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Abstract

A local projection stabilization (LPS) method in space is considered to approximate the
evolutionary Oseen equations. Optimal error bounds with constants independent of the
viscosity parameter are obtained in the continuous-in-time case for both the velocity and
pressure approximation. In addition, the fully discrete case in combination with higher order
continuous Galerkin–Petrov (cGP) methods is studied. Error estimates of order k + 1 are
proved, where k denotes the polynomial degree in time, assuming that the convective term
is time-independent. Numerical results show that the predicted order is also achieved in the
general case of time-dependent convective terms.
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1 Introduction

The behavior of incompressible fluid flows is modeled by the incompressible Navier–Stokes equa-
tions. Analyzing numerical schemes for these equations faces several difficulties. First, the
unresolved problem of the uniqueness of the weak solution of the Navier–Stokes equations in
three dimensions requires to assume uniqueness, which is usually done by assuming sufficient
regularity of the weak solution. Moreover, the estimate of the nonlinear term often uses the
Gronwall lemma, such that an exponential factor occurs in the error bounds, depending on some
norm of the velocity, e.g., on ‖∇u‖∞ as in [20]. As result, the obtained estimates are by far
too pessimistic in practice. For these reasons, this paper will deal, with respect to the numer-
ical analysis, with a related but simpler problem, namely the evolutionary or transient Oseen
equations. They read in dimensionless form as follows:
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Find u(t,x) : (0, T ]× Ω→ Rd, d ∈ {2, 3}, and p(t,x) : (0, T ]× Ω→ R such that

∂tu− ν∆u+ (b · ∇)u+ σu+∇p = f in (0, T ]× Ω,

divu = 0 in (0, T ]× Ω,

u = 0 on (0, T ]× ∂Ω,

u(0, ·) = u0 in Ω,

(1)

where Ω ⊂ Rd is a bounded domain with polyhedral Lipschitz boundary ∂Ω, ν = Re−1 > 0
(viscosity) and σ > 0 are positive constants, b(t,x) is a given velocity field with div b = 0, u0 is
the initial velocity field, and T is a given final time. Without loss of generality, one can assume
σ > 0, since if it is not the case then a simple change of variable transforms the problem into (1)
with σ > 0, see [19, Sect. 1].

The numerical solution of (1) requires discretizations in time and space. Concerning the
temporal discretization, continuous Galerkin–Petrov methods of order k ≥ 1, cGP(k), will be
considered. With respect to space, finite element methods will be studied. Since the paper will
study the convection-dominated regime, where ν is smaller than an appropriate norm of b by
several orders of magnitude, a stabilization of the standard finite element discretization becomes
necessary.

Considering the situation that the viscosity is much smaller than the convection, it is well
known that stabilized discretizations have to be applied. The most popular stabilized finite
element method is probably the streamline upwind Petrov–Galerkin (SUPG) method from [16,
22]. Often, the SUPG stabilization is used in combination with the pressure-stabilization Petrov–
Galerkin (PSPG) method, [29]. However, the SUPG/PSPG method possesses some drawbacks,
see [15]: it introduces a velocity-pressure coupling for which no physical explanation is known
and the non-symmetry of the stabilization might be of disadvantage. In the time-dependent case,
the consistent application of the method leads to a number of additional terms which have to be
assembled, see [28, 31]. Because of the drawbacks of the SUPG/PSPG method, we think that
it is worth to investigate different approaches in detail, in particular such approaches that are
symmetric and that do not introduce an additional velocity-pressure coupling. Local projection
stabilization (LPS) methods belong to this class of methods and will be the topic of this paper.

A different approach from this class was studied recently in [19], where a grad-div stabilized
method is used to discretize the evolutionary Oseen equations. Optimal bounds for the divergence
of the velocity and the L2(Ω) norm of the pressure are proved for this method.

The LPS method was originally proposed for the Stokes problem in [12] and it was successfully
extended to transport problems in [13]. Finite element analysis for the LPS method applied to
the stationary Oseen equations can be found in [14, 34] and to convection-diffusion-reaction
problems in [5, 7, 11, 35]. The stabilization term of the LPS method is based on a projection
that is defined on the finite element space which approximates the solution and which maps
into a discontinuous space. Compared with the standard Galerkin approach, the LPS method
provides additional control over (parts of) the fluctuation of the gradient. The method is weakly
consistent and the construction should lead to a consistency error that does not spoil the optimal
rate of convergence. Originally, the LPS method was proposed as a two-level approach defining
the projection spaces on coarser grids. This approach leads to additional couplings between
neighboring mesh cell and consequently, the sparsity of the matrix decreases. This drawback
does not appear in the one-level approach, where both spaces are defined on the same grid. In this
approach, the approximation spaces have to be enriched in comparison with the standard finite
element spaces. The additional degrees of freedoms that are introduced by the enrichment can
be eliminated using static condensation. Altogether, the one-level approach is, in our opinion,
more appealing from the point of view of implementation and this variant of the LPS method
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will be considered in this paper.
LPS stabilized finite element methods for the evolutionary Oseen problem were studied in [18].

In this paper, the streamline derivative is stabilized with the LPS methodology and an additional
augmentation with a grad-div stabilization term is used. Note that this method is a different
LPS method than studied here. In the general case, error bounds were derived in [18] under
the condition that a certain measure of the mesh size is of the same order as the square root of
the viscosity. To avoid the restriction on the mesh size for small viscosity, finite element spaces
were then considered that satisfy a certain element-wise compatibility condition between the
finite element velocity space and the projection space. Optimal error bounds for the pressure
were not obtained in [18]. A similar LPS method, applied to the time-dependent Navier–Stokes
equations, was analyzed in [8] and error estimates for the velocity in the continuous-in-time case
were proved. An analysis of the fully discretized so-called high-order term-by-term LPS method
was presented in [2].

As mentioned above, cGP(k) methods, which treat the temporal derivative in a finite element
manner, will be considered as temporal discretization. For incompressible flow problems, usually
θ-schemes are used. These schemes are simple to implement, however, they are at most of
second order, like the Crank–Nicolson scheme or the fractional-step θ-scheme. In addition, they
do not allow an efficient adaptive time step control. There are only few studies, e.g., [24,27,30],
which consider higher order schemes, like diagonally implicit Runge–Kutta (DIRK) methods,
Rosenbrock–Wanner (ROW) methods, or just cGP(2). To the best of our knowledge, there is
no numerical analysis available for the first two classes of schemes applied to incompressible
flow problems or even to convection-diffusion equations. The situation is different for cGP(k),
which are a class of finite element methods in time using discrete solution spaces with continuous
piecewise polynomials of degree less than or equal to k and test spaces consisting of discontinuous
polynomials of degree up to order k− 1. This setup enables the performance of a standard time
marching algorithm and it does not require the solution of a global system in space and time as
in space-time finite element methods.

The cGP method in time for the heat equation was investigated in [10]. Optimal error esti-
mates and super-convergence results were derived at the end point of the discrete time intervals.
For nonlinear systems of ordinary differential equations in d space dimensions, the methods
cGP(k) were studied in [37] even in an abstract Hilbert space setting. A-stability and optimal
error estimates were proved. It was also shown that cGP(k) methods have an energy decreasing
property for the gradient flow equation of an energy functional. In [5], transient convection-
diffusion-reaction equations were considered using cGP(k) in time combined with LPS in space.
Optimal a-priori error estimates were derived for the fully discrete scheme. It was shown nu-
merically that cGP(k) is super-convergent of order (k + 2) in the integrated norm and of order
2k at discrete time points. In addition, the obtained results were compared with discontinuous
Galerkin (dG) time stepping schemes. Numerical studies for the time-dependent Stokes equations
in [23], the evolutionary Oseen equations in [4], and transient convection-diffusion-reaction equa-
tions in [5] showed the expected orders of convergence for cGP(k), k ∈ {1, 2}. The dG(k) method
was analyzed for the transient Stokes equations in [1]. In addition, the higher order convergence
of cGP(2) compared with the discontinuous Galerkin discretization dG(1), both methods pos-
sessing the same complexity, was demonstrated. An efficient adaptive time step control can be
performed with cGP(k) methods, e.g., as applied in [3] to transient convection-diffusion-reaction
equations. The adaptive time step control is based on a post-processed discrete solution, which
can be computed with affordable costs. It was shown that the adaptive time step control leads
to lengths of the time steps that properly reflect the dynamics of the solution.

