〉
.
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Phase transition

The variational formula always has a minimizer (µ, µc). (Weak topology of measures, lower

semicontinuity, compactness of level sets of entropies)

Critical thresholds:

β(1)
c = inf{β ∈ (0,∞) : there is a minimizer (µ, µc) with µc ̸= 0}, (1)

β(2)
c = inf{β ∈ (0,∞) : every minimizer (µ, µc) has µc ̸= 0}, (2)

Phase transition

1. If d ≥ 3 and β is large enough, then every minimizer (µ, µc) satisfies µc ̸= 0. In

particular, β(2)
c < ∞.

2. Assume that d ∈ N is arbitrary and that v ∈ Lp(Rd) for some p > 1. Then, if

β ∈ (0,∞) is small enough, then every minimizer (µ, µc) satisfies µc = 0. In

particular, β(1)
c > 0.
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Euler–Lagrange equations

EL–equations for minimizing ((ρk)k∈N, µc) with µ =
∑

k∈N kρk:

Define

gk =
dρk
dx

and Φ(x) = 2v ⋆ (µ+ µc)(x) +W (x), x ∈ Rd,

then we have

βkΦ(x) + log gk(x) + log
(
(4πβk)d/2k

)
= βλk, x ∈ Rd, k ∈ N,

where λ ∈ R is the Lagrange multiplier, and

Φ ≥ λ in Rd, and Φ = λ on supp(µc).
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Comparison to [DEUCHERT AND SEIRINGER (2021)] (1)

(See also semi-classical limit for fermions at zero temperature [FOURNAIS, LEWIN, SOLOVEJ

(2018)] and at positive temperature [LEWIN, MADSEN, TRIAY (2019)].)

Special case ([DS 21]):

d = 3, W (x) =
ω2

4
x2, ||Hess(v)|| ≤ 1

2
ω.

The latter assumption implies that the condensate is concentrated at 0, i.e., µc = gδ0.

For γ : R3 × R3 → [0,∞) and g ∈ [0, 1], put

F (sc)(γ, g) =
1

(2π)3

∫
R3×R3

(
p2 +W (x)

)
γ(p, x) d(p, x) +

1

2
⟨ρ, v ⋆ ρ⟩

+
1

β

1

(2π)3

∫
R3×R3

(
γ log γ − (1 + γ) log(1 + γ)

)
d(p, x),

(γ, g) is subject to the normalization (here ρ is the spatial distribution of the particles)

ρ ∈ M1(Rd) and ρ(dx) =
( 1

(2π)3

∫
R3

γ(p, x) dp
)
dx+ gδ0(dx).

Then [DS 21] says that the free energy is equal to the minimum of F (sc)(γ, g) over these γ

and g, and ρ is the particle distribution and g the total mass of the condensate.
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Comparison to [DEUCHERT AND SEIRINGER (2021)] (2)

F (sc) possesses precisely one minimizing (γ, g) with Euler-Lagrange equation

γ(p, x) =
1

exp
(
β
(
p2 +W (x) + v ⋆ ρ(x)− µ

))
− 1

,

for some chemical potential µ ≤ v ⋆ ρ(0) with [µ− v ⋆ ρ(0)]g = 0. Replacing v by λv and

making λ ∈ (0,∞) small enough, then Banach’s fixed point theorem applies and shows that

there is precisely one solution to the crucial fixed point equation

h(x) = β−3/2 1

(2π)3

∫
R3

1

exp
(
p2 + β

(
W (x) + λv ⋆ h(x)− λv ⋆ h(0)

))
− 1

dp.

It follows (after showing that there are non-trivial sub- and supercritical phases) that there is

βc ∈ (0,∞) such that g = 0 for β < βc and g > 0 for β > βc.

Observation: In this special case, the EL equations of [DS (2021)] for ρ coincide with our EL

equations for µ+ µc (expand γ(p, x) into a geometric series and use a Gaussian integral to

indentify ρ(x)), even though we were not able to map their variational problem on ours.

We might be able (work in progress) to carry out analogous arguments for our more general

case, at least in d ≥ 5.
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Some evidence for condensate ⇐⇒ particles in long loops (in progress)

As said before, proof of ODLRO with FK formula seems hard.

Alternately, consider φ : Rd → [0,∞) with ∥φ∥1 = 1 and define

a+(φ)a(φ)|f1, . . . , fN ⟩ =
N∑
i=1

⟨φ, fi⟩|f1, . . . , fi−1, φ, fi+1, . . . , fN ⟩.

Then

a+(φ)a(φ) =
N∑
i=1

[(Lφ)i + φ(xi)],

where (Lφ)i is the restriction to the i-th coordinate of the operator

Lφ(f)(x) = φ(x)

∫
Rd

fφ(y)[f(y)− f(x)] dy.

Plan: Find large-deviations rate function for the process with generator

−N−2/d ∑N
i=1 ∆i + hLφ, with h > 0, and use that to derive a formula for the free energy

in the semiclassical limit for that instead of −N−2/d ∑N
i=1 ∆i. Then show that ∂+

∂h
|h=0

depends only on µc.
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