Weierstrass Institute for
Applied Analysis and Stochastics

A probabilistic view at the interacting Bose gas

Wolfgang König (WIAS Berlin and TU Berlin)

- In 1924, the unknown young physicist Satyendra Nath Bose asked the famous Albert EINSTEIN to help him publishing his latest achievement in Zeitschrift für Physik.
- Einstein translated the manuscript into German and had published it there for Bose.
- He stressed that the new method is suitable for explaining the quantum mechanics of the ideal gas. He extended the idea to atoms in a second paper: he predicted the existence of a previously unknown state of matter, now known as the Bose-Einstein condensate.

Albert Einstein (1879-1955) in 1921

Satyendra Nath Bose (1894-1974) in 1925

- An experimental realisation had to wait until 1995, where some ten thousands of atoms appeared in that condensate at a temperature of $10^{-9} \mathrm{~K} . \Longrightarrow$ Nobel Prize in 2001

178

Plancks Gesetz und Lichtquantenhypothese.

Von Bose (Dacca-University, Indien).

(Eingegangen am 2. Juli 1924.)
Der Phasenranm eines Lichtquants in bezug auf ein gegebenes Volumen wird in ${ }_{\text {nellen" }}$ von der Graße \dot{n}^{8} aufgeteilt. Die Zahl der moglichen Verteilangen der

Plancks Formel fur die Verteilang der Energie in der Strahlung des schwarzen Körpers bildet den Ansgangspunkt für die Quantentheorie, welche in den letzten 20 Jahren entwickelt worden ist und in allen Gebieten der Physik reiche Früchte getragen hat. Seit der Publikation im Jahre 1901 sind viele Arten der Ableitang dieses Gesetces vorgeschlagen worden. Es ist anerkannt, daß die fundamentalen Voranssetzungen der Quantentheorie unvereinbar sind mit den Gesetzen der klassischen Elektrodynamik. Alle bisherigen Ableitungen machen Gebrauch von der Relation

$$
\varrho_{r} d v=\frac{8 \pi v^{2} d v}{e^{3}} E
$$

d. h. von der Relation zwischen der Strahlungsdichte und der mittleren Energie eines Oszillators, und sie machen Annahmen über die Zabl der Freiheitsgrade des Athers, wie sie in obige Gleichung eingeht (erster Faktor der rechten Seite). Dieser Faktor konnte jedoch nur ans der klassischen Theorie hergeleitet werden. Dies ist der unbefriedigende Punkt in allen Ableitungen, und es kann nicht wundernehmen, dal immer wieder Anstrengungen gemacht werden, eine Ableitung zu geben, die von diesem logischen Fehler frei ist.

Eine bemerkenswert elegante Ableitung ist von Einstein angegeben worden. Dieser hat den logischen Mangel aller bisherigen Ableitangen erkannt und versucht, die Formel unabhängig von der klassischen Theorie zu deduzieren. Von sehr einfachen Annahmen über den Energieaustausch zwischen Molektilen und Strahlungsfeld ausgehend, findet er die Relation

$$
\varrho_{v}=\frac{\alpha_{m n}}{e^{\frac{t_{m}-\hat{\theta}_{n}}{k T}}-1} .
$$

Indessen muß er, um diese Formel mit der Planckschen in Utbereinstimmung zu bringen, von Wiens Verschiebungsgesetz und Bohrs Korrespondenzprinzip Gebrauch machen. Wiens Gesetz ist anf die klassische