However, there is also a certain drawback of cGP(k) methods for k ≥ 2: a coupled system
of k equations has to be solved at each time instance. Utilizing a clever construction proposed
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in [37], the coupling is not strong, but it cannot be removed completely. Efficient solvers for this
coupled problem in case of the Navier–Stokes equations were studied in [24], where a coupled
multigrid method with Vanka-type smoothers was used.

Altogether, cGP(k) is in our opinion an attractive alternative to θ-schemes since a higher
order in time can be achieved and an efficient and inexpensive time step control is possible.

The goal of this paper consists in studying the combination of the LPS method in space
with the cGP(k) method in time. The numerical analysis will be performed for the transient
Oseen equations (1). Thus, this paper presents the first numerical analysis of a higher order
time stepping scheme for an incompressible flow problem with convection. In the continuous-
in-time case, optimal error bounds for velocity and pressure with constants that do not depend
on the viscosity parameter ν are derived with the assumption that the solution is sufficiently
smooth. In addition, error estimates for the fully discrete problem of order k + 1 are proved,
assuming, as in other recently published papers, that the convective term does not depend on
time. Numerical results show that the predicted order can be also observed in the case of time-
dependent convective terms.

The remainder of the paper is organized as follows: Section 2 introduces the basic notation, it
presents some preliminaries, and the semi-discretization (continuous-in-time) of the LPS method
will be described. In Section 3, the error bounds for the semi-discrete problem are derived.
Section 4 presents the error analysis of the fully discrete problem using a temporal discretization
with a cGP(k) method. Numerical studies can be found in Section 5.

2 Preliminaries

Throughout this paper, standard notation and conventions will be used. For a measurable set
G ⊂ Rd, the inner product in L2(G), L2(G)d, and L2(G)d×d will be denoted by (·, ·)G. The norm
and the semi-norm in Wm,p(G) are given by ‖ · ‖m,p,G and | · |m,p,G, respectively. In the case
p = 2, Hm(G), ‖ · ‖m,G, and | · |m,G are written instead of Wm,2(G), ‖ · ‖m,2,G, and | · |m,2,G.
If G = Ω, the index G in inner products, norms, and semi-norms will be omitted. The dual
pairing between a space Z and its dual Z ′ will be denoted by 〈·, ·〉. The temporal derivative of a
function f is denoted by ∂tf and the i-th temporal derivative by ∂itf . The subspace of functions
from H1(Ω) having a vanishing boundary trace is denoted by H1

0 (Ω) with H−1(Ω) being its dual

space with the associated norm ‖v‖−1 = supϕ∈H1
0 (Ω)\{0}

〈v,ϕ〉
‖∇ϕ‖0 . Let Z be a Banach space with

norm ‖ · ‖Z , then the following spaces are defined

L2(0, t;Z) :=

{
v : (0, t)→ Z :

∫ t

0

‖v(s)‖2Z ds <∞
}
,

H1(0, t;Z) :=
{
v ∈ L2(0, t;Z) : ∂tv ∈ L2(0, t;Z)

}
,

C(0, t;Z) := {v : (0, t)→ Z : v is continuous with respect to time} ,

where ∂tv is the temporal derivative of v in the sense of distributions. If t = T , then the
abbreviations L2(Z), H1(Z), and C(Z) are used and it will not be indicated whether it is a
scalar-valued or vector-valued space.

In order to derive a variational form of (1), the spaces

V := H1
0 (Ω)d, Q := L2

0(Ω), X :=
{
v ∈ L2(V ), ∂tv ∈ L2(V ′)

}
and the bilinear form

a
(
(u, p); (v, q)

)
:= ν(∇u,∇v) + ((b · ∇)u,v) + (σu,v)− (div v, p) + (divu, q)
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are introduced. Then, a variational form of (1) reads as follows:
Find u ∈ X and p ∈ L2(Q) such that

〈∂tu(t),v(t)〉+ a
(
(u(t), p(t)); (v(t), q(t))

)
= (f(t),v(t)) ∀ v ∈ L2(V ), q ∈ L2(Q) (2)

for almost all t ∈ (0, T ] and u(0, ·) = u0. Note that this initial condition is well defined since
functions belonging to X are continuous in time.

If the initial condition u0 is different from 0, the velocity u can be decomposed in the form

u(t) = u0 +ψ(t), ψ ∈ X0 := {v ∈ X : v(0, ·) = 0} .

Then for the given initial velocity field u0, one has to find u = u0 +ψ(t), with ψ(t) ∈ X0, and
p ∈ L2(Q), where (ψ, p) is the solution of the problem

(∂tψ(t),v(t)) + a
(
(ψ(t), p(t)); (v(t), q(t))

)
= (g(t),v(t))

with
(g,v) = (f ,v)− ν(∇u0,∇v)− ((b · ∇)u0,v)− (σu0,v).

For this reason, one can assume u0 = 0, which will be done in the sequel. Note that this choice
of the initial condition will result in error bounds that do not contain contributions depending
on u0.

Let Π : L2(Ω)d → Hdiv be the Leray projector that maps each function in L2(Ω)d onto its
divergence-free part, where the Hilbert space Hdiv is defined by Hdiv = {v ∈ L2(Ω)d : ∇ · v =
0, v · n|∂Ω = 0}. The Stokes operator in Ω is defined by

A : D(A) ⊂ Hdiv → Hdiv, A = −Π∆, D(A) = H2(Ω)d ∩ V div,

where the space V div =
{
v ∈ H1

0 (Ω)d : ∇ · v = 0
}

is equipped with the inner product of H1
0 (Ω)d.

Let {Th} be a family of quasi-uniform triangulations of Ω into compact d-simplices, quadri-
laterals, or hexahedra such that Ω = ∪K∈ThK. The diameter of K ∈ Th will be denoted by hK
and the mesh size h is defined by h := max

K∈Th
hK . Let Yh ⊂ H1

0 (Ω) be a finite element space of

scalar, continuous, piecewise mapped polynomial functions over Th. The finite element space Vh
for approximating the velocity field is given by Vh := Y dh ∩ V . The pressure is discretized using
a finite element space Qh ⊂ Q of continuous or discontinuous functions with respect to Th. In
this paper, inf-sup stable pairs (Vh, Qh) will be considered, i.e., there is a positive constant β0,
independent of the triangulation, such that

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(div vh, qh)

|vh|1‖qh‖0
≥ β0 > 0. (3)

Since it is assumed that the family of meshes is quasi-uniform, the following inverse inequality
holds

‖vh‖m,K ≤ Cinvh
l−m
K ‖vh‖l,K , (4)

for each vh ∈ Vh and 0 ≤ l ≤ m ≤ 1, e.g., see [17, Thm. 3.2.6].
The space of discretely divergence-free functions is denoted by

V div
h = {vh ∈ Vh : (∇ · vh, qh) = 0 ∀ qh ∈ Qh} .

