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Random permutations

We study random (geometric) permutations, that is, a probability measure on the set

PN =
{
l = (lk)k∈N ∈ NN

0 :
∑
k∈N

klk = N
}
.

of all integer partitions, of the form

PN (l) =
1

ZN

∏
k∈N

[θ(N)

k ]lk

lk! klk
, l = (lk)k∈N ∈ PN .

For various choices of θ(N)

k = θk, such models have been studied by BETZ, UELTSCHI,

ZEINDLER and others (starting in 2009 and continuing). Motivation was the interacting Bose

gas after severe simplifications, like interchanging logarithm and integral at a decisive point.

In this work, we start from the interacting Bose gas and simplify it by dropping all interactions

between different cycles in the thermodynamic limit. This leads to the choice

θ(N)

k = N(γk + o(1)), N →∞, k ∈ N,

with some γk ∈ (0,∞). The main point is that all the remaining self-interactions of a cycle in

the Bose gas is in the spirit of the famous self-avoiding random walk. Using extensions of

recent progress in the study of these processes (using the lace expansion), we prove the

Bose–Einstein phase transition for this simplified model in special cases.
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The interacting Bose gas

A quantum system of N particles in a box Λ ⊂ Rd with mutually repellent interaction is

described by the Hamilton operator

H(Λ)

N = −
N∑
i=1

∆i +
∑

1≤i<j≤N

v
(
|xi − xj |

)
, x1, . . . , xN ∈ Λ.

� The kinetic energy term ∆i acts on the i-th particle.

� The pair potential v : [0,∞)→ [0,∞) is (for simplicity) continuous and compactly

supported.

We concentrate on Bosons and introduce a symmetrisation. The symmetrised trace of

exp{−βH(Λ)

N } at fixed temperature 1/β ∈ (0,∞) in Λ is the

partition function: ZN (β,Λ) = Tr+

(
exp{−βH(Λ)

N }
)
.

(the trace of the projection on the set of symmetric (= permutation invariant) wave functions).

We will be working in the thermodynamic limit and will take a centred box ΛN with volume

N/ρ with ρ ∈ (0,∞) the particle density.
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First reformulation: Feynman–Kac formula (I)

A Brownian bridge B in ΛN with generator ∆ and time horizon [0, β], starting from x and

terminating at y under µ(β)
x,y :

µ(β)
x,y(A) = Px(B ∈ A;Bβ ∈ dy), A ⊂ C([0, β]→ Rd).

The operator eβ∆ has density µ(β)
x,y in the sense that

eβ∆(f)(x, y)“ = ”µ(β)
x,y(df), f ∈ C([0, β]→ Rd).

The total mass of µ(β)
x,x is (4πβ)−d/2.

InHN , we have N independent Brownian bridges B(1), . . . , B(N) ∈ C([0, β]→ Rd). The

symmetrisation is expressed by a sum over all permutations σ of 1, . . . , N with the condition

B(i)

β = B(σ(i))

0 .

The pair interaction is GN =
∑

1≤i<j≤N

V (B(i)
s , B(j)

s ),

where

V (f, g) =

∫ β

0

v(|f(s)− g(s)|) ds.
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First reformulation: Feynman–Kac formula (II)

Feynman-Kac formula [GINIBRE (1970)]:

For bc ∈ {Dir, per}, any N ∈ N and any measurable bounded set Λ,

Z(bc)

N (β,Λ) =
1

N !

∑
σ∈SN

∫
ΛN

dx1 · · ·dxN
N⊗
i=1

µ(β,bc)
xi,xσ(i)

[
e−GN (β)

]
,

where SN is the set of permutations of 1, . . . , N .

Every permutation σ with the same cycle structure gives the same contribution. Indeed,

concatenate the Brownian bridges along every cycle and carry out the integrals over the

corresponding xi ∈ ΛN . By the Markov property,∫
Rd
µ(β)
x,y(df1)µ(β)

y,z(df2) dy = µ(2β)
x,z (d(f1 � f2)), f1, f2 ∈ C([0, β]→ Rd),

where f1 � f2 ∈ C([0, 2β]→ Rd) is the concatenation of f1 and f2.

We obtain a random number of cycles of motions with random lengths, with total sum of lengths

equal to N .
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Illustration

Bose gas consisting of 14 particles, organised in three Brownian cycles, assigned to three

Poisson points. The red cycle contains six particles, the green and the blue each four.
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New model: changing the interaction

Every permutation can be decomposed into cycles, i.e., can be represented by a member of

the set of partitions. We decompose (B(i))i∈{1,...,N} into the β-legs

Bj = (Bj(s))s∈[0,β] = (B((j − 1)β + s))s∈[0,β] of the cycles and obtain a family

(B(k,i)

j )k,i,j for k ∈ {1, . . . , N}, i ∈ {1, . . . , lk}, and j ∈ {1, . . . , k}.

Then

GN =
∑

(k1,i1,j1)6=(k2,i2,j2)

V
(
B

(k1,i1)

j1
, B

(k2,i2)

j2

)
.

Now we change the model: We drop all interactions between different cycles. That is, instead of

GN , we take

GN =
N∑
k=1

lk∑
i=1

∑
1≤j1<j2≤k

V
(
B(k,i)

j1
, B(k,i)

j2

)
.
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Free energy and self-repellent Brownian bridge

Now the partition function decomposes into

Z(bc)

N (β, ) :=
∑
l∈PN

∏
k∈N

[
|Λ|Γ(bc)

Λ,k

]lk
lk! klk

,

where

Γ(bc)

Λ,k =
1

|Λ|

∫
Λ

dxµ(bc,kβ)
x,x

[
e−

∑
1≤i<j≤k V (Bi,Bj)

]
.