Daraus folgt zunächst

$$
p_{r}^{s}=B^{e} e^{-\frac{r \gamma^{s}}{\beta}}
$$

Da aber

$$
A^{s}=\sum_{r} B^{s} e^{-\frac{\tau h s^{s}}{\beta}}=B^{s}\left(1-e^{-\frac{h x^{s}}{\beta}}\right)^{-1}
$$

so ist

$$
B_{s}=A^{*}\left(1-e^{-\frac{A v^{2}}{\beta}}\right)
$$

Ferner hat man

$$
\begin{aligned}
N^{s}=\sum_{r} r p_{r}^{s} & =\sum_{r} r A^{s}\left(1-e^{-\frac{h r^{k}}{\beta}}\right)_{e}-\frac{r \lambda r^{s}}{\beta} \\
& =\frac{A^{s} e^{-\frac{h r^{v}}{\beta}}}{1-e^{-\frac{h r^{*}}{\beta}}}
\end{aligned}
$$

Mit Rücksicht anf den oben gefundenen Wert von A^{e} ist also

$$
E=\sum_{k} \frac{8 \pi h v^{2^{3}} d v^{\prime}}{e^{s}} V \frac{e^{-\frac{\lambda v^{3}}{\beta}}}{1-e^{-\frac{k v^{*}}{\beta}}} .
$$

Mit Benutzang der bisherigen Resultate findet man ferner

$$
S=k\left[\frac{E}{\beta}-\sum_{k} A^{s} \lg \left(1-e^{\frac{h \gamma^{k}}{\beta}}\right)\right]
$$

woraus mit Rücksicht darauf, dab $\frac{\partial \mathrm{S}}{\partial E}=\frac{1}{T}$, folgt, daß $\beta=k T$. Setzt man dies in obige Gleichnng für E ein, so erhalt man

$$
E=\sum_{s} \frac{8 \pi h v^{v^{3}}}{c^{3}} V \frac{1}{e^{\frac{h v^{2}}{k T}}-1} d v^{s}
$$

welche Gleichung Plancks Formel aquivalent ist.
(Übersetzt von A. Binstein.)
Anmerkung des thbersetzers. Boses Ableitung der Planckschen Formel bedeutet nach meiner Meinang einen wichtigen Fortschritt. Die hier benutzte Methode liefert auch die Quantentheorie des idealen Gases, wie ich an anderer Stelle ausführen will.
https://www.lorentz.leidenuniv.nl/history/Einstein_archive/ Einstein_1925_publication/

Quantentheorie des einatomigen idealen Gases.

Zwette Abbandlung.
Von A. Einstein.

In einer nealich in diesen Berichten (XXII 1924, S. 261) erschienenen Abhandlung wurde unter Anwendung ciner von Hra. D. Bosk zur Ableitung der Phasczschen Strahlungsformel erlachten Methode eine Theorie der ©Entartung. idealer Gase angegeben. Das Interesse dieser Theorie liegt darin, dals sie auf die Hypothese einer weitgelenden formalen Verwandtschaft zwischen Stral.lung und Gas gegroìndet ist. Nach dieser Theorie weicht das entartete Gas von dem Gus der mechanischca Statistik in analoger Weise ab wie die Strahlung gomas dem Phascaschen Gesetze von der Strahlung gemaia dem Wan formel ernst genommen wivd so wirl man much an dieser Theorie Gases nicht vorbeigehen dirfen; wen west fertigt lie Stenh
 und Moletidilgas eine wollstindige sein. Im folgenden sollen die frïheren therlegungen durch einige neue erginzt werden, die mir das Interesse an dem Gegenstande zu steigern seheinen. Der Bequemlichleit halber schreibe ich das Folgende formal als Fortsetzang der zitierten Abhandlung.

8 6. Das gesiltigte idenle Gass.

