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Abstract

We consider the long-time behaviour of a branching random walk in random envi-
ronment on the lattice Zd. The migration of particles proceeds according to simple
random walk in continuous time, while the medium is given as a random potential of
spatially dependent killing/branching rates. The main objects of our interest are the
annealed moments 〈mp

n〉, i.e., the p-th moments over the medium of the n-th moment
over the migration and killing/branching, of the local and global population sizes.
For n = 1, this is well-understood [14], as m1 is closely connected with the parabolic
Anderson model. For some special distributions, [1] extended this to n ≥ 2, but only
as to the first term of the asymptotics, using (a recursive version of) a Feynman-Kac
formula for mn.

In this work we derive also the second term of the asymptotics, for a much larger
class of distributions. In particular, we show that 〈mp

n〉 and 〈mnp
1 〉 are asymptotically

equal, up to an error eo(t). The cornerstone of our method is a direct Feynman-Kac-
type formula for mn, which we establish using the spine techniques developed in
[15].
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1 Introduction

Random processes in random surroundings are under investigation for decades. Exam-
ples of such processes include (1) trajectories of random walks and Brownian motion in
random environment with the focus on laws of large numbers and central limit theorems
or even invariance principles, (2) heat equation and other partial differential equation
systems in random potential with the focus on intermittent behaviour, (3) polymer mea-
sures and directed percolation in random medium with the focus on free energies. In
all these models, a rich phenomenology of asymptotic behaviours arises, which is not
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shared by the original model in non-random (homogeneous) surrounding. In most of
these models the research goes on, as many of the main features have not yet been
properly understood.

Another large class of random processes that develop striking properties in random
surroundings is the class of branching processes. Let us briefly describe some of the
work that was carried out about these models. Branching discrete-time random walks
on Zd with time-space i.i.d. offspring distributions were studied in the context of sur-
vival properties, global/local growth rates and diffusivity, see e.g. [4, 8]; connections
between this type of branching random walks and directed polymers in random envi-
ronment were investigated in [22]. Another class of branching random processes in ran-
dom environment is discrete-time branching Markov chains with only space-dependent
environment. Such processes do not exhibit in general the usual dichotomy valid for
irreducible Markov chains. Detailed analyses of their recurrence/transience properties
were carried out in [6, 17, 18, 7, 21, 2, 10], to mention some. The main techniques
in these studies relate these models to the better-known random walk in random envi-
ronments, using the spectral properties of underlying Markov process and studying the
embedded Galton-Watson processes in random environment.

In this paper, we study a branching random walk in random environment (BRWRE),
where the particles move around in space like independent random walks in continu-
ous time, and the killing/branching takes place in sites with a random site-dependent
rate. We are interested in the long-time asymptotics of the annealed moments of any
order of the local and global population sizes. As was explained in [13] for the case
of first moments, this question stands in a close connection with the description of the
intermittent behaviour of the main particle flow, i.e., its concentration in small islands.

To the best of our knowledge, this question for the higher moments has hardly been
investigated for this model yet, the only examples being [20] and [1]. To study succes-
sive higher moments for local population sizes in the context of intermittent behaviour
of the particle field was first suggested in [20], where a proof of strong intermittent
behaviour was sketched. Later in [1] this was carried out. In these articles, a deep
relation between the moments of the BRWRE and the parabolic Anderson model was
revealed and employed in order to analyse the annealed moments of the BRWRE, i.e.,
the p-th moments over the medium of the n-th moment over the killing/branching and
migration of the total and local population size. It is the aim of the present paper to
significantly increase the validity and the deepness of these results and to reveal the
general mechanism that leads to the moment asymptotics. In contrast with [20] and
[1], we will be using probabilistic methods rather than PDE methods.

1.1 Branching random walk in random environment

Let us describe the model in more detail. The branching random environment on the
lattice Zd is a pair Ξ = (ξ0, ξ2) of two independent i.i.d. fields ξ0 = (ξ0(y))y∈Zd and ξ2 =

(ξ2(y))y∈Zd of positive numbers. Indeed, ξ0(y) and ξ2(y) are the rate of the replacement
of a particle at y ∈ Zd with 0 or 2 particles (killing and binary splitting), respectively.
See Section 1.4 for more general branching mechanisms.

The probability measure corresponding to Ξ is denoted Prob; expectation with re-
spect to Prob will be written with angular brackets 〈·〉. For a given realisation of Ξ,
the branching process with rate field Ξ is now defined by determining that any particle
located at a lattice site y ∈ Zd is subject to the killing/branching defined by the rates
ξ0(y) and ξ2(y), and additionally each particle performs a continuous-time random walk
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on Zd with generator κ∆, where κ > 0 is a parameter, and

∆f(x) =
1

2d

∑
y∼x

[
f(y)− f(x)

]
, for x ∈ Zd, f ∈ `2(Zd),

is the standard lattice Laplacian and we write y ∼ x if |x− y| = 1. We denote by Px the
probability measure under which a random walk with generator κ∆ starts from x with
corresponding expectation Ex. We consider a localised initial condition, i.e., at time
t = 0, there is a single particle at some site x ∈ Zd. Probability and expectation with
respect to the migration, branching and killing of the BRWRE are denoted by Px and
Ex, respectively, for fixed medium Ξ.

The description of the dynamics of the population is as follows. If a particle is at
some time at some site y, then during a small time interval of length h, with probability
κh+ o(h) it moves to a neighbouring site chosen uniformly at random, with probability
ξ2(y)h + o(h) it dies and is replaced by two descendant particles, and with probability
ξ0(y)h + o(h) it is killed without producing any offspring. Finally, with probability 1 −
(κ + ξ2(y) + ξ0(y))h + o(h) the particle experiences no changes during the whole time
interval of length h.

Let η(t, y) be the number of particles at time t ∈ [0,∞) at y ∈ Zd, and let η(t) =∑
y∈Zd η(t, y) be the total population size at time t. The main objects of interest in this

paper are the quenched moments

mn(t, x, y) = Ex[η(t, y)n] and mn(t, x) = Ex[η(t)n], n ∈ N, (1.1)

i.e., the expected n-th powers of the local and global particle numbers, where the ex-
pectation is taken only over the migration and the killing/branching, for frozen rates Ξ.
Note that, for n = 1, m1(t, x) is equal to the sum of m1(t, x, y) over y ∈ Zd, but such a
relation is not valid for n ≥ 2.

It will be the main purpose of the present paper to analyse the large-t asymptotics
of the p-th moments of mn(t, x) and of mn(t, x, y), taken over the medium Ξ.