The linear operator Ah : V div
h → V div

h is defined by

(Ahvh,wh) = (∇vh,∇wh) ∀ wh ∈ V div
h . (5)
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From (5), one concludes that

‖A1/2
h vh‖0 = ‖∇vh‖0, ‖∇A−1/2

h vh‖0 = ‖vh‖0 ∀ vh ∈ V div
h . (6)

The so-called discrete Leray projection Πdiv
h : L2(Ω)d → V div

h , being the L2-orthogonal projec-
tion of L2(Ω)d onto V div

h , is given by

(Πdiv
h v,wh) = (v,wh) ∀ wh ∈ V div

h . (7)

By definition, it follows that this projection is stable in the L2 norm: ‖Πdiv
h v‖0 ≤ ‖v‖0 for all

v ∈ L2(Ω)d.
The continuous-in-time standard Galerkin finite element method applied to (2) consists in

finding uh ∈ H1(Vh) and ph ∈ L2(Qh) such that

(∂tuh(t),vh) + a
(
(uh(t), ph(t)); (vh, qh)

)
= (f(t),vh) ∀ vh ∈ Vh, qh ∈ Qh.

In the convection-dominated case, it is well-known that this method is unstable, unless h is
sufficiently small. The use of a stabilized discretization is necessary.

This paper concentrates on the one-level variant of the LPS method in which approxima-
tion and projection spaces are defined on the same mesh. Let D(K), K ∈ Th, be local finite-
dimensional spaces and πK : L2(K) → D(K) the local L2 projection into D(K). The local
fluctuation operator κK : L2(K)→ L2(K) is given by κKv := v−πKv. It is applied component-
wise to vector-valued and tensor-valued arguments. The stabilization term Sh is defined by

Sh(uh,vh) :=
∑
K∈Th

µK
(
κK∇uh, κK∇vh

)
K
,

where {µK}, K ∈ Th, are non-negative constants. This kind of LPS method gives additional
control on the fluctuation of the gradient. Also other variants of LPS methods are possible, e.g.,
by replacing in both arguments of Sh(·, ·) the gradient ∇wh by the derivative in the streamline
direction (b · ∇)wh or, even better [32, 33], by (bK · ∇)wh, where bK is a piecewise constant
approximation of b. But in this method, one has to add the grad-div term (divuh,div vh) to
Sh, see [36].

For performing the numerical analysis, the linear operator Ch : V div
h → V div

h with

(Chvh,wh) =
∑
K∈Th

µK(κK∇vh, κK∇wh)K ∀ vh,wh ∈ V div
h , (8)

the linear operator Dh : L2(Ω)→ V div
h with

(Dhq,wh) = (divwh, q) ∀ wh ∈ V div
h , (9)

the stabilized bilinear form

ah
(
(u, p), (v, q)

)
= a

(
(u, p); (v, q)

)
+ Sh(u,v)

on the product space (Vh, Qh), and the mesh-dependent norm

∣∣∣∣∣∣v∣∣∣∣∣∣ :=

{
ν
∣∣v∣∣2

1
+ σ

∥∥v∥∥2

0
+
∑
K∈Th

µK‖κK∇v‖20,K

}1/2

are introduced.
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It will be assumed that b ∈ L∞(L∞(Ω) ∩Hdiv(Ω)) and ∇ · b(t) = 0 for almost all t ∈ [0, T ].
Then, a straightforward calculation shows that

ah ((vh, qh), (vh, qh)) =
∣∣∣∣∣∣vh∣∣∣∣∣∣2 ∀ vh ∈ Vh, qh ∈ Qh. (10)

The semi-discrete LPS problem reads:
Find uh ∈ H1(Vh) and ph ∈ L2(Qh) such that for almost every t ∈ (0, T ](

∂tuh,vh
)

+ ah
((
uh, ph

)
; (vh, qh)

)
=
(
f ,vh

)
∀ vh ∈ Vh, qh ∈ Qh. (11)

For performing the analysis of LPS schemes, certain compatibility conditions between the
approximation space and local projection space have to be satisfied, see [34].

Assumption A1 There are interpolation operators jh : H2(Ω)d → Vh and ih : H2(Ω)→ Qh
with the approximation properties∥∥w − jhw∥∥0,K

+ hK
∣∣w − jhw∣∣1,K ≤ ChlK

∥∥w∥∥
l,K

∀ w ∈ H l
(
K
)d
, 2 ≤ l ≤ r + 1,∥∥q − ihq∥∥0,K

+ hK
∣∣q − ihq∣∣1,K ≤ ChlK

∥∥q∥∥
l,K

∀ q ∈ H l
(
K
)
, 2 ≤ l ≤ r,

}
(12)

for all K ∈ Th. The pressure interpolation operator ih satisfies the orthogonality condition

(q − ihq, rh)K = 0 ∀ q ∈ Q ∩H2(Ω), rh ∈ D(K). (13)

The pairs Vh/Qh = Qr/Pdisc
r−1 together with D(K) = Pr−1(K) fulfill for r ≥ 2 assumption A1 if

jh is the usual Lagrangian interpolation operator and ih the L2 projection. Further examples of
inf-sup stable pairs Vh/Qh, associated interpolation operators jh and ih, and projection spaces
satisfying assumption A1 can be found in [36].

Assumption A2 The fluctuation operator satisfies the approximation property∥∥κKq∥∥0,K
≤ ChlK

∣∣q∣∣
l,K

∀ K ∈ Th, ∀ q ∈ H l(K), 0 ≤ l ≤ r. (14)

For performing the numerical analysis, the steady-state Stokes problem

−ν∆u+∇p = g in Ω,

u = 0 on ∂Ω, (15)

∇ · u = 0 in Ω,

will be considered. The standard Galerkin approximation (uh, ph) ∈ Vh ×Qh is the solution of
the mixed finite element approximation to (15), given by

ν(∇uh,∇vh)− (div vh, ph) = (g,vh) ∀ vh ∈ Vh, (16)

(∇ · uh, qh) = 0 ∀ qh ∈ Qh.

From [21,25], it is known that the following estimates hold

‖u− uh‖1 ≤ C
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
, (17)

‖p− ph‖0 ≤ C
(
ν inf

vh∈Vh

‖u− vh‖1 + inf
qh∈Qh

‖p− qh‖0
)
, (18)

‖u− uh‖0 ≤ Ch
(

inf
vh∈Vh

‖u− vh‖1 + ν−1 inf
qh∈Qh

‖p− qh‖0
)
. (19)

7



It can be observed that the error bounds for the velocity depend on a negative power of ν.
As suggested in [19], a projection of (u, p) into Vh×Qh is used in the finite element analysis,

where the bounds for the velocity are uniform in ν. Let (u, p) be the solution of (1) with
u ∈ H1

(
V ∩H l+1(Ω)d

)
, p ∈ L2

(
Q ∩H l(Ω)

)
, l ≥ 1, and define the right-hand side of the Stokes

problem (15) by
g = f − ∂tu− (b · ∇)u− σu−∇p, (20)

such that (u, 0) is the solution of (15). Denoting the corresponding Galerkin approximation in
Vh ×Qh by (sh, lh), one obtains from (17)–(19)

‖u− sh‖0 + h‖u− sh‖1 ≤ Chl+1‖u‖l+1, (21)

‖lh‖0 ≤ Cνhl‖u‖l+1, (22)

where the constant C does not depend on ν.

Remark 1. Assuming the necessary smoothness in time and considering (15) with

g = gi = ∂it (f − ∂tu− (b · ∇)u− σu−∇p) , i ≥ 1,

one can derive error bounds of form (21) and (22) also for ∂itu−sh(gi) and lh(gi), where sh(gi)
and lh(gi) denote the solution of (16) with right-hand side g = gi. Hence, the estimates

‖∂itu− sh(gi)‖0 + h‖∂itu− sh(gi)‖1 ≤ Chl+1‖∂itu‖l+1,

‖lh(gi)‖0 ≤ Cνhl‖∂itu‖l+1,

can be derived.

3 Error analysis for the continuous-in-time case

In this section, error bounds for velocity and pressure will be derived with constants independent
of ν for a sufficiently smooth solution. The analysis follows the lines of [19].

