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Background

Consider a large quantum system of N particles in a trap in Rd with mutually repellent
interaction, described by the Hamilton operator

HN = −
NX

i=1

∆i +
NX

i=1

W (xi) +
X

1≤i<j≤N

v
`
|xi − xj |

´
, x1, . . . , xN ∈ R

d.

The kinetic energy term ∆i acts on the ith particle.

examples of trap potential: W (x) = |x|2 or W = ∞1lΛ with Λ ⊂ R
d a box.

the pair potential v : (0,∞) → [0,∞] decays quickly at ∞ and explodes at 0.

Goal: Describe the particle system at zero or very low temperature in the limit N → ∞,
coupled with Λ → Rd.
In particular, understand Bose-Einstein condensation (BEC):

At very low temperature, the wave function of N indistinguishable particles (Bosons) can
be described in terms of a one-particle wave function.

In other words, a macroscopic portion of the atoms collaps into the lowest possible energy
state. (Theoretically predicted in 1924/25 by A. Einstein and N. Bose, first experimental
realisation in 1995, mathphys community has not yet agreed on a mathematical definition of
this effect).
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Goals
From now on, put d = 3.
Replace the trap W by the rescaling

WN (·) = L−2
n W

`
· L−1

N

´
, for some LN → ∞

and consider the particle density ρN = NL−3
N

.

Long-term goal: Describe the system for ρN � 1 as N → ∞ at zero or very low
temperature.

In this talk: Assume that ρN � N−2 (dilute system), i.e., LN = N .
By rescaling, we may leave W independent on N and replace v by the rescaling
vN (·) = N2v(·N). That is, N particles are in a fixed trap with repellence length � 1/N .

Hence, we study

HN = −
NX

i=1

∆i +
NX

i=1

W (xi) +
1

N

X

1≤i<j≤N

N3v
`
N |xi − xj |

´
, x1, . . . , xN ∈ R

3.
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Zero temperature

At zero temperature, the system is described by the ground state energy of HN :

NχN = inf
h∈H1(R3N ) : ‖h‖2=1

〈h,HNh〉

= inf
h∈H1(R3N ) : ‖h‖2=1

h NX

i=1

`
‖∇ih‖

2
2 + 〈h2, W (xi)〉

´

+
1

N

X

1≤i<j≤N

D
h2, N3v

`
N |xi − xj |

´Ei
.

Existence and uniqueness of minimisers h∗
N (ground states) is well-known.

reduced density matrix:

γN (x, y) =

Z

R3(N−1)
h∗

N (x, x2, . . . , xN )h∗
N (y, x2, . . . , xN ) dx2 · · ·dxN
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Gross-Pitaevskii formula, scattering length

Gross-Pitaevskii formula with parameter α ∈ (0,∞):

χ(GP)(α) = inf
ϕ∈H1(R3) : ‖ϕ‖2=1

h
‖∇ϕ‖2

2 + 〈ϕ2, W 〉 + 4πα‖ϕ‖4
4

i
.

The minimiser ϕα is positive and C1 [GROSS 1961], [PITAEVSKII 1962].

Scattering length of the interaction potential v:

α(v) = lim
r→∞

“
r −

u(r)

u′(r)

”
,

where u solves the scattering equation u′′ = 1
2
uv, u(0) = 0.

If v = ∞1l(0,a∗], then α(v) = a∗.

The scattering length of N2v(N ·) is 1
N

times the one of v.
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BEC at zero temperature

[LIEB, SEIRINGER, YNGVASON 1999-2002]: If NχN denotes the ground state energy of HN and
γN its reduced density matrix, then

(i) limN→∞ χN = χ(GP)(α(v)),

(ii) limN→∞ γN = ϕα(v) ⊗ ϕα(v) in trace norm.

Remarks:

The proof shows that

hN (x1, . . . , xN ) ≈

NY

i=1

ϕα(v)(xi)

‖ϕα(v)‖∞

NY

i=1

f
`
min{|xi − xj | : j = 1, . . . , i − 1}

´
,

where f(r) = u(r)/r, and u is the solution to the scattering equation.

(ii) implies that the reduced density matrix has an eigenvalue of order 1 (=⇒ another
indication of BEC).

The proof is based on some earlier work of DYSON (1962).
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Positive temperature

The N -particle system is described by the trace of e−βHN , where β ∈ (0,∞) is the inverse
temperature. This trace may be written in terms of Brownian bridges:

Tr
`
e−βHN

´
=

Z

(Rd)N
dx1 . . . dxN

NO

i=1

E
β
xi,xi

h
e−HN,β

i
,

where

HN,β =
NX

i=1

Z β

0
W (B(i)

s ) ds +
1

N

X

1≤i<j≤N

Z β

0
ds N3v

`
N |B(i)

s − B(j)
s |

´
.