1.2 Connection with the parabolic Anderson model

It is a fundamental knowledge in the theory of branching processes that the expected
particle number satisfies certain partial differential equation systems. In our case, the
characteristic system reads as follows. Put

ξ = ξ2 − ξ0,

and fix y ∈ Zd, then, (under certain integrability conditions, see [13]) for fixed localised
initial condition m1(0, ·, y) = δy(·), the map (t, x) 7→ m1(t, x, y) is the unique positive
solution to the Cauchy problem for the heat equation with potential ξ, i.e.,

∂

∂t
m1(t, x, y) = κ∆m1(t, x, y) + ξ(x)m1(t, x, y), for (t, x) ∈ (0,∞)×Zd. (1.2)

Similarly, the map (t, x) 7→ m1(t, x) is the unique positive solution of (1.2) with delo-
calised initial condition m1(t, ·) ≡ 1.

The interesting feature in our case is that the potential ξ is random. Here (1.2) is
often called the parabolic Anderson model. In fact, the operator κ∆+ξ appearing on the
right-hand side is called the Anderson operator. Its spectral properties are well studied
in mathematical physics. Equation (1.2) describes a random mass transport through a
random field of sinks and sources, corresponding to lattice points z with ξ(z) < 0 and
ξ(z) > 0, respectively. We refer the reader to [13], [19] and [5] for more background
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and to [12] for a survey on mathematical results. We see two competing effects: the
diffusion mechanism (Laplacian) tends to make the field m1 flat, and the local growth
(potential) tries to make it irregular.

Furthermore, it is also widely known since long [13] that m1 admits a representation
in terms of the Feynman-Kac formula:

m1(t, x, y) = Ex

[
exp
{∫ t

0

ξ(Xs) ds
}
δy(Xt)

]
, (t, y) ∈ [0,∞)×Zd, (1.3)

and the same formula without the last indicator for m1(t, x), where (Xs)s∈[0,∞) denotes
a simple random walk with generator κ∆. Note that m1 depends only on the difference
ξ of ξ2 and ξ0.

The asymptotics of the moments of m1 were analysed in [14] for the interesting spe-
cial case that the distribution of ξ lies in the vicinity of the so-called double-exponential
distribution with parameter ρ ∈ (0,∞),

Prob(ξ(x) > r) = exp{−er/ρ}, r ∈ (0,∞). (1.4)

The precise assumption on ξ can be written down in terms of the logarithmic moment
generating function

H(t) = log〈etξ(0)〉, (1.5)

which is assumed to be finite for any t > 0.

Assumption 1.1. There exists ρ ∈ [0,∞] such that

lim
t→∞

H(ct)− cH(t)

t
= ρc log c, c ∈ (0, 1). (1.6)

Under this assumption, it is proven in [14] that, for any x ∈ Zd, as t→∞,

〈mp
1(t, x)〉 = eH(pt) e−2dκχ(ρ/κ)pt+o(t), p ∈ N, (1.7)

where χ is defined as

χ(ρ) =
1

2
inf

µ∈P(Z)
[S(µ) + ρI(µ)]. (1.8)

Here P(Z) denotes the space of probability measures on Z, and the functionals S and
I where S, I : P(Z)→ R+ are given by

S(µ) =
∑
x∈Z

(√
µ(x+ 1)−

√
µ(x)

)2
and I(µ) = −

∑
x∈Z

µ(x) logµ(x). (1.9)

We have 0 < χ(ρ) < 1 for ρ ∈ (0,∞) and χ(0) = 0 and limρ→∞ χ(ρ) = χ(∞) = 1.
The right-hand side of (1.7) is also equal to the moments of m1(t, x, y) for any fixed
x, y ∈ Zd, as is seen by inspection of the proof (see Remark 1.3 in [14]). Also note that
H(t) � 2dκχ(ρ/κ)pt for large t, that is, asymptotically the first term on the right-hand
side of (1.7) is much larger than the second term.

Observe that the p-th moments of m1 at time t behave like the first moment at time
tp, up to the precision of (1.7). This can be easily guessed from a standard eigenvalue
expansion for m1(t, x) in terms of the eigenvalues and eigenfunctions of κ∆ in large
t-dependent boxes with zero or periodic boundary condition; in fact, m1(t, x) is roughly
equal to etλ1(t), where λ1(t) is the principal one. Then, obviously, mp

1(t, x) is roughly
equal to etpλ1(t).

As a consequence of (1.7), we have that for any p, q ∈ N with p < q, as t→∞,

log〈mp
1(t, x)〉
p

� log〈mq
1(t, x)〉
q

, x ∈ Zd. (1.10)
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Since the potential ξ(·) is i.i.d., the field m1(t, ·) is ergodic for any fixed t > 0. In other
words, m1(t, ·) is intermittent according to the definition in [13] (see page 616). The
discussion in [13] heuristically explains the geometric importance of this notion: there
is a set of x-values, called the intermittent islands, that predominantly supports the
sum of the q-th powers of m1(t, x), but contributes only negligibly to the sum of the p-th
powers. For fixed y ∈ Zd, also m1(t, ·, y) satisfies (1.10), but is not shift-invariant, so this
heuristics does not apply. Moreover, the second-order term in (1.7) and its variational
characterisation in (1.8) describe the shape of the fields ξ andm1(t, ·) in the intermittent
islands; see also [14].

1.3 Moments of the BRWRE

Let us now turn to the main object of the present paper, the moments of mn for n ≥
2. We can formulate our main result. Recall our assumptions from the beginning of
Section 1.1. We will also suppose that the branching rate ξ2(0) satisfies Assumption 1.1.
In the case ρ =∞, we will need an extra assumption to avoid too large a growth ofH2(t):

Assumption 1.2. For any k ∈ N,〈
ξ2(0)k eξ2(0)t

〉
≤ 〈eξ2(0)t〉eo(t) as t→∞. (1.11)

Note that Assumption 1.2 is satisfied for ρ <∞.

Theorem 1.3 (Moments of the BRWRE). Suppose that the logarithmic moment gen-
erating function H2 of ξ2(0) satisfies Assumption 1.1 and, in the case ρ = ∞, ξ2 also
satisfies Assumption 1.2. Fix x ∈ Zd, the starting site of the branching process. Then,
for any p, n ∈ N, as t→∞,

〈mp
n(t, x)〉 = exp

(
H(npt) − 2dκχ(ρ/κ)npt+ o(t)

)
. (1.12)

The same asymptotics holds true for 〈mp
n(t, x, y)〉 for any y ∈ Zd.