Theorem 2. Let (u, p) be the solution of (2) and let (uh, ph) be the solution of (11). Assume
b ∈ L∞(L∞) and the regularities

(u, p) ∈ L2(Hr+1)× L2(Hr), ∂tu ∈ L2(Hr). (23)

Choosing the stabilization parameters of the LPS method such that µK ∼ 1 with respect to
the mesh width, then the following error estimate holds for all t ∈ (0, T ]

‖(u− uh)(t)‖20 + ν‖∇(u− uh)‖2L2(0,t;L2) + σ‖u− uh‖2L2(0,t;L2)

+
∑
K∈Th

µK‖κK∇(u− uh)‖2L2(0,t;L2(K))

≤ Ch2r
(
‖u‖2L2(0,t;Hr+1) + ‖∂tu‖2L2(0,t;Hr) + ‖p‖2L2(0,t;Hr)

)
, (24)

where C = C
(
σ, ‖b‖L∞(0,t;L∞)

)
is independent of ν and h.

Proof. The proof of the error bound is based on the comparison of (uh, ph) with the approxima-
tion (sh, lh) of the Stokes equations with right-hand side (20). Let eh = uh − sh, then a direct
calculation yields

(∂teh,vh) + ah((eh, ph − lh), (vh, qh))

= (∂t(u− sh),vh) + ((b · ∇)(u− sh) + σ(u− sh),vh)

+(∇p,vh)− Sh(sh,vh) ∀ vh ∈ Vh, qh ∈ Qh. (25)
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Taking (vh, qh) = (eh, ph − lh) in (25), one gets with integrating by parts, using that eh has
discrete divergence equal to zero, and (13)

(∇p, eh) = −(p,∇ · eh) = −(p− ihp,∇ · eh) = (ihp− p, κK∇ · eh).

With the Cauchy–Schwarz inequality and Hölder’s inequality, it follows that

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 + σ‖eh‖20 +

∑
K∈Th

µK‖κK∇eh‖20,K

≤ ‖∂t(u− sh)‖0‖eh‖0 + ‖b‖∞‖∇(u− sh)‖0‖eh‖0 + σ‖u− sh‖0‖eh‖0

+

( ∑
K∈Th

µ−1
K ‖p− ihp‖

2
0,K

)1/2( ∑
K∈Th

µK‖κK∇eh‖20,K

)1/2

+ |Sh(sh, eh)| .

Now, the term with the stabilization has to be bounded. The Cauchy–Schwarz inequality gives

Sh(sh, eh) = Sh(sh − u, eh) + Sh(u, eh)

≤ S
1/2
h (sh − u, sh − u)S

1/2
h (eh, eh) + S

1/2
h (u,u)S

1/2
h (eh, eh). (26)

Applying the stability of the fluctuation operator κK and the choice µK ∼ 1 of the stabilization
parameters yields

Sh(sh, eh) ≤ C (‖sh − u‖1 + ‖κK∇u‖0)

( ∑
K∈Th

‖κK∇eh‖20,K

)1/2

, (27)

such that

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 + σ‖eh‖20 +

∑
K∈Th

µK‖κK∇eh‖20,K

≤ ‖∂t(u− sh)‖0‖eh‖0 + ‖b‖∞‖∇(u− sh)‖0‖eh‖0 + σ‖u− sh‖0‖eh‖0

+C
(
‖p− ihp‖0 + ‖sh − u‖1 + ‖κK∇u‖0

)( ∑
K∈Th

‖κK∇eh‖20,K

)1/2

.

With Young’s inequality and hiding terms on the left-hand side, one obtains

d

dt
‖eh‖20 + 2ν‖∇eh‖20 + σ‖eh‖20 +

∑
K∈Th

µK‖κK∇eh‖20,K

≤ C
(
‖∂t(u− sh)‖20 + ‖b‖2∞‖∇(u− sh)‖20 + σ2‖u− sh‖20

)
+C

(
‖p− ihp‖20 + ‖sh − u‖21 + ‖κK∇u‖20

)
. (28)

Assuming now for t ≤ T the regularities (23), integrating (28) on (0, t), taking into account that
eh(0) = 0, since u0 = 0, and applying estimates (21), (12), and (14), one gets

‖eh(t)‖20 + 2ν‖∇eh‖2L2(0,t;L2) + σ‖eh‖2L2(0,t;L2) +
∑
K∈Th

µK‖κK∇eh‖2L2(0,t;L2(K))

≤ Ch2r
(
‖u‖2L2(0,t;Hr+1) + ‖∂tu‖2L2(0,t;Hr) + ‖p‖2L2(0,t;Hr)

)
, (29)

where C = C
(
σ, ‖b‖L∞(0,t;L∞)

)
is independent of ν and h.

The final result is obtained by applying the triangle inequality to the left-hand side of (24)
and using (29) and (21).
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In the next step of the error analysis, a bound for the pressure error will be derived.

Theorem 3. Let the assumptions of Theorem 2 hold and let ν ≤ 1, then it holds

‖p− ph‖L2(0,t;L2) ≤ Chr ∀ t ∈ (0, T ], (30)

where C = C
(
β−1

0 , ‖u‖L2(0,t;Hr+1), ‖∂tu‖L2(0,t;Hr), ‖p‖L2(0,t;Hr), σ, ‖b‖L∞(0,t;L∞)

)
is independent

of ν and h.

Proof. As usual, the bound is derived on the basis of the discrete inf-sup condition (3). It turns
out that the derivation requires in particular a bound for ‖∂teh‖−1, which will be proved first.
By definition, it is

‖∂teh‖−1 = sup
ϕ∈H1

0 (Ω)d\{0}

|〈∂teh,ϕ〉|
‖∇ϕ‖0

.

The first step consists in reducing the bound of ‖∂teh‖−1 to a bound of ‖A−1/2
h ∂teh‖0. From [9,

Lemma 3.11], it is known that

‖∂teh‖−1 ≤ Ch‖∂teh‖0 + C‖A−1/2Π∂teh‖0, (31)

where Π is the Leray projector introduced in Section 2. Applying [9, (2.15)] gives

‖A−1/2Π∂teh‖0 ≤ Ch‖∂teh‖0 + ‖A−1/2
h ∂teh‖0, (32)

with Ah defined in (5). From (31), (32), the symmetry of Ah, (6), and the inverse inequality (4),
it follows that

‖∂teh‖−1 ≤ Ch‖∂teh‖0 + C‖A−1/2
h ∂teh‖0

= Ch‖A1/2
h A

−1/2
h ∂teh‖0 + C‖A−1/2

h ∂teh‖0
= Ch‖∇(A

−1/2
h ∂teh)‖0 + C‖A−1/2

h ∂teh‖0
≤ C‖A−1/2

h ∂teh‖0. (33)

Next, a bound for ‖A−1/2
h ∂teh‖0 will be derived. Projecting the error equation (25) onto the

discretely divergence-free space V div
h and using integration by parts yields

(∂teh,vh) + ν(∇eh,∇vh) + ((b · ∇)eh + σeh,vh) + Sh(eh,vh)

= (∂t(u− sh),vh) + ((b · ∇)(u− sh) + σ(u− sh),vh)

−Sh(sh,vh)− (p− ihp,∇ · vh).