Bei der Theorie des idealen Gases scheint es eine selhstverstindliche Forderung, daß Volumen und Temperatur einer Gasmenge willkirlich gegeben werden konnen. Die Theorie bestimmt dann die Energie bzw, den Druck des Gases. Das Studhum der in den Gleichungen (18), (19), (20), (21) enthattenen Zustandsgleichung zeigt aber, daß bei gegebener Molekulzahi n
und gegebener Temperatur T das Volumen nicht beliebig klein gemacht werden kann. Gleichung (18) verlangt nảmlich, daß für alle $8 \alpha^{\prime} \geq 0$ sei, was gemāß (20) bedeutet, daß $A \geq 0$ sein muß. Dies bedeutet, daß in der in diesem Falle gultigen Gleichung (28b) $\lambda\left(=e^{-d}\right)$ zwischen 0 und t liegen muß. Aus (18b) folgt demnach, dats die Zaht der Moletule in einem solchen Gas bei gege benem Volumen V nicht grōßBer sein kann als

$$
n=\frac{(2 \pi m x T)^{\frac{3}{2}} V}{h^{1}} \sum_{1}^{\infty} \tau^{-\frac{3}{2}} .
$$

Sitrung der physikalisch-mathematischen Klesse vom 8. Japonar 1925

Was geschieht nun aber, wenn ich bei dieser Temperatur $\frac{n}{V}$ (z. B. dureh isothermische Kompression) die Dichte der Substanz noch mehr wachsen lasse? Ieh behaupte, daß in diesem Falle eine mit der Gesamtdichte stets wachsende Zahl von Molekulen in den 1. Quantenzustand (Zustand ohne kinetische Energie) abergeht, whilhend die abrigen Molekale sich gemais dem Parameterwert $\lambda=1$ verteilen. Dic Behauptung geht also dahin, dab etwas Ahnliches eintritt wie beim isothermen Komprimieren eines Dampfes über das Sattigungsvolumen. Es tritt eine Scheidung ein; ein Teil shondensierta, der Rest bleibt ein -gestittigtes ideales Gss* $(A=0 \lambda=1)$.

Dals die beiden Teile in der Tat ein thermodynamisches Gleichgewicht bilden, sieht man ein, indem man zeigt, dal die okondensierte. Substanz und das gesittigte ideale Gas pro Mol dieselbe Plascksche Funktion $\phi=S-\frac{E+p V}{T}$ haben. Für die skondensierte* Substanz verschwindet Φ, weil S, E und V einzeln verschwinden ${ }^{1}$. Für das ogeshattigte Gass hat man nach (12) und (13) für $A=0$ zunăchst

$$
S=-x \sum_{s} \lg \left(1-e^{-a^{*}}\right)+\frac{E}{T} .
$$

Die Summe kann man als Integral schreiben und durch partielle Integration umformen. Man erhālt so zunãchst
oder gemais (8) and (11) und (15)

$$
\begin{equation*}
\sum=-\frac{2}{3} \int_{0}^{\infty} n_{i} k^{\psi} d s=-\frac{2}{3} \frac{\bar{E}}{\kappa T}=-\frac{p V}{\kappa T} . \tag{26}
\end{equation*}
$$

Aus (25) und (26) folgt also für das egesiattigte ideale Gass

$$
S=\frac{\bar{E}+p V}{T}
$$

oder - wie es für die Koexistenz des
densierten Substanz erforderlich ist -

$$
\Phi=0 .
$$

Wir gewinnen also den Satz:
Nach der entwickelten Zustandsgleichung des idealen Gases gibt es bei jeder Temperatur eine maximale Dichte in Agitation befindlicher Molekonle

[^0]
Einstein's explanation

End of Bose's work:
Translator's note: Bose's derivation of Planck's formula represents an important progress in my opinion. The method used here also provides the quantum theory of the ideal gas, as I will explain elsewhere.

Einstein's explanation

End of Bose's work:
Translator's note: Bose's derivation of Planck's formula represents an important progress in my opinion. The method used here also provides the quantum theory of the ideal gas, as I will explain elsewhere.

Page 3 in the own work:
From (18b) it follows that the number of molecules in such a gas cannot be greater than V for a given volume

$$
n=\frac{(2 \pi m \varkappa T)^{3 / 2} V}{h^{3}} \sum_{s}^{\infty} \tau^{-3 / 2}
$$

Page 4:
I claim that [with increasing density] a number of molecules, increasing with the total density, pass into the I. quantum state (state without kinetic energy), while the remaining molecules are distributed according to the parameter value $\lambda=1$.