Note that the logarithmic moment generating function H0 of −ξ0(0) has asymptotics
1
tH0(t) → −essinf (ξ0(0)) ∈ (−∞, 0] as t → ∞. Therefore, by independence of ξ2 and ξ0,
the logarithmic moment generating function H of ξ2(0) − ξ0(0) also satisfies Assump-
tion 1.1, and this is crucial for the validity of Theorem 1.3.

In particular, Theorem 1.3 says that the p-th moments of mn at time t are equal to
the first moment of m1 at time tpn, up to the precision in (1.12), i.e.,

〈mp
n(t, x)〉 = 〈mnp

1 (t, x)〉eo(t) = 〈m1(tnp, x)〉eo(t), t→∞. (1.13)

This fact is not so easy to understand as for the case n = 1, see above. However, see
Section 1.5 for some heuristic remarks.

Recall the discussion of intermittency at the end of Section 1.2. Theorem 1.3 now
gives that for any n ∈ N the field mn(t, ·) is intermittent. Moreover, (1.13) indicates
that the intermittent islands for mp

n should resemble the ones of mpn
1 , and the shape

of ξ should be identical to the ones corresponding to the case n = 1, and the shape of
mn(t, ·) should be identical to the one of mn

1 (t, ·) in these islands. Hence, Theorem 1.3
reduces the intermittency of mn to that of m1. Since mn is the n-th moment of η, (1.13)
and the intermittency of mn also imply that also the particle field η(t, ·) shows the be-
haviour displayed in (1.10), with the understanding that the expectation is taken over
two randomnesses. However, this field is not ergodic, so it is unclear yet how to relate
this to intermittency. This is due to future work; but we would like stress that Theo-
rem 1.3 underlines that the understanding of the PAM is essential for understanding
the BRWRE.
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The main tool of our proof is a Feynman-Kac-type formula for mn, which we will
derive in Section 2, see Theorem 2.1. We are going to use probabilistic tools from the
theory of branching processes, the main input coming from the many-to-few lemma of
[15].

In [1] there was a weaker version of (1.12) derived; actually only the first term
eH(npt), and this only for the rather restricted case of a Weibull distribution, where
H(t) ∼ Ctα for some C ∈ (0,∞) and α ∈ (1,∞), a subcase contained in Assumption 1.1
in ρ = ∞. On the other hand, they drop the assumption of independence and only
assume spatial homogeneity of Ξ. However, this result does not explain the spatial
structure of the peaks of the moments of the population size, an information that is con-
tained in the second term, as was discussed at length in [14]. The proof in [1] is based
on the fact that mn is the solution to an inhomogeneous Cauchy problem, where the
inhomogeneity is a linear combination of products of m1, . . . ,mn−1. Furthermore, they
derived from this a Feynman-Kac formula for mn, which depends on that inhomogeneity
and is therefore of recursive type. This made it rather difficult to identify the second
term of the asymptotics. In contrast, we first derive a direct version of a Feynman-Kac-
type formula in Theorem 2.1 and are then able to find the logarithmic asymptotics of
the moments in much higher precision.

1.4 More general branching

Our Theorem 1.3 is formulated only for the special case of binary branching, but it
can straightforwardly be extended to more general branching mechanisms, subject to
additional conditions. Indeed, assume that the branching random environment is a
family Ξ = (ξk)k∈N0 of i.i.d. fields ξk = (ξk(y))y∈Zd of positive numbers. Then ξk(y) is the
rate for replacement of a particle at y by precisely k new particles, i.e., a splitting into
k particles. To exclude trivialities, we put ξ1(y) = 0 for any y. The family (ξk)k∈N0 is not
assumed to be i.i.d. Indeed, we at least have to assume that the field

ξ(y) =

∞∑
k=0

(k − 1)ξk(y) (1.14)

is well-defined (i.e., absolutely convergent) almost surely. One possible choice could be
ξk = ξpk with some probability distribution (pk)k∈N0

and some positive i.i.d. field ξ.
Then, under the assumption that

∑
k∈N k

nξk(y) < ∞ almost surely (e.g., if ξk ≡ 0

for all sufficiently large k), our Feynman-Kac-type formula for mn in Theorem 2.1 below
extends to this more general setting, see Remark 2.2. Furthermore, under suitable
conditions on the moments of

∑
k∈N k

nξk(y), also the proof of Theorem 1.3 in Section 3
can be easily extended to this situation. In order to avoid cumbersome formulas, we
abstained from writing down the details.

1.5 Discussion

Let us explain why the moment asymptotics ofmp
n(t, x) are equal to the ones ofmpn

1 (t, x),
see (1.13). We do this for n = 2 and p = 1. Note that, according to Theorem 2.1 below,
m2 = m1 + m̃2, where

m̃2(t, x) =

∫ t

0

Ex

[
exp
{∫ s

0

ξ(Xr) dr +

∫ t

s

ξ(X ′r) dr +

∫ t

s

ξ(X ′′r ) dr
}

2ξ2(Xs)
]

ds, (1.15)

where (Xr)r∈[0,s] and (X ′r)r∈[s,t] and (X ′′r )r∈[s,t] are independent simple random walks,
given Xs, with generator κ∆, starting at X0 = x, and X ′s = X ′′s = Xs. In other words,
these three random walks constitute a branching random walk with precisely one split-
ting at time s. The first part in the decompositionm2 = m1+m̃2, corresponds to absence
of splitting, and the second one to precisely one splitting.
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Let us consider the behaviour of the moments of m̃2 as t→∞. The first observation
is that the term 2ξ2(Xt) should have hardly any influence. For 0 ≤ ρ <∞ this is true and
in the case ρ =∞ it is due to Assumption 1.2, which rules out cases of extreme growth
ofH2(t). One can expect from (1.7) that the leading term of the expectation on the right-
hand side of (1.15) should be eH(2t−s), corresponding to the total time s+ (t−s) + (t−s)
that the three random walks spend in the random environment. Since H(t)→∞, this is
clearly maximal for s ≈ 0. Hence, the Laplace method gives that the main contribution
comes from s ≈ 0. Hence, the contribution comes mainly from a product of expectations
over two i.i.d. copies (X ′r)r∈[0,t] and (X ′′r )r∈[0,t], i.e., from a term ≈ m2

1(t, x).
In other words, it is favourable for the branching random walk to split as soon as

possible into two copies and to travel through the environment with these copies for a
long time. The deeper reason for this is that the potential ξ assumes extremely high
values in some part of the space, where the two copies collect much of those high val-
ues. This effect seems to be present as soon as esssup (ξ(0)) is positive, and it should be
turned into its opposite if esssup (ξ(0)) is negative. More precisely, for such potentials,
we expect that 〈mn(t, x)〉 ≈ 〈m1(t, x)〉. We expect that, for all four classes of poten-
tials in the classification made in [16], a version of Theorem 1.3 can be deduced from
Theorem 2.1.

