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Background

Consider a large quantum system of N particles in a trap in R¢ with mutually repellent
interaction, described by the Hamilton operator

N N
HN:—ZA@-—I—ZW(%)—I— Z v(\:ci—a:j\), z1,...,zNn € R%,
i=1 i=1 1<i<j<N

® The kinetic energy term A; acts on the ith particle.
® examples of trap potential: W (z) = |z|? or W = ool with A C R? a box.
B the pair potential v: (0, 00) — [0, co] decays quickly at oo and explodes at 0.

Goal: Describe the particle system at zero or very low temperature in the limit N — oo,
coupled with A — R¢.

In particular, understand

At very low temperature, the wave function of N indistinguishable particles (Bosons) can
be described in terms of a one-particle wave function.

In other words, a macroscopic portion of the atoms collaps into the lowest possible energy
state. (Theoretically predicted in 1924/25 by A. Einstein and N. Bose, first experimental
realisation in 1995, mathphys community has not yet agreed on a mathematical definition of

this effect).
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Goals

From now on, put d = 3.
Replace the trap W by the rescaling

Wn(:)=L,?W(-Ly'), forsomeLy — co
and consider the particle density py = NLy°.

Long-term goal: Describe the system for ppy < 1as N — oo at zero or very low
temperature.

In this talk: Assume that px < N2 (dilute system), i.e., Ly = N.
By rescaling, we may leave W independent on N and replace v by the rescaling
vy (-) = N2v(- N). That is, N particles are in a fixed trap with repellence length < 1/N.

Hence, we study

N N

1
HN:_ZAi_i_ZW(mi)_i_N Z NS’U(N|$7;—mj|), z1,...,xN € R3.

i=1 i=1 1<i<j<N
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Zerotemperature

-

At zero temperature, the system is described by the ground state energy of H n:

Ny n — inf h. Hah
XN = @ gt TN
N

= inf

(IIVhl|5 + (h?, W (z;
heH (B3N b= A 1 (IV:hi3 (@)

’L:

—I—% Z <h2,N3v(N\x¢—xj|)>]

1<i<j<N

Existence and uniqueness of minimisers h%, (ground states) is well-known.

reduced density matrix:

’YN(Q?;y) = / h}kv(x,QZQ, ce ,CIZN)th(y,QZQ, .. ,,xN)da;2 codx
R3(N—1)
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Gross-Pitaevskii formula, scattering length

® Gross-Pitaevskii formula with parameter o € (0, 0o):
X (a) = inf IV9lI3 + (2, W) + dmallel].
eEHI(R3): [loll2=1

® The minimiser ¢, is positive and C! [Gross 1961], [PITAEVSKII 1962].

® Scattering length of the interaction potential v:

where u solves the scattering equation v = zuv, u(0) =
$ Ifv=oc0lgg4+, then a(v) = a*.
# The scattering length of N2v(N -) is % times the one of v.
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BEC at zerotemperature

o N

[LIEB, SEIRINGER, YNGVASON 1999-2002]: If N'x ;v denotes the ground state energy of H » and
~n its reduced density matrix, then

(I) Iimpy_, o XN = X(GP) (O((’U)),

(i) imy oo YN = Pa(v) @ Pa(v) IN trace norm.

Remarks:
® The proof shows that
N

N N
hn(z1,...,2N) = H Paw) (i) Hf(min{|ac¢—:cj\:j: 1,...,5—1}),

i—=1 ||90a(v) ||OO i—=1

where f(r) = u(r)/r, and u is the solution to the scattering equation.

(i) implies that the reduced density matrix has an eigenvalue of order 1 (= another
indication of BEC).

® The proof is based on some earlier work of Dyson (1962).

o |
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Positive temperature

The N-particle system is described by the trace of e A7t~ where 3 € (0, o) is the inverse
temperature. This trace may be written in terms of Brownian bridges:

Tr(e—FHN) — /

dey XREL [ HN,B})
ey QL

where

HNﬁ—Z/ W (B ds+% Z /dsN3 (N|B{Y — BY).

1<i<y<N

The free energy of Bosons is described by the trace of the projection of e =2~ on the set of
permutation symmetric functions:

) - o]
(o) = 1 Z/Rdm - Qe e [° |
1=1
Zero-temperature limit: As in [Abams, BRU AND K. (2006A)] one can show that

1 1 1

Bh_)rréoﬁ—logTer( BHN) —Bli)mooﬁ—NlogTr( BHN) = NXN.
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The Hartree model
|7Replace Hp g by

AN . 1 BB o
KN, = Z/ W(BM)ds+— > / ds—/ dt N3v(N|BY — BY|),
i=1"0 N 0 B Jo

1<i<j<N

-

l.e., the pair interaction is not local, but mean-field in time. Actually, this is a path interaction

rather than a particle interaction. The arising model is named after the variational formula

that appears in the zero-temperature limit:

Theorem [ADAMS, BRU AND K. 20064A]. Put d € {2,3}. Then

1 1
lim —— logE [e_KN’ﬁ] = —x%,
B0 BN 00 NN

where
X5 = inf (HN(hMi ® - ®hN),h1 ® - ®hy).

Ay, hp€HL(RD)
lhill2=1V1i

That is, the path-interaction model leads to the ground product-states of H .

.

|
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On the proof

Large-deviation arguments for ;) = < [ ds 5 () in the spirit of Donsker-Varadhan:

The is
Po(n§ (de) ~ h2(2) da) ~ e PIVhilz,

giving the energy term 27];\;1 |V h;l3.

The IS
S [ wBas =3 w
i=1"70 i=1

giving the trap term 3 (h2, W).