Hence we obtain the theorem:
According to the developed equation of state of the ideal gas, there is a maximum density of molecules in agitation at any temperature.

The degeneracy of the Bose-Einstein gas has rather got the reputation of having only a purely imaginary existence.
(London 1938)
The densities are so high and the temperatures so low that the van der Waals corrections are bound to coalesce with the possible effects of degeneration, and there is little prospect of ever being able to separate the two kinds of effect.
(Schrödinger 1946)
Can one prove with mathematical rigor [...] that a gas with given intermolecular forces will condense at sufficiently low temperature at a sharply defined density [...]? It may seem strange now that there could be any doubt that this would be possible but [...] in 1937 one wasn't so sure and I remember that Debye, for instance, doubted it. In my opinion, the liberating word was spoken by Kramers. He remarked that a phase transition (such as condensation) could mathematically only be understood as a limiting property of the partition function. Only in the limit, where the number of molecules N and the volume V go to infinity such that N / V remains finite (one calls this now the thermodynamic limit) can one expect the two discontinuities [...].
(Uhlenbeck 1974))

- Justification of quantum statistics:

Description of a macroscopic system with many microscopic identical (indistinguishable) particles with the help of location probabilities $(\Longrightarrow$ wave functions)

■ Justification of quantum statistics:
Description of a macroscopic system with many microscopic identical (indistinguishable) particles with the help of location probabilities (\Longrightarrow wave functions)

■ Quantum mechanical peculiarities due to symmetry conditions: bosons (PAUL DIRAC) (in contrast to fermions)

■ Justification of quantum statistics:
Description of a macroscopic system with many microscopic identical (indistinguishable) particles with the help of location probabilities $(\Longrightarrow$ wave functions)

■ Quantum mechanical peculiarities due to symmetry conditions: bosons (PAUL DIRAC) (in contrast to fermions)

■ "fifth state of aggregation": purely quantum mechanical phase transition in which interactions no longer play a role and all atoms have the same physical properties. Condensate as a "superatom".

■ Justification of quantum statistics:
Description of a macroscopic system with many microscopic identical (indistinguishable) particles with the help of location probabilities (\Longrightarrow wave functions)

- Quantum mechanical peculiarities due to symmetry conditions: bosons (PAUL DIRAC) (in contrast to fermions)

■ "fifth state of aggregation": purely quantum mechanical phase transition in which interactions no longer play a role and all atoms have the same physical properties. Condensate as a "superatom".

- Driving force to the practical

■ realization of low temperatures (cooling by laser and by evaporation, i.e. removal of the most energetic particles),

- trapping of atoms by a magnetic trap,
- Handling small groups of atoms.
- Justification of quantum statistics:

Description of a macroscopic system with many microscopic identical (indistinguishable) particles with the help of location probabilities (\Longrightarrow wave functions)

■ Quantum mechanical peculiarities due to symmetry conditions: bosons (PAUL DIRAC) (in contrast to fermions)

■ "fifth state of aggregation": purely quantum mechanical phase transition in which interactions no longer play a role and all atoms have the same physical properties. Condensate as a "superatom".

- Driving force to the practical
- realization of low temperatures (cooling by laser and by evaporation, i.e. removal of the most energetic particles),
- trapping of atoms by a magnetic trap,
- Handling small groups of atoms.