2 Feynman-Kac-type formula for mn via spine techniques

In this section, we derive a Feynman-Kac-type formula for mn, almost surely with re-
spect to the branching rates ξ2 and killing rates ξ0. Our main result of this section
appears in Theorem 2.1 below. We will use the spine techniques of [15]. This requires
the introduction of a branching random walk (BRW) in Zd with time interval [0, t] with
up to n − 1 splitting events. In order to express this BRW, we will need the following
ingredients:

(i) a tree that expresses the branching structure,

(ii) an ordering of the splitting sites of the tree to express their order in time,

(iii) a time duration attached to each bond,

(iv) an expectation over a simple random walk bridge attached to each bond.

In order to keep the notation simple, we restrict ourselves to binary branching. See
Remark 2.2 for more general branching mechanisms.

We need some notation from the theory of trees. Let G = (V,E) be a finite graph
with V the set of vertices and E the set of edges. G is a tree if it is simple, connected
and has no cycles. Let us assume that G is a rooted tree, i.e., a tree with a root ∅ ∈ V .
This induces a natural ordering of vertices, namely, for u, v ∈ V we say that u � v if the
unique path from the root to v contains u. In particular, if (u, v) ∈ E then either u � v or
v � u. We hence may assume that E is a directed tree, i.e., E contains only edges (u, v)

with u � v, in which case we call u the parent of v and v a child of u. Note that, except
the root, each vertex has a unique parent. We call a vertex a leaf if it has no children.
We call G a rooted binary tree if each vertex has at most two children. We distinguish
binary trees by labelling the children of each vertex as the left child and the right child.

By Tk we denote the set of finite rooted binary trees with k + 1 leaves, such that the
root has precisely one child and every other vertex has precisely two children, except
for the leaves. Note that T0 consists of one tree only, which consists of the root, a leaf
and an edge going from the root to the leaf. Furthermore, put T =

⋃
k∈N0

Tk. For a tree
in T we call the vertices other than the root and the leaves splitting vertices. Note that
a tree in Tk has precisely k splitting vertices. For T = (V,E) ∈ T , we denote by S the
set of its splitting vertices and by L the set of its leaves; hence V = {∅} ∪ S ∪L, #S = k
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and #L = k + 1. We write T = (∅, S, L,E). See Figure 1 for two representatives from
T3.

Figure 1: Two trees in T3. The empty circles represent the leaves L and the full circles
represent the branching vertices S.

Now we equip trees with numberings. For k ∈ N0 and T = (∅, S, L,E) ∈ Tk let
I : {∅} ∪ S → {0, 1, 2, . . . , k} be a bijection. We call I a monotonous numbering of T if
I(∅) = 0 and I(s1) < I(s2) for any s1, s2 ∈ S with (s1, s2) ∈ E. We extend I to L by setting
I(l) = k + 1 for any leaf l ∈ L. See Figure 2 for an example. The set of monotonous
numberings of T is denoted by N (T ).

Figure 2: The only two possible monotonous numberings for the tree on the right of
Figure 1. The left tree there admits only one such numbering.

Now we equip numbered trees with times. For k ∈ N0 and t > 0, denote by Zk(t) the
set of time vectors

t̂ = (t0, . . . , tk+1), where 0 = t0 < t1 < · · · < tk < tk+1 = t. (2.1)

Let us fix a tree T ∈ Tk, an ordering I ∈ N (T ) and a time vector t̂ ∈ Zk(t). For
b = (u, v) ∈ E, we denote by

Y (b,t̂) =
(
Y (b,t̂)

r : r ∈ [tI(u), tI(v)]
)

a continuous-time simple random walk on Zd with generator κ∆, starting from zero. We
assume that the collection (Y (b,t̂))b∈E is independent. We consider Y (b,t̂) as the segment
of a branching random walk with parent u and child v that arises from a splitting event
at time tI(u), considered until the next splitting event at time tI(v).
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Now we compose all these segments of simple random walks according to the tree
and define the BRW on [0, t] with precisely k splits. Fix the starting site x ∈ Zd of the
branching process. For a leaf l ∈ L let ∅ = u0, . . . , uj−1, uj = l be the vertices visited by
the unique path from ∅ to the leaf l, and bi = (ui−1, ui) the corresponding bonds, where
j ∈ N. Then we define the continuous-time random walk X(l) = (X(l)

r )r∈[0,t] by

X(l)

r := x+

i−1∑
m=1

Y (bm,t̂)

tI(um)
+ Y (bi,t̂)

r , r ∈ [tI(ui−1), tI(ui)], i ∈ {1, . . . , j}. (2.2)

Note that the collection of the random walks (X(l))l∈L is consistent in the sense that,
for any leaves l and l′, the paths of X(l) and X(l′) coincide up to the time tI(ũ) of the
vertex ũ where the tree path ∅ → l splits from the path ∅ → l′; afterwards they are
independent given the site X(l)

tI(ũ)
= X(l′)

tI(ũ)
. The separate pieces of the BRW between

subsequent splits are denoted by

X(u,v) = (X(u,v)

r )r∈[tI(u),tI(v)] = (X(l)

r )r∈[tI(u),tI(v)], (u, v) ∈ E,

where l ∈ L is any leaf such that the bond (u, v) lies on the unique path from ∅ to l.
Because of the above consistency property of (X(l))l∈L, the value does not depend on
the choice of l. The collection of all the path pieces X(u,v) with (u, v) ∈ E is consistent
in the sense that X(u,v)

tI(v)
= X(v,u′)

tI(v)
for any edges (u, v) and (v, u′). See Figure 3 for an

example.

Figure 3: An example of a BRW corresponding to the monotonously numbered tree on
the right of Figure 2.

Expectation with respect to the collection (X(l))l∈L will be denoted by E(T,I,t̂)
x . For

y ∈ Zd, we abbreviate

Φx(T, I, t, y) :=

∫
Zk(t)

dt̂E(T,I,t̂)

x

[
exp

( ∑
(u,v)∈E

∫ tI(v)

tI(u)

ξ(X(u,v)

r ) dr
)
× (2.3)

(∏
v∈S

ξ2(X(u,v)

tI(v)
)
)∑
l∈L

1l{X(l)

t = y}
]
,

where in the product u is the parent of v. Furthermore, we define

Φx(T, I, t) :=

∫
Zk(t)

dt̂E(T,I,t̂)

x

[
exp

( ∑
(u,v)∈E

∫ tI(v)

tI(u)

ξ(X(u,v)

r ) dr
)(∏

v∈S
ξ2(X(u,v)

tI(v)
)
)]
. (2.4)
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Finally, we define sequence of numbers ck,n for n ∈ N and k = 0, . . . , n− 1 by setting
c0,n = 1 for all n ∈ N and by the recursive relation

ck,n =

n−k∑
i=1

(
n

i

)
ck−1,n−i, k = 1, . . . , n− 1. (2.5)

Now we can state the main theorem of this section, which gives us a Feynman-Kac-
type formula for the functions mn.