Utilizing (9), one finds (p− ihp,∇ · vh) = (Dh(p− ihp),vh), such that

∂teh = −νAheh −Πdiv
h

(
(b · ∇)eh + σeh

)
− Cheh + Πdiv

h

(
∂t(u− sh)

)
+Πdiv

h

(
(b · ∇)(u− sh) + σ(u− sh)

)
− Ch(sh) (34)

−Dh(p− ihp).
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With (8), the Cauchy–Schwarz inequality, (6), the L2 stability of the fluctuation operator κK ,
and µK ∼ 1, one obtains for all vh ∈ V div

h

‖A−1/2
h Chvh‖0 = sup

wh∈V div
h \{0}

|〈Chvh, A−1/2
h wh〉|

‖wh‖0

= sup
wh∈V div

h \{0}

|
∑
K∈Th µK(κK∇vh, κK∇(A

−1/2
h wh))0,K |

‖wh‖0

≤ sup
wh∈V div

h \{0}

(∑
K∈Th µK‖κK∇vh‖

2
0,K

)1/2
C‖∇(A

−1/2
h wh)‖0

‖wh‖0

≤ C sup
wh∈V div

h \{0}

(∑
K∈Th µK‖κK∇vh‖

2
0,K

)1/2 ‖wh‖0
‖wh‖0

= C

( ∑
K∈Th

µK‖κK∇vh‖20,K

)1/2

. (35)

Applying above argument to ‖A−1/2
h Dh(p− ihp)‖0 yields

‖A−1/2
h Dh(p− ihp)‖0 ≤ C‖p− ihp‖0. (36)

Definition (7) and the symmetry of Ah gives for any g ∈ L2(Ω)d the equality (A
−1/2
h Πdiv

h g,vh) =

(g, A
−1/2
h vh) for all vh ∈ V div

h . It follows with vh = A
−1/2
h Πdiv

h g ∈ V div
h and (6) that

‖A−1/2
h Πdiv

h g‖20 ≤ ‖g‖−1‖∇(A
−1/2
h A

−1/2
h Πdiv

h g)‖0 = ‖g‖−1‖A−1/2
h Πdiv

h g‖0

and hence
‖A−1/2

h Πdiv
h g‖0 ≤ ‖g‖−1 ∀ g ∈ L2(Ω)d. (37)

In the next step, A
−1/2
h is applied to (34). Using (35), (36), and (37) leads to

‖A−1/2
h ∂teh‖0 ≤ ν‖A1/2

h eh‖0 + ‖(b · ∇)eh + σeh‖−1 +

( ∑
K∈Th

µK‖κK∇eh‖20,K

)1/2

+‖∂t(u− sh)‖−1 + ‖(b · ∇)(u− sh) + σ(u− sh)‖−1

+

( ∑
K∈Th

µK‖κK∇sh‖20,K

)1/2

+ ‖p− ihp‖0. (38)
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Taking the square of (38) and integrating on (0, t) yields∫ t

0

‖A−1/2
h ∂seh(s)‖20 ds

≤ C

(∫ t

0

ν2‖A1/2
h eh(s)‖20 ds+

∫ t

0

‖((b · ∇)eh + σeh)(s)‖2−1 ds

+

∫ t

0

∑
K∈Th

µK‖κK∇eh(s)‖20,K ds+

∫ t

0

‖∂t(u− sh)(s)‖2−1 ds

+

∫ t

0

‖(p− ihp)(s)‖20 ds+

∫ t

0

‖((b · ∇)(u− sh) + σ(u− sh))(s)‖2−1 ds

+

∫ t

0

∑
K∈Th

µK‖κK∇sh(s)‖20,K ds

)
. (39)

It will be shown that all the terms on the right-hand side of (39) are of sufficiently high
asymptotic order, concretely that they are O(h2r). This asymptotic behavior is obtained for the
first and third term directly from (29). Using the definition of the H−1(Ω)d norm for the second
term in (39), applying integration by parts, and utilizing Poincaré’s inequality leads to

‖(b · ∇)eh + σeh‖−1 ≤ C (‖b‖∞ + σ) ‖eh‖0.

Hence, it is ∫ t

0

‖((b · ∇)eh + σeh)(s)‖2−1 ds ≤ C
∫ t

0

‖eh(s)‖20 ds,

such that the order of convergence O(h2r) can be again deduced from (29). For estimating
‖∂t(u−sh)‖−1, the definition of the H−1(Ω)d norm and Poincaré’s inequality are applied, which
gives a bound of this term by C‖∂t(u−sh)‖0. Now, (21) is applied, see Remark 1, and using the
regularity assumptions (23), the asymptotic bound for ‖∂t(u − sh)‖−1 is O(hr). Consequently,
the integral of its square is also bounded, giving∫ t

0

‖∂s(u− sh)(s)‖2−1 ds ≤ Ch2r‖∂tu‖2L2(0,t;Hr).

The term involving the pressure is estimated with (12). Arguing as in (26)–(27) yields∫ t

0

∑
K∈Th

µK‖κK∇sh(s)‖20,K ds ≤ C

∫ t

0

(
‖(sh − u)(s)‖21 + ‖κK∇u(s)‖20

)
ds

≤ Ch2r‖u‖2L2(0,t;Hr+1),

where (21) and (14) were applied in the last inequality. Finally, arguing in the same way as for
the second term gives

‖(b · ∇)(u− sh) + σ(u− sh)‖−1 ≤ C (‖b‖∞ + σ) ‖u− sh‖0,

from what follows that∫ t

0

‖((b · ∇)(u− sh) + σ(u− sh))(s)‖2−1 ds ≤ C
∫ t

0

‖(u− sh)(s)‖20 ds.
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The bound for this term is finished by applying (21). Combining the estimates for (39) with
(33), it is shown that ∫ t

0

‖∂s(eh)(s)‖2−1 ds = O(h2r). (40)

Using now the discrete inf-sup condition (3) and (25), one obtains

β0‖ph − ihp‖0

≤ ν‖∇eh‖0 + ‖(b · ∇)eh + σeh‖−1 + ‖∂teh‖−1 + C

( ∑
K∈Th

µK‖κK∇eh‖20,K

)1/2

+‖∂t(u− sh)‖−1 + ‖(b · ∇)(u− sh) + σ(u− sh)‖−1

+C

( ∑
K∈Th

µK‖κK∇sh‖20,K

)1/2

+ ‖p− ihp‖0 + ‖lh‖0.

Taking the square and integrating on (0, t) leads to

β2
0

∫ t

0

‖(ph − ihp)(s)‖20 ds

≤ C

(∫ t

0

ν2‖∇eh(s)‖20 ds+

∫ t

0

‖((b · ∇)eh + σeh)(s)‖2−1 ds

+

∫ t

0

‖∂s(eh)(s)‖2−1 ds+

∫ t

0

∑
K∈Th

µK‖κK∇eh(s)‖20,K ds

+

∫ t

0

‖∂s(u− sh)(s)‖2−1 ds+

∫ t

0

‖((b · ∇)(u− sh)(s) + σ(u− sh))(s)‖2−1 ds

+

∫ t

0

∑
K∈Th

µK‖κK∇sh(s)‖20,K ds+

∫ t

0

‖(p− ihp)(s)‖20 ds+

∫ t

0

‖lh(s)‖20 ds

)
.

Arguing exactly as in the estimates of the terms which are on the right-hand side of (39), using

(40) for bounding
∫ t

0
‖∂s(eh)(s)‖2−1 ds, (22) to bound the last term, and applying finally the

triangle inequality, proves (30).

4 Error analysis for the fully discrete method with cGP(k)

The continuous Galerkin–Petrov method is studied as temporal discretization. Consider a par-
tition 0 = t0 < t1 < . . . < tN = T of the time interval I := [0, T ] and set In = (tn−1, tn],
τn = tn − tn−1, n = 1, . . . N , and τ := max1≤n≤N τn. For a given non-negative integer k, the
time-continuous and time-discontinuous velocity spaces are defined as follows

Xc
k := {u ∈ C(Vh) : u|In ∈ Pk(In, Vh)} , Xdc

k :=
{
u ∈ L2(Vh) : u|In ∈ Pk(In, Vh)

}
,

and time-continuous and time-discontinuous pressure spaces are given by

Y c
k := {q ∈ C(Qh) : q|In ∈ Pk(In, Qh)} , Y dc

k :=
{
q ∈ L2(Qh) : q|In ∈ Pk(In, Qh)

}
,

for n = 1, . . . , N . Here,

Pk(In,Wh) :=

{
u : In →Wh : u(t) =

k∑
i=0

Uit
i, ∀ t ∈ In, Ui ∈Wh,∀ i

}
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denotes the space of Wh-valued polynomials of order k in time. The functions in the spaces Xdc
k

and Y dc
k are allowed to be discontinuous at the nodes tn. Below, the combination of the LPS

method as spatial discretization and the cGP(k) time stepping scheme is denoted by LPS/cGP.
Denote by Xc

k,0 := Xc
k ∩X0 the subspace of Xc

k with zero initial condition and introduce a
bilinear form bh given by

bh ((u, p); (v, q)) :=

∫ T

0

[(
∂tu,v

)
+ ah

(
(u, p); (v, q)

)]
dt.