The free energy of Bosons is described by the trace of the projection of e−βHN on the set of
permutation symmetric functions:

Tr+
`
e−βHN

´
=

1

N !

X

σ

Z

(Rd)N
dx

NO

i=1

E
β
xi,xσ(i)

h
e−HN,β

i
.

Zero-temperature limit: As in [ADAMS, BRU AND K. (2006A)] one can show that

lim
β→∞

1

βN
log Tr+

`
e−βHN

´
= lim

β→∞

1

βN
log Tr

`
e−βHN

´
=

1

N
χN .

– p.7/16



The Hartree model
Replace HN,β by

KN,β =
NX

i=1

Z β

0
W (B(i)

s ) ds +
1

N

X

1≤i<j≤N

Z β

0
ds

1

β

Z β

0
dt N3v

`
N |B(i)

s − B
(j)

t |
´
,

i.e., the pair interaction is not local, but mean-field in time. Actually, this is a path interaction
rather than a particle interaction. The arising model is named after the variational formula
that appears in the zero-temperature limit:

Theorem [ADAMS, BRU AND K. 2006A]. Put d ∈ {2, 3}. Then

lim
β→∞

1

βN
log E0

h
e−KN,β

i
=

1

N
χ⊗

N
,

where

χ⊗
N

= inf
h1,...,hN ∈H1(Rd)

‖hi‖2=1∀i

˙
HN (h1 ⊗ · · · ⊗ hN ), h1 ⊗ · · · ⊗ hN

¸
.

That is, the path-interaction model leads to the ground product-states of HN .
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On the proof

Large-deviation arguments for µ
(i)

β
= 1

β

R β

0 ds δ
B

(i)
s

in the spirit of Donsker-Varadhan:

The probability is

P0

`
µ

(i)

β
(dx) ≈ h2

i (x) dx
´
≈ e−β‖∇hi‖

2
2 ,

giving the energy term
PN

i=1 ‖∇hi‖
2
2.

The trap interaction is
NX

i=1

Z β

0
W (B(i)

s ) ds = β

NX

i=1

〈µ
(i)

β
, W 〉,

giving the trap term
PN

i=1〈h
2
i , W 〉.

The pair interaction is

1

N

X

1≤i<j≤N

Z β

0
ds

Z β

0

dt

β
N3v

`
N |B(i)

s −B
(j)

t |
´
≈

β

N

X

1≤i<j≤N

Z

R3
dxN3v(N |x|)

`
µ

(i)

β
?µ

(j)

β

´
(dx),

giving the interaction term 1
N

P
1≤i<j≤N

R
N3v(N |x|)

`
h2

i ? h2
j

´
(x).
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Large-N limit at zero temperature

Like the canonical model, in the large-N limit the Hartree model scales to the
Gross-Pitaevskii formula:

Theorem [ADAMS, BRU AND K. 2006A]. Put d ∈ {2, 3}, assume that

eα(v) = 1
8π

R
v(|x|) dx < ∞, and replace v by Nd−1v( ·N). Then

lim
N→∞

1

N
χ⊗

N
= χ(GP)

`
eα(v)

´
.

Furthermore, if (h∗
1, . . . , h∗

N ) is any tuple of minimisers, then

L1 − lim
N→∞

1

N

NX

i=1

(h∗
i )2 = (ϕ∗

eα(v))
2.

Methods of proof: standard compactness arguments, potential theory, smoothing techniques,
harmonic analysis.

The relation between ground product states and the integral of the interaction potential was
phenomenogically discussed since long, like the one between the product states and the
scattering length.
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Large-N limit at positive temperature

Recall: d = 3 and eα(v) = 1
8π

R
v(|x|) dx < ∞.

Theorem [ADAMS, BRU AND K. (2006B)]. For any β ∈ (0,∞),

lim
N→∞

1

βN
log E0

h
e−KN,β

i
= −χβ

`
eα(v)

´
,

where

χβ(α) = inf
ϕ∈H1(Rd) : ‖ϕ‖2=1

h
Jβ(ϕ2) + 〈W, ϕ2〉 + 4πα‖ϕ‖4

4

i

and

Jβ(ϕ2) = sup
f∈Cb(Rd)

h
〈f, ϕ2〉 −

1

β
log E0

ˆ
e

R β
0 f(Bs) ds

˜i
.

Jβ(ϕ2) is a ‘probabilistic’ energy term and depends on initial and terminal condition of
the Brownian motions.

Conjecture: limβ→∞ χβ(α) = χ(GP)(α).

The proof uses Cramér’s theorem for 1
N

PN
i=1

1
β

R β

0 ds δ
B

(i)
s

.