Theorem 2.1. For n ∈ N and x, y ∈ Zd, we have

mn(t, x) =

n−1∑
k=0

∑
T∈Tk

∑
I∈N (T )

ck,nΦx(T, I, t), (2.6)

and the same formula for mn(t, x, y) with Φx(T, I, t) replaced by Φx(T, I, t, y).

Proof. We denote by N(t) the set of particles alive at time t. For a particle u ∈ N(t) let
σu and τu denote the birth and death time of u, respectively. We put σu(t) = σu ∧ t and
τu(t) = τu ∧ t. If u ∈ N(t) we write Z(u)

s for the position of the unique ancestor of u alive
at time s ∈ [0, t]. If u has no children we say that Z(u)

s is at the graveyard state, ∂, for
any s ≥ τu.

Specialising [15, Section 2] to our situation, we define a new branching process by
imposing the following rules:

(i) We start with one particle at x that carries n marks (and their positions) 1, 2, . . . , n.

(ii) We think of each of the marks 1, 2, . . . , n as a spine and denote by ζ(i)

t the position
of the particle that carries the mark i at time t.

(iii) Particles diffuse as under Px, i.e., as independent continuous-time random walks
with generator κ∆.

(iv) A particle at position y carrying j marks branches at rate 2jξ2(y) and is replaced
with two new particles.

(v) At such a branching event of a particle carrying j marks, each mark chooses inde-
pendently and uniformly at random one of the two particles to follow.

(vi) Particles not carrying any marks behave as under Px.

We write Q(n)
x (·) for the corresponding probability measure and E(n)

x [·] for the corre-
sponding expectation. We call the collection of particles that have carried at least one
mark up to time t the skeleton at time t and write skel(t). We define D(v) as the number
of marks carried by a particle v. Let us abbreviate

A(t) = exp
( ∑
v∈skel(t)

∫ τv(t)

σv(t)

(
(2D(v) − 1)ξ2(Z(v)

r )− ξ0(Z(v)

r )
)

dr
)
. (2.7)

We now apply the many-to-few lemma [15, Lemma 3] for Y = 1 and ζ ≡ 1 and obtain

mn(t, x) = E(n)

x [A(t)] and mn(t, x, y) = E(n)

x

[
A(t)

∑
v∈skel(t)

1{Z(v)

t = y}
]
. (2.8)

Note that the spine trajectory does not undergo a splitting at a branching event,
if all the marks choose the same child to follow. Hence, we only want to consider
splitting events that not all the marks choose the same particle to follow. Note that
the probability of such an event, when a particle carrying j marks branches, is equal
to 1 − 2−j+1. Then the rate of such branching events for particles carrying j marks at
position y is (2j − 2)ξ2(y). Accordingly, we define a measure Q

(n)

x with corresponding

expectation E
(n)

x by changing the items (iv) and (v) in the above description of Q(n)
x by
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(iv) A particle at position y carrying j marks branches at rate (2j − 2)ξ2(y) and is
replaced with two new particles.

(v) At a branching event of a particle carrying j marks choose uniformly at random
one of the two particles to follow conditioned on for each new particle there is at
least one mark following it.

Note that (2.8) is still valid when E(n)
x is replaced by E

(n)

x .
We only prove (2.6) since the proof of the formula for the moments of mn(t, x, y) is

done exactly in the same way. We use the method of strong induction. For n = 1, (2.6)
is immediate. Now assume that (2.6) holds for n replaced by any i ∈ {1, . . . , n− 1}, and
we prove that it is also true for n.

We start from the first formula in (2.8) and integrate over all values of the time, T , of
the first branching event under Q

(n)

x and over all possible branchings. The conditional
distribution of T given ζ(1) is given by

Q
(n)

x

(
T > t

∣∣ ζ(1)
)

= exp
(
−
∫ t

0

(2n − 2)ξ2(ζ(1)

r ) dr
)
. (2.9)

On the event {T > t}, we have skel(t) = {∅}, σ∅(t) = 0, τ∅(t) = t, D(∅) = n and Z(∅) = ζ(1).
Hence, we have

E
(n)

x

[
A(t)1l{T>t}

∣∣∣ ζ(1)

]
= exp

(∫ t

0

ξ(ζ(1)

r ) dr
)
. (2.10)

Integrating this with respect to Q
(n)

x , we get

E
(n)

x

[
A(t)1l{T>t}

]
= E

(n)

x

[
exp

(∫ t

0

ξ(ζ(1)

r ) dr

)]
= Ex

[
exp

(∫ t

0

ξ(Xr) dr

)]
, (2.11)

since any spine follows a simple random walk with generator κ∆. This is the term that
corresponds to k = 0 in the sum in (2.6). Similarly we can calculate the conditional
density of T as

Q
(n)

x

(
T ∈ dt1

∣∣ ζ(1)
)

= exp

(
−
∫ t1

0

(2n − 2)ξ2(ζ(1)

r ) dr

)
(2n − 2)ξ2(ζ(1)

t1 ) dt1, t1 > 0.

(2.12)
Let Bl,n−l be the event that at the branching time T , l marks follow the first child of

∅ and n− l marks follow the second child. Then it is clear that

Q
(n)

x

(
Bl,n−l

)
=

(
n

l

)
1

2n − 2
, l = 1, . . . , n− 1. (2.13)

So for l = 1, . . . , n− 1, by (2.8), we have, using the Markov property at time t1 ∈ [0, t],

E
(n)

x

[
A(t)

∣∣Bl,n−l, T = t1, ζ
(1)
]

(2.14)

= exp
(∫ t1

0

{
(2n − 1)ξ2(ζ(1)

r )− ξ0(ζ(1)

r )
}

dr
)
ml(t− t1, ζ(1)

t1 )mn−l(t− t1, ζ(1)

t1 ).