The LPS/cGP method reads as follows:
Find uh,τ ∈ Xc

k,0 and ph,τ ∈ Y c
k such that

bh
((
uh,τ , ph,τ

)
;
(
vh,τ , qh,τ )

)
=

∫ T

0

(
f ,vh,τ

)
dt ∀ vh,τ ∈ Xdc

k−1, qh,τ ∈ Y dc
k−1, (41)

where the index h, τ refers to the discretization in space and time. The associated continuous
problem is given by:

Find u ∈ X and p ∈ L2(Q) such that∫ T

0

[(
∂tu(t),v(t)

)
+ a
(
(u(t), p(t)); (v(t), q(t))

)]
dt =

∫ T

0

(
f(t),v(t)

)
dt (42)

for all v ∈ L2(V ), q ∈ L2(Q).
For a function w, which is smooth on each time interval In, the operator πk−1 is defined by

(πk−1w)|In(t) =

k∑
i=1

w(t̃n,i)L̃n,i(t), (43)

where t̃n,i denote the Gaussian quadrature points on In and L̃n,i ∈ Pk−1(In) are the associated
Lagrange basis functions. From (43), it can be concluded that πk−1wh,τ ∈ Xdc

k−1 for allwh,τ ∈ Xc
k

and πk−1qh,τ ∈ Y dc
k−1 for all qh,τ ∈ Y c

k . Furthermore, one has for all wh,τ ∈ Xc
k that∫

In

(wh,τ (t)− πk−1wh,τ (t))tj dt = 0, j = 0, . . . , k − 1, n = 1, . . . , N, (44)

where 0 denotes the zero element in Vh.
The finite element analysis considers the mesh-dependent norm

∥∥v∥∥
cGP

:=

(∫ T

0

∣∣∣∣∣∣πk−1v
∣∣∣∣∣∣2dt+

1

2

∥∥v(T )
∥∥2

0

)1/2

.

It was already observed in [5] that || · ||cGP is on Xc
k ⊂ Xdc

k not only a semi-norm but a norm.
For completeness of presentation, the corresponding arguments are repeated here. The first term
inside the definition of ||v||cGP guarantees that ||v||cGP = 0 results in a function v which is

on each time interval In given by L
(n)
k (t)ϕh(x), where L

(n)
k is the transformed k-th Legendre

polynomial on In and ϕh ∈ Vh. Due to v(T ) = 0 and L
(N)
k (T ) = 1 the function v vanishes on

the last time interval IN . The continuity of v on I gives then v(tN−1) = 0. By recursion, one
obtains v = 0 on I and hence || · ||cGP is a norm.

The following lemma proves a property of the bilinear form bh that will be used in the
derivation of the error bounds for the approximation to the velocity.
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Lemma 4. Assume that b and σ are constant with respect to time. Then, there exists a constant
C > 0 independent of ν, h, and τ such that

bh
((
vh,τ , qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))
= ‖vh,τ‖2cGP ∀ (vh,τ , qh,τ ) ∈ Xdc

k × Y dc
k

holds true.

Proof. It is

bh
((
vh,τ , qh,τ

)
; (πk−1vh,τ , πk−1qh,τ )

)
=

∫ T

0

[(
∂tvh,τ , πk−1vh,τ

)
+ ah

((
vh,τ , qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))]
dt.

Using the fact that the convection and reaction are time-independent functions, taking into
account that∫ T

0

[− (qh,τ ,div πk−1vh,τ ) + (πk−1qh,τ ,div vh,τ )] dt

=

∫ T

0

[− (πk−1qh,τ ,div πk−1vh,τ ) + (πk−1qh,τ ,div πk−1vh,τ )] dt = 0,

and (10), one obtains∫ T

0

ah
((
vh,τ , qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))
dt

=

∫ T

0

ah
((
πk−1vh,τ , πk−1qh,τ

)
;
(
πk−1vh,τ , πk−1qh,τ

))
dt =

∫ T

0

|||πk−1vh,τ |||2 dt.

Concerning the first term, it is noted that ∂tvh,τ is a discontinuous function in time of degree
k − 1. Using vh,τ (0) = 0 yields∫ T

0

(
∂tvh,τ , πk−1vh,τ

)
dt =

∫ T

0

(
∂tvh,τ ,vh,τ

)
dt =

1

2

∫ T

0

d

dt

∥∥vh,τ∥∥2

0
dt

=
1

2

∥∥vh,τ (T )
∥∥2

0
.

The derivation of error bounds makes use of a time interpolation w̃ ∈ C(H) of a sufficiently
smooth function w, where H can be either a velocity space V or a pressure space Q, and
w̃|In ∈ Pk(In, H), defined by

w̃(tn−1) = w(tn−1), w̃(tn) = w(tn),

∫
In

(w(t)− w̃(t), z(t)) dt = 0, (45)

for all z ∈ Pk−2(In, H). The standard interpolation error estimate(∫
In

‖w − w̃‖2m dt

)1/2

≤ Cτk+1
n

(∫
In

‖w(k+1)‖2m dt

)1/2

(46)

holds true for m ∈ {0, 1} and all time intervals In, n = 1, . . . , N.
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Theorem 5. Assume that the spaces Vh, Qh satisfy Assumptions A1 and A2, µK ∼ 1 for all
K ∈ Th, and ν ≤ 1. Let (u, p) be the solution of (42) and (uh,τ , ph,τ ) the solution of (41).
Further, assume that the solution (u, p) is smooth enough such that all the norms on the right-
hand side of (47) are bounded. Then, there exists a positive constant C independent of ν, h, and
τ such that the error estimate∥∥u− uh,τ∥∥cGP

≤ Chr
(
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖L2(Hr) + h‖u(T )‖r+1

)
+Cτk+1‖u‖Hk+1(H1) (47)

is valid.

Proof. The error analysis starts by decomposing the error eh,τ = uh,τ − u into θh := s̃h − u
and ξh,τ := uh,τ − s̃h, with the velocity solution s̃h of (16), where g in (20) is defined as −ν∆ũ.
Then, it is

uh,τ − u = eh,τ = θh + ξh,τ .