We are interested in the limiting free energy (with |ΛN | = N/ρ)

f(β, ρ) := − lim
N→∞

1

|ΛN |
logZ(bc)

N (β,N ), β, ρ ∈ (0,∞).

We need to introduce the self-repellent Brownian bridge

Γk = µ(kβ)

0,0

[
e−

∑
1≤i<j≤k V (Bi,Bj)

]
,

and its connective constant (convergence radius of power series with coefficients Γk)

λc(β) = lim
k→∞

Γ
−1/k
k ∈ (0,∞).

Furthermore, denote

I(p) =
∑
k∈N

pk log
pkk

Γke
, p = (pk)k∈N ∈ [0,∞)N.
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Limiting free energy

Limit of the model

Assume either periodic or zero or free (empty) boundary condition. Then

f(β, ρ) = inf
p∈[0,∞)N :

∑
k kpk≤ρ

[
I(p) +

(
ρ−

∑
k∈N

kpk
)

log λc(β)
]
.

The normalized cycle-length distribution satisfies a large-deviations principle (LDP) on the set

{p ∈ [0,∞)N :
∑
k∈N kpk ∈ [0, ρ]} on the scale |ΛN | with rate function

J(p) = I(p) +
(
ρ−

∑
k∈N

kpk
)

log λc(β)− f(β, ρ).

A minimizer p(ρ) always exists. If the critical density

ρc(β) =
∑
k∈N

λc(β)kΓk ∈ [0,∞]

is finite, then f(β, ·) has a phase transition in ρc(β), since
∑
k∈N kp

(ρ)

k = ρ ∧ ρc(β).
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Comments

� We took the cycle weights θ(N)

k = N(γk + o(1)) for N →∞ with γk = 1
ρ
Γk. For the

free Bose gas, γk = 1
ρ
(4πβk)−d/2.

� Proof is standard if Γ(Dir)

ΛN ,k
respectively Γ(per)

ΛN ,k
are replaced by Γk (which satisfies empty

boundary condition)

� Actually, one would like to have θ(N)

k = N(γk + o(1)) uniformly in k, but this is not true.

As far as I have seen the literature, this has not been noticed nor handled for zero and

periodic b.c. for the free Bose gas.

� We show that Γ(Dir)

ΛN ,k
≥ Γk(1− ε)k for any ε > 0 and all sufficiently large N and all

k � N1/d. (Opposite estimate is clear.) Similar for periodic b.c., but upper bound not yet

clear to us.
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Micro-macro phase transition

The free Bose gas (i.e, v = 0) condensates in d ≥ 3. For the interacting Bose gas, one

expects it, but is far away from a mathematical understanding. In our model, we can prove:

Phase transition

In d ≥ 5, the critical density ρc(β) is finite for any small β > 0.

� More precisely, the BM in Γk behaves like a Gaussian, like the self-repellent random walk.

� Using the conjectural values in d ≤ 4, we conjecture condensation in d ≥ 2(!!).

� The proof uses the lace expansion.

� Proofs like that exist since the early 1990s by HARA, SLADE.

� The lace expansion needs a small parameter, usually β, sometimes 1/d.

� This method can only work if there one can expand around a simple model, often the

simple random walk. This can work only in d ≥ 5.

� More recent proof strategies, starting from the lace expansion, use induction

[BOLTHAUSEN, RITZMANN 2015] or clever recursive equations for bounding the Green’s

function [BOLTHAUSEN, V.D. HOFSTAD, KOZMA 2018]. This was able to handle Gaussian

random walks. Our current work extends this.

� Big technical problem: no exact self-intersections, but only approximate ones.
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Explanation

Introduce the SRBM Green’s function

Gλ(x) =
∞∑
k=0

λkE0

[
e−

∑
1≤i<j≤k V (Bi,Bj) 1l{B(kβ) ∈ dx}

]/
dx

Then ρc(ρ) = Gλc(ρ)(0). The finiteness of this is in d ≥ 5 in the spirit of the CLT (which we

will not prove)

E0

[
e−

∑
1≤i<j≤k V (Bi,Bj) 1l{B(kβ) ∈ dx}

]/
dx ∼ C̃λc(ρ)−kk−dξde−C|x|

2

, k →∞,

with the critical exponent ξd = 1
2

. That is, for the SRBM the endpoint Bkβk
−1/2 is

asymptotically Gaussian (some amendment close to the origin). The critical behaviour

Bkβ � kξd is conjectured to be

ξ1 = 1, ξ2 =
3

4
, ξ3 ≈ .598, ξ4 =

1

2
+

Since dξd > 1 for d ∈ {2, 3, 4}, we conjecture finiteness of the Green’s function (including

d = 2!!).
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Off-diagonal long-range order (ODLRO)

The generally acknowledged definition of BEC is via the convolution operator T (bc),β
N,ΛN

on

L2(ΛN ) with kernel γN,ΛN defined by

γN,Λ(x, y) =

∫
Λ2(N−1)

dx2 . . .dxNdy2 . . .dyN V
(bc),β
N,Λ

(
x, x2, . . . , xN ; y, y2, . . . , yN

)
,

where V (bc),β
N,ΛN

is the density of the symmetrization of 1

Z
(bc)
N

(β,Λ)
e−βH

(Λ)
N .

Definition

We say the model shows ODLRO if the largest eigenvalue of T (bc),β
N,ΛN

is of order N .

In this case, we say that the model shows Bose–Einstein condensation.

Checking this needs more precision in the asymptotics of Γ(bc)

ΛN ,k
. The FK-formula for the free

Bose gas reads

γN,Λ(x, y) =

N∑
r=1

grβ(x, y)
Z(bc)

N−r(β,Λ)

Z(bc)

N (β,Λ)
.

I do not know any proof for ODLRO for periodic of Dirichlet bc for the free Bose gas.
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