Hence, using (2.14), (2.12), (2.13) and the independence of the splitting time and the
number of offsprings, we get∫ t

0

n−1∑
l=1

E
(n)

x

[
A(t)1lBl,n−l

, T ∈ dt1

∣∣∣ ζ(1)

]
(2.15)

=

∫ t

0

n−1∑
l=1

(
n

l

)
exp

(∫ t1

0

ξ(ζ(1)

r ) dr
)
ξ2(ζ(1)

t1 )ml(t− t1, ζ(1)

t1 )mn−l(t− t1, ζ(1)

t1 ) dt1.
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The induction hypothesis for ml and mn−l says that

ml(t− t1, ζ(1)

t1 )mn−l(t− t1, ζ(1)

t1 ) (2.16)

=

l−1∑
k1=0

n−l∑
k2=0

∑
T1∈Tk1

∑
T2∈Tk2

∑
I1∈N (T1)

∑
I2∈N (T2)

ck1,l ck2,n−l Φζ(1)t1

(T1, I1, t− t1)Φ
ζ
(1)
t1

(T2, I2, t− t1).

Let us denote by T (1,2) the tree in Tk1+k2+1 formed by attaching the tree T1 to the left of
the unique child of the root and the tree T2 to the right of the unique child of the root.
Then the Markov property at time t1 gives the following concatenation property of Φ:∑
I1∈N (T1)

∑
I2∈N (T2)

∫ t

0

E
(n)

x

[
exp

(∫ t1

0

ξ(ζ(1)

r ) dr
)

Φ
ζ
(1)
t1

(T1, I1, t− t1)Φ
ζ
(1)
t1

(T2, I2, t− t1)
]

dt1

=
∑

I∈N (T (1,2))

Φx(T (1,2), I, t).

Then, integrating both sides of (2.15) with respect to Q
(n)

x , we get

E
(n)

x

[
A(t)1l{T∈[0,t]}

]
=
n−1∑
l=1

(
n

l

) l−1∑
k1=0

n−l∑
k2=0

∑
T1∈Tk1

∑
T2∈Tk2

ck1,l ck2,n−l
∑

I∈N (T (1,2))

Φx(T (1,2), I, t).

(2.17)
Let T k1,k−k1−1k denote the set of trees in Tk such that the two subtrees of the child of ∅
lie in Tk1 and Tk−k1−1, respectively. By changing the order of the sum we get that the
right-hand side of (2.17) is equal to

n−1∑
k=1

k−1∑
k1=0

∑
T∈T k1,k−k1−1

k

n−(k−k1)∑
l=k1+1

(
n

l

)
ck1,l ck−k1−1,n−l

∑
I∈N (T )

Φx(T, I, t). (2.18)

By (2.5) we have
n−(k−k1)∑
l=k1+1

(
n

l

)
ck1,l ck−k1−1,n−l = ck,n. (2.19)

This, together with (2.11) completes the proof of (2.6).

Remark 2.2. There are also versions of Theorem 2.1 for more general branching
mechanisms as proposed in Section 1.4 above. Under the additional assumption that∑
k∈N k

nξk converges almost surely, one can extend Theorem 2.1 to this setting. The
main change in (2.6) is that the terms involving the cn,k and ξ2 must be replaced by a
term of the form ∑

mark

∏
v

∞∑
k=2

(
kmark(v) − k

)
ξk(X(v)

tI(v)
),

where the marks are now taken from a more complex set than {1, . . . , n}. Since the
formulas arising are much more cumbersome, we abstained from writing them down
carefully and proving them. However, it is easily seen from the above proof that they
have a form which also admits an analysis of the large-t limit of the moments of mn in
the same way as we do in Section 3.

3 Proof of the main result

In this section, we prove the main result of our paper, the moment asymptotics for-
mulated in Theorem 1.3. The proof will be crucially based on the Feynman-Kac-type

EJP 18 (2013), paper 63.
Page 12/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2212
http://ejp.ejpecp.org/


Moment asymptotics for branching random walks in random environment

formula for mn given in Theorem 2.1 above. Another important ingredient is a large-
deviations principle for the local times of the branching random walk, which we will
provide in Section 3.1. The proof of the lower and upper bound of the moment asymp-
totics are in Sections 3.2 and 3.3, respectively.

3.1 LDP for the local times of the BRW

In this section we formulate and prove a large-deviations principle (LDP) for the nor-
malised occupation time measures (the local times) of the BRW introduced in Sec-
tion 1.3, for a fixed tree T = (∅, S, L,E) ∈ Tk and a fixed monotonous numbering
I ∈ N (T ), as the time parameter tends to infinity.

We define the local times of the BRW as the sum of the times that its random walk
segments X(u,v) with (u, v) ∈ E spend in a given site z ∈ Zd. More precisely, assume
that T ∈ Tk and let a time vector t̂ = (t0, . . . , tk+1) ∈ Zk(t) be given and define the local
time of the BRW in z ∈ Zd as

`t̂(z) =
∑

(u,v)∈E

∫ tI(v)

tI(u)

δ
X

(u,v)
r

(z) dr. (3.1)

Then its total mass is equal to

m(t̂) :=
∑
z∈Zd

`t̂(z) =
∑

(u,v)∈E

(tI(v) − tI(u)). (3.2)

Hence, we normalise the local times and obtain

Lt̂(z) =
`t̂(z)

m(t̂)
, z ∈ Zd, (3.3)

a random element of the set P(Zd) of all probability measures on Zd. Fix the starting
site x of the BRW. Let TdR be the lattice cube of length 2R+ 1 centred at x. We consider
the periodised local times

L(R)

t̂
(z) :=

∑
y∈(2R+1)Zd+x

Lt̂(z + y), z ∈ TdR, (3.4)

a random element of the set P(TdR). Our LDP reads as follows.

Lemma 3.1. Fix k ∈ N0, T ∈ Tk, I ∈ N (T ) and R ∈ N. Furthermore, fix the starting
site x of the BRW and a vector ŝ = (s0, . . . , sk+1) ∈ Zk(1) and a sequence ŝt → ŝ as
t→∞. Then the normalised local times L(R)

tŝt
satisfy, as t→∞, the (full) large deviation

principle with scale tm(ŝ) and rate function κS(per)

R , where

S(per)

R (µ) =
∑

y1,y2∈Td
R : y1∼y2

(√
µ(y1)−

√
µ(y2)

)2
. (3.5)

Proof. The special case k = 0 is classic and well known, see [9, 11, 14]. Here ŝ = (0, 1)

and m(ŝ) = 1, and the BRW consists of just one random walk with start in x and time
interval [0, t]. This LDP holds even locally uniformly in ŝ ∈ Zk(1), as is seen from the
proof, which uses an eigenvalue expansion and the Gärtner-Ellis theorem, to turn it into
modern notation. This also shows that the LDP is the same under the sub-probability
measure that conditions on a fixed starting site and restricts the path to a fixed terminal
site.