For the discrete error ξh,τ Lemma 4 gives

‖ξh,τ‖2cGP = bh
(
(ξh,τ , ph,τ ); (πk−1ξh,τ , πk−1ph,τ )

)
. (48)

Applying a straightforward calculation yields

bh
(
(ξh,τ , ph,τ ); (πk−1ξh,τ , πk−1ph,τ )

)
=

∫ T

0

(
∂tu− ∂ts̃h, πk−1ξh,τ

)
dt+

∫ T

0

ν
(
∇(u− s̃h),∇(πk−1ξh,τ )

)
dt

+

∫ T

0

(
(b · ∇)(u− s̃h), πk−1ξh,τ

)
dt+

∫ T

0

(
σ(u− s̃h), πk−1ξh,τ

)
dt

+

∫ T

0

(∇p, πk−1ξh,τ ) dt−
∫ T

0

Sh(s̃h, πk−1ξh,τ ) dt. (49)

The six terms on the right-hand side have to be bounded.
For the first one, the error is split in two terms∫ T

0

(
∂tu− ∂ts̃h, πk−1ξh,τ

)
dt =

∫ T

0

(
∂t(u− ũ), πk−1ξh,τ

)
dt

+

∫ T

0

(
∂t(ũ− s̃h), πk−1ξh,τ

)
dt. (50)

Integration by parts and using (45) yield for the first term on the right-hand side of (50)∫ T

0

(
∂t(u− ũ), πk−1ξh,τ

)
dt

=

N∑
n=1

(
−
∫
In

(u− ũ, ∂t(πk−1ξ)) dt+ (u− ũ, πk−1ξhτ )
∣∣∣tn
tn−1

)
= 0. (51)

For the second term on the right-hand side of (50), the application of the Cauchy–Schwarz
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inequality and (21) gives∫ T

0

(
∂t(ũ− s̃h), πk−1ξh,τ

)
dt

≤
N∑
n=1

∫
In

‖∂tũ− ∂ts̃h‖0‖πk−1ξh,τ‖0 dt

≤

(
N∑
n=1

∫
In

‖∂tũ− ∂ts̃h‖20 dt

)1/2( N∑
n=1

‖πk−1ξh,τ‖20 dt

)1/2

≤ Chr

(
N∑
n=1

∫
In

‖∂tũ‖2r dt

)1/2( N∑
n=1

∫
In

σ‖πk−1ξh,τ‖20 dt

)1/2

≤ Chr‖u‖H1(Hr)‖ξh,τ‖cGP, (52)

where in the last estimate the inequality ‖ũ‖H1(Hr) ≤ C‖u‖H1(Hr) was applied. Thus, from
(50), (51), and (52) one derives the bound for the first term on the right-hand side of (49)∫ T

0

(
∂tu− ∂ts̃h, πk−1ξh,τ

)
dt ≤ Chr‖u‖H1(Hr)‖ξ‖cGP. (53)

To bound the third term on the right-hand side of (49), the error splitting∫ T

0

(
(b · ∇)(u− s̃h), πk−1ξh,τ

)
dt =

∫ T

0

(
(b · ∇)(u− ũ), πk−1ξh,τ

)
dt

+

∫ T

0

(
(b · ∇)(ũ− s̃h), πk−1ξh,τ

)
dt

is used. Then, applying (46) and (21) yields∫ T

0

(
(b · ∇)(u− s̃h), πk−1ξh,τ

)
dt

≤
∫ T

0

‖b‖∞
(
‖u− ũ‖1 + ‖ũ− s̃h‖1

)
‖πk−1ξh,τ‖0 dt

≤ C

( N∑
n=1

τ2k+2
n

∫
In

‖u(k+1)‖21 dt

)1/2

+

(
h2r

N∑
n=1

∫
In

‖ũ‖2r+1 dt

)1/2


×

(
N∑
n=1

∫
In

|||πk−1ξ|||20 dt

)1/2

≤
(
Cτk+1‖u‖Hk+1(H1) + Chr‖u‖L2(Hr+1)

)
‖ξh,τ‖cGP. (54)

Arguing exactly as before gives for the second and the fourth term on the right-hand side of
(49) ∫ T

0

ν
(
∇(u− s̃h),∇(πk−1ξh,τ )

)
dt+

∫ T

0

(
σ(u− s̃h), πk−1ξh,τ

)
dt

≤
(
C(ν1/2 + σ1/2h)hr‖u‖L2(Hr+1) + C(ν1/2 + σ1/2)τk+1‖u‖Hk+1(H1)

)
‖ξh,τ‖cGP. (55)
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To bound the fifth term on the right-hand side of (49) observe that∫ T

0

(∇p, πk−1ξh,τ ) dt =

∫ T

0

−(p,∇ · πk−1ξh,τ ) dt =

∫ T

0

−(p, πk−1∇ · ξh,τ ) dt,

since the time projection πk−1 and the divergence commute. In addition, it is∫
In

(ihp, πk−1∇ · ξh,τ ) dt =

∫
In

(πk−1(ihp), πk−1∇ · ξh,τ ) dt

=

∫
In

(πk−1(ihp),∇ · ξh,τ ) dt = 0, (56)

since s̃h has discrete divergence equal to zero and the relation
∫
In

(∇ ·uh,τ , qh,τ ) dt = 0 holds by

definition for all qh,τ ∈ Y dc
k−1. Thus, for the fifth term on the right-hand side of (49), integration

by parts with respect to space, applying the orthogonality condition (13), using (56), µK ∼ 1,
and (12) lead to∫ T

0

(∇p, πk−1ξh,τ ) dt

=

∫ T

0

(ihp− p, πk−1∇ · ξh,τ ) dt =

∫ T

0

∑
k∈Th

(ihp− p, κKπk−1∇ · ξh,τ )K dt

≤
∫ T

0

( ∑
K∈Th

µ−1
K ‖ihp− p‖

2
0,K

)1/2( ∑
K∈Th

µK‖κK∇πk−1ξh,τ‖20,K

)1/2

dt

≤ C

(∫ T

0

‖ihp− p‖20 dt

)1/2

‖ξh,τ‖cGP ≤ Chr‖p‖L2(Hr)‖ξh,τ‖cGP. (57)

Finally, to bound the last term on the right-hand side of (49), the following decomposition
is considered∫ T

0

Sh(s̃h, πk−1ξh,τ ) dt =

∫ T

0

Sh(s̃h − ũ, πk−1ξh,τ ) dt

+

∫ T

0

Sh(ũ− u, πk−1ξh,τ ) dt+

∫ T

0

Sh(u, πk−1ξh,τ ) dt. (58)

For the first term on the right-hand side of (58), the L2 stability of the fluctuation operator κK ,
µK ∼ 1, and (21) are applied to obtain∫ T

0

Sh(s̃h − ũ, πk−1ξh,τ ) dt

≤
∫ T

0

( ∑
K∈Th

µK‖κK∇(s̃h − ũ)‖20,K

)1/2( ∑
K∈Th

µK‖κKπk−1∇ξh,τ‖20,K

)1/2

dt

≤

(∫ T

0

∑
K∈Th

µK‖κK∇(s̃h − ũ)‖20,K dt

)1/2(∫ T

0

|||πk−1ξh,τ |||2 dt

)1/2

≤ Chr‖u‖L2(Hr+1)‖ξh,τ‖cGP. (59)
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Applying the stability of the fluctuation operator κK , µK ∼ 1, and (46) gives for the second
term on the right-hand side of (58)∫ T

0

Sh(ũ− u, πk−1ξh,τ ) dt

≤
∫ T

0

( ∑
K∈Th

µK‖κK∇(ũ− u)‖20,K

)1/2( ∑
K∈Th

µK‖κKπk−1∇ξh,τ‖20,K

)1/2

dt

≤

(∫ T

0

∑
K∈Th

µK‖κK∇(ũ− u)‖20,K dt

)1/2(∫ T

0

|||πk−1ξh,τ |||2 dt

)1/2

≤ Cτk+1‖u‖Hk+1(H1)‖ξh,τ‖cGP. (60)

To finish the estimate of the last term on the right-hand side of (49), the Cauchy–Schwarz
inequality, the approximation properties (14) of the fluctuation operator κK , and µK ∼ 1 are
used to get∫ T

0

Sh(u, πk−1ξh,τ ) dt

≤
∫ T

0

( ∑
K∈Th

µK‖κK∇u‖20,K

)1/2( ∑
K∈Th

µK‖κKπk−1∇ξh,τ‖20,K

)1/2

dt

≤

(∫ T

0

∑
K∈Th

µK‖κK(∇u)‖20,K dt

)1/2(∫ T

0

|||πk−1ξh,τ |||2 dt

)1/2

≤ Chr‖u‖L2(Hr+1)‖ξh,τ‖cGP. (61)

Inserting (59), (60), and (61) in (58) gives∫ T

0

Sh(s̃h, πk−1ξh,τ ) dt ≤
(
Chr‖u‖L2(Hr+1) + Cτk+1‖u‖Hk+1(H1)

)
‖ξh,τ‖cGP. (62)

Inserting (49) in (48) and utilizing (53), (54), (55), (57), and (62) lead to

‖ξh,τ‖cGP ≤ Chr
[
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖L2(Hr)

]
+ Cτk+1‖u‖Hk+1(H1). (63)

Applying the triangle inequality, the bound (21), and the interpolation error estimates in time
gives the statement of the theorem.