The IS

% > /ds/ — N3u(N|B{" -B{"|) ~ % > /de3v(N\a:\)(,uﬁ *pg ) (da

1<i<j<N 1<i<j<N

giving the interaction term = 3=, ;s v J N30(Nlx|) (h? % h2) (2).

o |
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Large-N limit at zero temperature

Like the canonical model, in the large-N limit the Hartree model scales to the
Gross-Pitaevskii formula:

Theorem [ADAMS, BRU AND K. 2006A]. Put d € {2, 3}, assume that
a(v) = = [v(|z]) do < oo, and replace v by N9~1v(- N). Then

I o

o G ~
Jim oy = X (@)
Furthermore, if (h], ..., h} ) is any tuple of minimisers, then
| N
1 . *\ 2 2
e E 1:(h )" = (P50))"

Methods of proof: standard compactness arguments, potential theory, smoothing techniques,
harmonic analysis.

The relation between ground product states and the integral of the interaction potential was
phenomenogically discussed since long, like the one between the product states and the

scattering length.
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Large-N limit at positive temperature

Recall: d =3 and a(v) = = [v(|z|) dz < oo.

Theorem [AbpamS, BRU AND K. (20068)]. For any 8 € (0, co0),
lim L log Eg [e_KNaﬁ] = —xg(a(v))
N — o0 BN ’
where
xs(2) = inf J5(9%) + (W, 9%) + 4mal|o|4]
pEHI(RY): |lpll2=1
and
2 2y 1 I8 £(Bs) ds
Jo(p”) = sup [<f,90 ) — —logEq |elo /{Ps ]].
feCy (RY) B
9o JB(QOQ) is a ‘probabilistic’ energy term and depends on initial and terminal condition of

the Brownian motions.
Conjecture: limg_, o, xg(a) = x(°F) ().
20 1 N 1 B
The proof uses Cramér’s theorem for <= > J;° 5 Jo ds 5B§’“'
Pair interaction is expressed in terms of Brownian intersection local times.
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Heuristicsfor the proof

Local times of B(¥) — BU) formally defined as

L(B% J) — 52/ ds/ dt(SB(z) B(J)(d$)

1 y
Hence, Knpg=Np - dmv(m)m Z L(B’J)(%az).
1<i<j<N
[GEMAN, HOROWITZ, ROSEN (1984)]:  — L(i’j)(x) is continuous in z = 0, and (formally)

(2) (J)
y p§ (dz) p§’ (dz) - | |
Lg’J)(O) :/ dz Bd 1 : Brownian intersection local time.
R3 T i

Hence,

2 iy
Ky~ Noama(v) — >, L7 (0) ~ Npana(v) H
1<i<j<N

— N 1
where iy 5 = % D oin ,LL(B)

Cramér’s theorem — o~ NBJIs(¢?)

P(iin 5 ~ ¢°(z) dz) &

Now substitute 2 (z) dz = iy, g(dx).
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The effect of symmetrisation

So far, we studied the large- NV limit for Brownian motions starting at the origin and having a
free end. What happens for symmetrised motions? We do this here without pair interaction.
Let m € M7 (R?) be an initial distribution and consider the (non-normalised!) symmetrised
Brownian bridge measure

(sym,N) __ ®N
P = 20 ™ 0 ®%,

(For symmetrised traces, we must replace m by Lebesgue measure.) We are interested in
the large deviations of

1 o1 [P
_ d
u = — —/ ds o (4) EMl(R )
In other words, we search for a function I ,, : M1 (R%) — R such that

PSYEI N)(:uNﬁ EA) ~ e .NianI,g’m7 ACMl(Rd)
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L arge deviations for symmetrised BM s

Theorem [ADAms, K. (2006)]. Let d € N be arbitrary. Then, as N — oo, [y g satisfies under
Pﬁyg“’N) a large-deviation principle with rate function

Ipm(e)=  inf  |Hg@em)+ 5 (%),
geEM;”’ (R4 xR4)

where

B
T (9%) = sup [B<f, ©?) —/ g(dz dy) logES  [elo f(BS)dS]]-
fec, (R9) (Rd)?2

Here g(A) = q(A x R?) = ¢(R? x A) and H(glg ® m) = [ q log %.

Explanation:

® rorany Up,Us C R?%, Nq(U; x Usz) Brownian motions start in Uy and end in Us.

® The entropy term H(q|g ® m) describes the rate of the number of corresponding
permutations.

$ The ‘probabilistic’ energy function J;" describes the large deviations for the N
Brownian motions with the prescribed initial-terminal condition.
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The special case of traces

If we want to describe traces, we replace m by Lebesgue measure and must add a trap
potential W. By an explicit analytical identification of the rate function of the previous
theorem, one finds:

Corollary [Apams, K. (2006)]. Let d € N and let m be Lebesgue measure. Then p - g satisfies
under the measure
N B
exp{ _ Z/ W(B) ds} dpevE ™)
i=1"0

a large deviation principle with rate function 2 — B[||Vl||3 + (W, ?)].

® Hence, the large-N deviations of N symmetrised BM’s with time length 3 are the same
as the ones of one single BM with time length g.

® nterpretation: The main contribution comes from those permutations that possess a
cycle of length V.

® From this corollary, one can conjecture that, for any 3 € (0, co),

1
lim NG log Tr4 (e_BHN) = —x'“P)(a(v)).

N — oo

|
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Concluding remarks

® Actually, the last statement has been proved in [SEIRINGER (2006)] using his older result
and standard, but clever, entropy estimates for the symmetrised trace respectively an
eigenvalue expansion.

® The Hartree model is not as ‘physical’ as the canonical model, but is a good test case
for rigorous investigations.

® The Hartree model is easier to study than the canonical model and features similar
properties.
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