The general case is an easy consequence of that classical result, as the random
walk segments X(u,v) with (u, v) ∈ E are conditionally independent, after conditioning
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on the starting sites and restricting the paths to all the terminating sites. It is clear
that number of those sites is finite. Under this sub-probability measure, the normalised
local times of each segment X(u,v) satisfy the LDP with scale t(sI(v) − sI(u)) and the
rate function in (3.5), and L(R)

tŝt
is just an elementary finite convex combination of these

independent objects. The claimed LDP follows by summing over all the starting and
terminating sites, as these are only finite sums.

3.2 Proof of the lower bound

Jensen’s inequality gives, for any n, p ∈ N and any x, y ∈ Zd,

〈mp
n(t, x)〉 ≥ 〈mp

n(t, x, y)〉 = 〈Ex(η(t, y)n)p〉 ≥ 〈Ex(η(t, y))np〉 = 〈mnp
1 (t, x, y)〉, t > 0.

(3.6)
Now we can apply the result (1.7) from [14] for np instead of p and obtain the lower
bound in (1.12); see also (1.13). Here we recall that the logarithmic asymptotics of
〈mnp

1 (t, x, y)〉 are the same as for 〈mnp
1 (t, x)〉, as mentioned in Section 1.2.

3.3 Proof of the upper bound

Now we give the corresponding upper estimate for the moments 〈mp
n(t, x)〉 (which ap-

plies then also to 〈mp
n(t, x, y)〉). Recall from (2.6) that 〈mp

n(t, x)〉 is the expectation of the
p-th power of the sum of ck,nΦx(T, I, t) over k ∈ {0, . . . , n − 1}, T ∈ Tk and I ∈ N (T ),
where Φx(T, I, t) is given in (2.4). Rewriting Φx(T, I, t) using the local times of the BRW,

Φx(T, I, t) =

∫
Zk(t)

dt̂E(T,I,t̂)

x

[
exp

( ∑
z∈Zd

ξ(z)`(T,I)

t̂
(z)
)(∏

v∈S
ξ2(X(u,v)

tI(v)
)
)]
, (3.7)

it is clear (in the case ρ = ∞, from Assumption 1.2) that it is only the exponential term
involving the local times that will turn out to be responsible for the claimed asymptotics,
and only the summand for k = n − 1 will turn out to give the leading asymptotics. We
will dig this term out with repeated applications of Jensen’s and Hölder’s inequality.

We use the inequality 〈(∑
i∈X

Xi

)p〉
≤ |X |p−1

∑
i∈X

〈
Xp
i

〉
, (3.8)

derived from Jensen’s inequality, where X is some index set and |X | stands for its car-
dinal number. After applying inequality (3.8) three times we get

〈mp
n(t, x)〉 ≤ np−1

n−1∑
k=0

|Tk|p−1
∑
T∈Tk

|N (T )|p−1
∑

I∈N (T )

cpk,n
〈
Φpx(T, I, t)

〉
= eo(t)

n−1∑
k=0

∑
T∈Tk

∑
I∈N (T )

〈
Φpx(T, I, t)

〉
.

(3.9)

Hence, the only dependence on t now sits in the last expectation, 〈Φpx(T, I, t)〉, and it is
enough to show that this term satisfies the claimed asymptotics and that it is maximal
for k = n− 1. Using (3.8) in integral form for the integral over t̂ and Jensen’s inequality
for the expectation, we see that〈

Φpx(T, I, t)
〉
≤ |Zk(t)|p−1

∫
Zk(t)

dt̂
〈(
E(T,I,t̂)

x

[
exp

( ∑
z∈Zd

ξ(z)`t̂(z)
)(∏

v∈S
ξ2(X(u,v)

tI(v)
)
)])p〉

,

where |Zk(t)| = tk/k! denotes volume of Zk(t). Since this volume term is negligible for
the logarithmic asymptotics, we only have to concentrate on the integral. Making the
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change of variables t̂ = tŝ, we see that〈
Φpx(T, I, t)

〉
≤ eo(t)

∫
Zk(1)

dŝ
〈(
E(T,I,tŝ)

x

[
exp

( ∑
z∈Zd

ξ(z)`tŝ(z)
)(∏

v∈S
ξ2(X(u,v)

tsI(v)
)
)])p〉

.

(3.10)

At this stage we separate the cases 0 ≤ ρ <∞ and ρ =∞.

0 ≤ ρ <∞: Our next step is to take expectation with respect to the branching/killing
environment and to separate the exponential term from the powers of the ξ2 terms by
means of Hölder’s inequality. Fix q, q′ > 1 (later chosen in dependence on t) satisfying
1
q + 1

q′ = 1, then we have〈(
E(T,I,tŝ)

x

[
exp

( ∑
z∈Zd

ξ(z)`tŝ(z)
)∏
v∈S

ξ2(X(u,v)

tsI(v)
)
])p〉

≤
〈
E(T,I,tŝ)

x

[
exp

(
q
∑
z∈Zd

ξ(z)`tŝ(z)
)]p/q

E(T,I,tŝ)

x

[ ∏
v∈S

ξq
′

2 (X(u,v)

tsI(v)
)
]p/q′〉

≤
〈
E(T,I,tŝ)

x

[
exp

(
q
∑
z∈Zd

ξ(z)`tŝ(z)
)]p〉1/q〈

E(T,I,tŝ)

x

[ ∏
v∈S

ξq
′

2 (X(u,v)

tsI(v)
)
]p〉1/q′

,

(3.11)

where we used Hölder’s inequality twice. Now we show that the second term in the
above display is negligible. Recall that |S| = k− 1 and that ξ2(x) is i.i.d. in x ∈ Zd. Then
using Jensen’s inequality and Fubini’s theorem we get〈
E(T,I,tŝ)

x

[ ∏
v∈S

ξq
′

2 (X(u,v)

tsI(v)
)
]p〉1/q′

≤
[
E(T,I,tŝ)

x

〈∏
v∈S

ξpq
′

2 (X(u,v)

tsI(v)
)
〉]1/q′

≤
〈
ξ
p(k−1)q′
2 (0)

〉1/q′
,

(3.12)
where for the last inequality we used the fact that ξ2 ≥ 0. Now using the inequality
x ≤ ex for x > 0 we get〈

ξ
p(k−1)q′
2 (0)

〉1/q′
≤
〈

ep(k−1)q
′ξ2(0)

〉1/q′
= exp

{ 1

q′
H2

(
(k − 1)pq′

)}
, (3.13)

where we recall that H2 denotes the logarithmic moment generating function of ξ2(0).
Now we pick q = qt = 1 + εt and q′t = 1 + 1/εt depending on t such that εt ↘ 0 as t→∞.
In our case where ρ <∞, we have H2(t) ≤ ρt log t+O(t) as t→∞, so it is clear that we
can choose εt converging to 0 slowly enough so that as t→∞

εt
t
H2(1/εt)→ 0. (3.14)

Hence, by (3.14) and (3.13) we can conclude that the right-hand side of (3.12) is eo(t),
i.e., the second term on the right-hand side of (3.11) is negligible.