And for me as a mathematician:

- driving force for many mathematical ansatzes, in particular probabilistic ones.
- In the 1950s Beljavski, Bogoljubov, Gross, Pitaevski, Hartree introduced simplified models for rarefied interacting gases. The interaction was expressed by the scattering length, the free energy was approximated with the BORN approximation
- In the 1950s Beljavski, Bogoljubov, Gross, Pitaevski, Hartree introduced simplified models for rarefied interacting gases. The interaction was expressed by the scattering length, the free energy was approximated with the BORN approximation
- Functionalanalytic ansatz: large- N behaviour of the trace of the symmetrisation of an interacting N-particle Hamilton operator (\Longrightarrow later). The wave functions have a probabilistic interpretation as the joint location densities of the N particles.
- Probabilistic ansatz: This trace was translated in the 1950s by Jean Ginibre and Richard Feynman into a system of interacting Brownian motions, using the Feynman-Kac formula (\Longrightarrow later).
- In the 1950s Beljavski, Bogoljubov, Gross, Pitaevski, Hartree introduced simplified models for rarefied interacting gases. The interaction was expressed by the scattering length, the free energy was approximated with the BORN approximation
- Functionalanalytic ansatz: large- N behaviour of the trace of the symmetrisation of an interacting N-particle Hamilton operator (\Longrightarrow later). The wave functions have a probabilistic interpretation as the joint location densities of the N particles.
■ Probabilistic ansatz: This trace was translated in the 1950s by Jean Ginibre and Richard Feynman into a system of interacting Brownian motions, using the Feynman-Kac formula (\Longrightarrow later).
- Richard Feynman suggested in 1953 to consider the Brownian cycles in the Bose gas (\Longrightarrow later) that appear as a result of the symmetrization as an important order parameter and to examine their limiting behaviour as a criterion for BEC. They are now called Feynman cycles.
- In the 1950s Beljavski, Bogoljubov, Gross, Pitaevski, Hartree introduced simplified models for rarefied interacting gases. The interaction was expressed by the scattering length, the free energy was approximated with the BORN approximation
- Functionalanalytic ansatz: large- N behaviour of the trace of the symmetrisation of an interacting N-particle Hamilton operator (\Longrightarrow later). The wave functions have a probabilistic interpretation as the joint location densities of the N particles.
- Probabilistic ansatz: This trace was translated in the 1950s by Jean Ginibre and Richard Feynman into a system of interacting Brownian motions, using the Feynman-Kac formula (\Longrightarrow later).
- Richard Feynman suggested in 1953 to consider the Brownian cycles in the Bose gas (\Longrightarrow later) that appear as a result of the symmetrization as an important order parameter and to examine their limiting behaviour as a criterion for BEC. They are now called Feynman cycles.
- Various authors showed that the occurrence of "long Feynman cycles" in the ideal (= non-interacting) gas and in mean-field approximations is characteristic for BEC.
- In the 1950s Beljavski, Bogoljubov, Gross, Pitaevski, Hartree introduced simplified models for rarefied interacting gases. The interaction was expressed by the scattering length, the free energy was approximated with the BORN approximation
- Functionalanalytic ansatz: large- N behaviour of the trace of the symmetrisation of an interacting N-particle Hamilton operator (\Longrightarrow later). The wave functions have a probabilistic interpretation as the joint location densities of the N particles.
■ Probabilistic ansatz: This trace was translated in the 1950s by Jean Ginibre and Richard Feynman into a system of interacting Brownian motions, using the Feynman-Kac formula (\Longrightarrow later).
- Richard Feynman suggested in 1953 to consider the Brownian cycles in the Bose gas (\Longrightarrow later) that appear as a result of the symmetrization as an important order parameter and to examine their limiting behaviour as a criterion for BEC. They are now called Feynman cycles.
- Various authors showed that the occurrence of "long Feynman cycles" in the ideal (= non-interacting) gas and in mean-field approximations is characteristic for BEC.
- The only known proof for BEC in an interacting model exploits "hard" repulsion and symmetry in a \mathbb{Z}^{d} system (Freeman Dyson et al. 1978).
- Hunt for experimental realization from 1985, when sufficiently low temperatures came within reach. 10^{-6} Kelvin was reached in $1992 \Longrightarrow$ Nobel Prize 1997.