Pair interaction is expressed in terms of Brownian intersection local times.
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Heuristics for the proof

Local times of B(i) − B(j), formally defined as

L
(i,j)

β
(x) =

1

β2

Z β

0
ds

Z β

0
dt δ

B
(i)
s −B

(j)
t

(dx).

Hence, KN,β = Nβ

Z

R3
dx v(x)

1

N2

X

1≤i<j≤N

L
(i,j)

β
( 1

N
x).

[GEMAN, HOROWITZ, ROSEN (1984)]: x 7→ L
(i,j)

β
(x) is continuous in x = 0, and (formally)

L
(i,j)

β
(0) =

Z

R3
dx

µ
(i)

β
(dx)

dx

µ
(j)

β
(dx)

dx
, Brownian intersection local time.

Hence,

KN,β ≈ Nβ4πeα(v)
2

N2

X

1≤i<j≤N

L
(i,j)

β
(0) ≈ Nβ4πeα(v)

‚‚‚
dµN,β

dx

‚‚‚
2

2
,

where µN,β = 1
N

PN
i=1 µ

(i)

β
.

Cramér’s theorem =⇒ P
`
µN,β ≈ ϕ2(x) dx

´
≈ e−NβJβ (ϕ2).

Now substitute ϕ2(x) dx = µN,β(dx).
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The effect of symmetrisation

So far, we studied the large-N limit for Brownian motions starting at the origin and having a
free end. What happens for symmetrised motions? We do this here without pair interaction.
Let m ∈ M1(Rd) be an initial distribution and consider the (non-normalised!) symmetrised
Brownian bridge measure

P
(sym,N)

m,β
=

1

N !

X

σ

Z

(Rd)N
m

⊗N (dx)
NO

i=1

P
β
xi,xσ(i)

(For symmetrised traces, we must replace m by Lebesgue measure.) We are interested in
the large deviations of

µN,β =
1

N

NX

i=1

1

β

Z β

0
ds δ

B
(i)
s

∈ M1(Rd).

In other words, we search for a function Iβ,m : M1(Rd) → R such that

P
(sym,N)

m,β

`
µN,β ∈ A

´
≈ e−N infA Iβ,m , A ⊂ M1(Rd).
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Large deviations for symmetrised BMs

Theorem [ADAMS, K. (2006)]. Let d ∈ N be arbitrary. Then, as N → ∞, µN,β satisfies under
P

(sym,N)

m,β
a large-deviation principle with rate function

Iβ,m(ϕ2) = inf
q∈M

(s)
1 (Rd×Rd)

h
H(q|q ⊗ m) + J

(q)

β
(ϕ2)

i
,

where

J
(q)

β
(ϕ2) = sup

f∈Cb(Rd)

h
β〈f, ϕ2〉 −

Z

(Rd)2
q(dx dy) log E

β
x,y

ˆ
e

R β
0 f(Bs) ds

˜i
.

Here q(A) = q(A × Rd) = q(Rd × A) and H(q|q ⊗ m) =
R

q log dq
d(q⊗m)

.

Explanation:

For any U1, U2 ⊂ R
d, Nq(U1 × U2) Brownian motions start in U1 and end in U2.

The entropy term H(q|q ⊗ m) describes the rate of the number of corresponding
permutations.

The ‘probabilistic’ energy function J
(q)

β
describes the large deviations for the N

Brownian motions with the prescribed initial-terminal condition.
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The special case of traces

If we want to describe traces, we replace m by Lebesgue measure and must add a trap
potential W . By an explicit analytical identification of the rate function of the previous
theorem, one finds:

Corollary [ADAMS, K. (2006)]. Let d ∈ N and let m be Lebesgue measure. Then µN,β satisfies
under the measure

exp
n
−

NX

i=1

Z β

0
W (B(i)

s ) ds
o

dP
(sym,N)

m,β

a large deviation principle with rate function ϕ2 7→ β
ˆ
‖∇ϕ‖2

2 + 〈W, ϕ2〉
˜
.

Hence, the large-N deviations of N symmetrised BM’s with time length β are the same
as the ones of one single BM with time length β.

Interpretation: The main contribution comes from those permutations that possess a
cycle of length N .

From this corollary, one can conjecture that, for any β ∈ (0,∞),

lim
N→∞

1

Nβ
log Tr+

`
e−βHN

´
= −χ(GP)(α(v)).
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Concluding remarks

Actually, the last statement has been proved in [SEIRINGER (2006)] using his older result
and standard, but clever, entropy estimates for the symmetrised trace respectively an
eigenvalue expansion.

The Hartree model is not as ‘physical’ as the canonical model, but is a good test case
for rigorous investigations.

The Hartree model is easier to study than the canonical model and features similar
properties.
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