Proceeding as in the proof of (1.7) in [14] and using the LDP of Lemma 3.1, we get
that〈
E(T,I,tŝ)

x

[
exp

(
qt
∑
z∈Zd

ξ(z)`tŝ(z)
)]p〉1/qt

≤ exp
( 1

qt
H
(
qtptm(ŝ)

)
− 1

qt
2dκptm(ŝ)χ(ρ/κ)+o(t)

)
.

(3.15)
Recall that the LDP in Lemma 3.1 holds even uniformly in ŝ ∈ Zk(1) away from zero.
Hence, we can easily conclude that

〈Φpx(T, I, t)〉 ≤ eo(t)
∫
Zk(1)

dŝ exp
( 1

qt
H
(
qtptm(ŝ)

)
− 1

qt
2dκptm(ŝ)χ(ρ/κ)

)
. (3.16)
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By (1.6), for ρ > 0 we have H(t) � t as t → ∞ and for ρ = 0, χ(0) = 0. Finally, since
qt → 1 as t→∞, by Laplace’s method we get that, for any T, I and k ∈ {0, . . . , n− 1},

〈Φpx(T, I, t)〉 ≤ eo(t) exp
( 1

qt
H(qtpt(k + 1))− 1

qt
2dκpt(k + 1)χ(ρ/κ)

)
, (3.17)

as the main contribution comes from ŝ = (0, . . . , 0, 1), having total mass m(ŝ) = k + 1.
The interpretation is that the main contribution to the moments comes from the BRW
splitting into k particles practically immediately after the beginning.

Hence, using (3.9) and the fact that H(t) � t for ρ > 0 and χ(ρ) = 0 for ρ = 0 once
again, by Laplace’s method (‘the largest rate wins’) we get

〈mp
n(t, x)〉 ≤ eo(t) exp

( 1

qt
H(qtptn)− 1

qt
2dκptnχ(ρ/κ)

)
. (3.18)

The proof of the upper bound for 0 ≤ ρ <∞ is therefore finished by noting that

exp
( 1

qt
H(qtptn)

)
= eH(ptn)eo(t), t→∞. (3.19)

This is seen as follows. Recall that qt ↘ 1, and note from [14, Remark 1.1(b)] that the
convergence in (1.6) is uniform on [0, 1] and hence also locally uniform on [0,∞). Hence,
writing

1

t

( 1

qt
H
(
qttpn

)
−H(tpn)

)
=

1

qt

(H(qttpn)− pnqtH(t)

t
− H(pnt)− pnH(t)

t

)
+
qt − 1

qt

pnH(t)−H(tpn)

t
, (3.20)

shows that (3.19) holds and finishes the proof.

ρ =∞: We start from (3.10). In order to express the p-th power of the expectation,
we introduce p independent copies X(i,u,v)

tI(u)
, i = 1, . . . , p, of X(u,v)

tI(u)
and denote by `(p)tŝ the

sum over i ∈ {1, . . . , p} of the local times of these random walks. For z ∈ Zd define

r(z) =

p∑
i=1

∑
(u,v)∈S

δz
(
X(i,u,v)

tI(u)

)
; (3.21)

and introduce the notation

G2(l, k) =

〈
elξ2(0)ξ2(0)k

〉〈
elξ2(0)

〉 =

〈
elξ(0)ξ2(0)k

〉〈
elξ(0)

〉 , l, k ∈ [0,∞), (3.22)

where the last step used that ξ2(0) and ξ0(0) are independent; recall that ξ = ξ2 − ξ0.
From (3.10) we have〈

Φpx(T, I, t)
〉
≤ eo(t)

∫
Zk(1)

dŝ
〈
E
[

exp
( ∑
z∈Zd

`(p)tŝ (z)ξ(z)
) ∏
z∈Zd

ξ2(z)r(z))
]〉

= eo(t)
∫
Zk(1)

dŝE
[〈

exp
( ∑
z∈Zd

`(p)tŝ (z)ξ(z)
) ∏
z∈Zd

ξ2(z)r(z))
〉]

= eo(t)
∫
Zk(1)

dŝE
[ ∏
z∈Zd

〈
eξ(0)`

(p)
tŝ

(z)ξ2(0)r(z)
〉]

= eo(t)
∫
Zk(1)

dŝE
[( ∏

z∈Zd

eH(`
(p)
tŝ

(z))
) ∏
z∈Zd

G2

(
`(p)tŝ (z), r(z)

)]
,

(3.23)
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where we used Fubini’s theorem and (3.22).
Note that k 7→ G2(l, k) is log-convex for any l, since it is a moment generating func-

tion. Since G2(l, 0) = 0, it is also easily seen to be log-subadditive. As a consequence,
∂lG2(l, k) = G2(l, k+ 1)−G2(l, 1)G(l, k) is nonnegative, hence l 7→ G2(l, k) is increasing.
Hence, since the local times `(p)tŝ (z) sum up to tpm(ŝ), we have∏
z∈Zd

G2

(
`(p)tŝ (z), r(z)

)
≤
∏
z∈Zd

G2

(
tpm(ŝ), r(z)

)
≤ G2

(
tpm(ŝ),

∑
z∈Zd

r(z)
)

= G2

(
tpm(ŝ), (n−1)p

)
,

since the r(z) sum up to p|S| = p(n − 1). Note that the right-hand side is ≤ eo(t) by
Assumption 1.2. Using this fact in (3.23), we see that〈

Φpx(T, I, t)
〉
≤ eo(t)

∫
Zk(1)

dŝE
[ ∏
z∈Zd

eH(`
(p)
tŝ

(z))
]
.

Now, precisely as in the proof of (1.7) in [14], one proves that

E
[ ∏
z∈Zd

eH(`
(p)
tŝ

(z))
]
≤ eH(tpm(ŝ))−2dκtpm(ŝ)+o(t).

An inspection of the proof, using the uniformity in the LDP in Lemma 3.1, shows that
this convergence is locally uniform in ŝ. Hence, like in the above proof in the case
ρ < ∞, we see that Laplace’s method yields the result, after optimising over ŝ ∈ Zk(1)

and k ∈ {0, . . . , n− 1} (recall that χ(∞) = 1).
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