■ Difficulty: At such low temperatures almost every substance is solid (not gaseous). Dilute solution: heavily and cool quickly, holding particles together with a magnetic trap.

- The group of Eric A. Cornell and Carl E. Wieman succeeded in 1995 at the Joint Institute for Laboratory Astrophysics in Boulder (USA) in a gas of several thousand rubidium atoms at a temperature of about 10^{-9} Kelvin.
- Four months later, the group around Wolfgang Ketterle at the Massachusetts Institute of Technology also succeeded in doing this with sodium.

■ All three scientists were awarded the Nobel Prize in Physics in 2001 for this achievement.

We have N particles in a box $\Lambda \subset \mathbb{R}^{d}$.
Each particle has three attributes:

- kinetic energy (in the form of the Laplace operator Δ),
- a (soft or hard) trap energy,
- interaction energy with every other particle.

The system is described with the help of a Hamiltonian for N particles at the locations x_{1}, \ldots, x_{N} in a box $\Lambda \subset \mathbb{R}^{d}$, subject to a pair interaction via a symmetric pair potential $v: \mathbb{R}^{d} \rightarrow[0, \infty]:$

$$
\mathcal{H}_{N}^{(\Lambda)}=-\sum_{i=1}^{N} \Delta_{i}+\sum_{1 \leq i<j \leq N} v\left(x_{i}-x_{j}\right), \quad x_{1}, \ldots, x_{N} \in \Lambda
$$

We have N particles in a box $\Lambda \subset \mathbb{R}^{d}$.
Each particle has three attributes:

- kinetic energy (in the form of the Laplace operator Δ),
- a (soft or hard) trap energy,
- interaction energy with every other particle.

The system is described with the help of a Hamiltonian for N particles at the locations x_{1}, \ldots, x_{N} in a box $\Lambda \subset \mathbb{R}^{d}$, subject to a pair interaction via a symmetric pair potential $v: \mathbb{R}^{d} \rightarrow[0, \infty]:$

$$
\mathcal{H}_{N}^{(\Lambda)}=-\sum_{i=1}^{N} \Delta_{i}+\sum_{1 \leq i<j \leq N} v\left(x_{i}-x_{j}\right), \quad x_{1}, \ldots, x_{N} \in \Lambda .
$$

- $\mathcal{H}_{N}^{(\Lambda)}$ is applied to wave functions $\phi: \Lambda^{N} \rightarrow \mathbb{R}$.
- $\left|\phi\left(x_{1}, \ldots, x_{N}\right)\right|^{2}=$ probability density for N particles at the locations x_{1}, \ldots, x_{N}.
- Clear: $\left|\phi\left(x_{1}, \ldots, x_{N}\right)\right|^{2}$ is symmetric (= invariant under permutations).

■ Boson system (Quantum mechanics!): also $\phi\left(x_{1}, \ldots, x_{N}\right)$ is symmetric.

- Main object:

$$
\text { symmetrised trace } \quad Z_{N}(\beta, \Lambda)=\operatorname{Tr}_{+}\left(\exp \left\{-\beta \mathcal{H}_{N}^{(\Lambda)}\right\}\right)
$$

■ Physics \Longleftrightarrow Mathematics:

temperature	$\Longleftrightarrow 1 / \beta$
kinetic energy	$\Longleftrightarrow \mathrm{e}^{\beta \Delta} \Longleftrightarrow$ Brownian motion on $[0, \beta]$
interaction	$\Longleftrightarrow \mathrm{e}^{-v\left(x_{i}-x_{j}\right)}$
averaging over random particles	\Longleftrightarrow trace
symmetrisation	\Longleftrightarrow random permutation

- Main object:

$$
\text { symmetrised trace } \quad Z_{N}(\beta, \Lambda)=\operatorname{Tr}_{+}\left(\exp \left\{-\beta \mathcal{H}_{N}^{(\Lambda)}\right\}\right)
$$

■ Physics \Longleftrightarrow Mathematics:

temperature	$\Longleftrightarrow \mathrm{T} / \beta$
kinetic energy	$\Longleftrightarrow \mathrm{e}^{\beta \Delta} \Longleftrightarrow$ Brownian motion on $[0, \beta]$
interaction	$\Longleftrightarrow \mathrm{e}^{-v\left(x_{i}-x_{j}\right)}$
averaging over random particles	\Longleftrightarrow trace
symmetrisation	\Longleftrightarrow random permutation

- Feynman-Kac formula:
$Z_{N}(\beta, \Lambda)=\underbrace{\int_{\Lambda} \mathrm{d} x_{1} \cdots \int_{\Lambda} \mathrm{d} x_{N}}_{N \text { points in } \Lambda} \overbrace{\frac{1}{N!} \sum_{\sigma \in \mathfrak{S}_{N}}}^{\text {random permutation }} \underbrace{N}_{N \text { Brownian bridges }} \bigotimes_{i=1}^{N} \mu_{x_{i}, x_{\sigma(i)}}^{(\beta)}[\overbrace{\mathrm{e}^{-\sum_{1 \leq i<j \leq N} V_{\beta}\left(B^{(i)}, B^{(j)}\right)}}^{\text {interaction }}]$.
$Z_{N}(\beta, \Lambda)=\underbrace{\int_{\Lambda} \mathrm{d} x_{1} \cdots \int_{\Lambda} \mathrm{d} x_{N}}_{N \text { points in } \Lambda} \overbrace{\frac{1}{N!} \sum_{\sigma \in \mathfrak{S}_{N}}}^{\text {random permutation }} \underbrace{N}_{N \text { Brownian bridges }} \bigotimes_{i=1}^{N} \mu_{x_{i}, x_{\sigma(i)}}^{(\beta)}[\overbrace{\mathrm{e}^{-\sum_{1 \leq i<j \leq N} V_{\beta}\left(B^{(i)}, B^{(j)}\right)}}^{\text {interaction }}]$.

Bose gas consisting of 14 particles, organised in three Brownian cycles, assigned to three
Poisson points. The red cycle contains six particles, the green and the blue each four.

- We consider here the canonical ensemble, where the number N of particles is fixed. If N is random and Poisson-distributed, we look at the grandcanonical system.
- The interacting Bose gas is an ensemble of interacting Brownian cycles with various lengths in a large box. A cycle of length k (i.e., with time interval $[0, \beta k]$) accomodates precisely k particles. Altogether, the system has $N=\sum_{k=1}^{\infty} k N_{k}$ paticles (if N_{k} is the number of cycles of length k).

The BEC Question Does a macroscopic part of the N particles lie in "very long" cycles?

- Philosophical question: What is the right box size?
thermodynamic limit $\left|\Lambda_{N}\right|=N / \rho \quad$ or dilute limit $\left|\Lambda_{N}\right| \gg N \quad ?$
■ Answer by Kramers in 1937: the thermodynamic limit!
Free energy in the thermodynamic limit (d.h. $\left.\left|\Lambda_{N}\right|=N / \rho\right)$:

$$
f(\beta, \rho)=-\lim _{N \rightarrow \infty} \frac{1}{\left|\Lambda_{N}\right|} \log Z_{N}\left(\beta, \Lambda_{N}\right)
$$

Subcritical (low ρ) Bose gas without condensate

Supercritical (large ρ) Bose gas with additional condensate (red)

- Proof for phase transition in the thermodynamic limit widely open; considered very deep.
- Many simplified models and regimes have been settled.
- Feynman-Kac formula is by far not the only ansatz.
- Interacting Brownian cycles triggered much probabilistic research and will continue to do so.

■ Experimentally, BEC could not obtained at sginificantly higher temperatures than in 1995, but for many more different substances.

- Applications are not in sight, but it is tremendously fascinating!

[^0]: L Der -kondensierte.

 zum. Druck tichis beitragt