Arguing similarly as in [5, Thm. 4.4], one can prove the following theorem.

Theorem 6. Under the assumptions of Theorem 5, the following error estimate is valid(∫ T

0

‖u(t)− uh,τ (t)‖20 dt

)1/2

≤ C(1 + T 1/2)hr
[
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖L2(Hr)

]
+C(1 + T 1/2)τk+1‖u‖Hk+1(H1), (64)

with C independent of ν, h, and τ .
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Proof. Denoting as before ξh,τ = uh,τ − s̃h. Applying the ideas leading to (63) on [0, tn],
n = 1, . . . , N , instead of on [0, T ] gives∫ tn

0

|||πk−1ξh,τ (t)|||2 dt+
1

2
‖ξh,τ (tn)‖20

≤ Ch2r
[
‖u‖2L2(Hr+1) + ‖u‖2H1(Hr) + ‖p‖2L2(Hr)

]
+ Cτ2k+2‖u‖2Hk+1(H1),

where the norms on the right-hand side were extended from [0, tn] to [0, T ] by using that these
norms do not decrease by extending the time interval. After having neglected the non-negative
integral on the left-hand side and having multiplied by τn, the summation over n = 1, . . . , N
yields

N∑
n=1

τn‖ξh,τ (tn)‖20 ≤

(
N∑
n=1

τn

)
Ch2r

[
‖u‖2L2(Hr+1) + ‖u‖2H1(Hr) + ‖p‖2L2(Hr)

]
+

(
N∑
n=1

τn

)
Cτ2k+2‖u‖2Hk+1(H1). (65)

Since ξh,τ is a piecewise polynomial of degree less than or equal to k in time, the equivalence of
all norms in finite-dimensional spaces gives∫ tn

tn−1

‖ξh,τ‖20 dt ≤ Ck

(∫ tn

tn−1

‖πk−1ξh,τ (t)‖20 dt+ τn‖ξh,τ (tn)‖20

)
,

where Ck depends on the polynomial degree k but it is independent of τn and h. Hence, applying
(65) and (63) leads to∫ T

0

‖uh,τ (t)− s̃h(t)‖20 dt ≤ Ck

N∑
n=1

(∫ tn

tn−1

‖πk−1ξh,τ (t)‖20 dt+ τn‖ξh,τ (tn)‖20

)

≤ Ck

(∫ T

0

|||πk−1ξh,τ (t)|||20 dt+

N∑
n=1

τn‖ξh,τ (tn)‖20

)
≤ C(1 + T )h2r

[
‖u‖2L2(Hr+1) + ‖u‖2H1(Hr) + ‖p‖2L2(Hr)

]
+C(1 + T )τ2k+2‖u‖2Hk+1(H1). (66)

Now, the statement of the theorem follows by applying the triangle inequality and the time
interpolation error estimates (46) together with (21).

Theorem 7. Let the assumptions of Theorem 5 hold and let in addition (u, p) be smooth enough
such that the norms on the right-hand side of (67) are bounded. Then, there exists a positive
constant C independent of ν, h, and τ such that the error estimate(∫ T

0

‖πk−1 (ph,τ (t)− p(t)) ‖20 dt

)1/2

≤ C(1 + T )hr
[
‖u‖H1(Hr+1) + ‖u‖H2(Hr) + ‖p‖H1(Hr)

]
+C(1 + T )τk(1 + τ)‖u‖Hk+2(H1) + Cτk+1‖p‖Hk+1(L2)

+Chr
[
‖u‖L2(Hr+1) + ‖u‖H1(Hr) + ‖p‖H1(Hr)

]
(67)

holds.
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Proof. A straightforward calculation shows that for all vh,τ ∈ Xdc
k−1 and qh,τ ∈ Y dc

k−1, it holds

bh((uh,τ − s̃h, ph,τ ); (vh,τ , qh,τ ))

=

∫ T

0

(∂tξh,τ ,vh,τ ) dt+

∫ T

0

ν(∇ξh,τ ,∇vh,τ ) dt+

∫ T

0

(
(b · ∇)ξh,τ ,vh,τ

)
dt

+

∫ T

0

σ(ξh,τ ,vh,τ ) dt−
∫ T

0

(∇ · vh,τ , ph,τ ) dt+

∫ T

0

Sh(ξh,τ ,vh,τ ) dt

=

∫ T

0

(∂t(u− s̃h),vh,τ ) dt+

∫ T

0

ν(∇(u− s̃h),∇vh,τ ) dt

+

∫ T

0

((b · ∇)(u− s̃h),vh,τ ) dt+

∫ T

0

σ(u− s̃h,vh,τ ) dt

−
∫ T

0

Sh(s̃h,vh,τ ) dt+

∫ T

0

(∇p,vh,τ ) dt.

From this equation, one obtains∫ T

0

(ph,τ − ihp̃,∇ · vh,τ ) dt

=

∫ T

0

(p− ihp̃,∇ · vh,τ ) dt+

∫ T

0

(∂tξh,τ ,vh,τ ) dt+

∫ T

0

ν(∇ξh,τ ,∇vh,τ ) dt

+

∫ T

0

((b · ∇)ξh,τ ,vh,τ ) dt+

∫ T

0

σ(ξh,τ ,vh,τ ) dt+

∫ T

0

Sh(ξh,τ ,vh,τ ) dt

+

∫ T

0

(∂t(s̃h − u),vh,τ ) dt+

∫ T

0

ν(∇(s̃h − u),∇vh,τ ) dt

+

∫ T

0

((b · ∇)(s̃h − u),vh,τ ) dt+

∫ T

0

σ(s̃h − u,vh,τ ) dt+

∫ T

0

Sh(s̃h,vh,τ ) dt. (68)

To derive the error estimates, the Gaussian quadrature rule with k points will be used for the
numerical integration of the time integral. Hence, one has∫ T

0

q2k−1(t) dt =

N∑
n=1

τn
2

k∑
i=1

ω̂iq2k−1(t̃n,i) (69)

for all q2k−1 ∈ P2k−1(In), where t̃n,i denote the corresponding quadrature points on In and ω̂i
are the weights of the Gaussian formula on (−1, 1) which satisfy ω̂i > 0. Let t̃n,0 = tn−1 be an
additional point.

Using the discrete inf-sup condition (3), one can construct wh,τ ∈ Pk(In, Vh) such that

β0‖πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
‖20 ≤

(
πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
,∇ ·wh,τ (t̃n,i)

)
, (70)

‖wh,τ (t̃n,i)‖1 = ‖πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
‖0. (71)

Since wh,τ ∈ Pk(In, Vh), it follows that πk−1wh,τ ∈ Pk−1(In, Vh). Setting vh,τ = πk−1wh,τ and
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using (43), (44), one obtains∫ T

0

(ph,τ − ihp̃,∇ · vh,τ ) dt =

N∑
n=1

∫
In

((ph,τ − ihp̃), πk−1(∇ ·wh,τ )) dt

=

N∑
n=1

∫
In

(πk−1(ph,τ − ihp̃),∇ ·wh,τ ) dt

≥ β0

∫ T

0

‖πk−1(ph,τ − ihp̃)‖20 dt, (72)

where the exactness of the quadrature rule for polynomials of degree (2k − 1), the positivity of
the quadrature weights, (69), and (70) were used.

Setting vh,τ = πk−1wh,τ in (68), using (72), the assumption that b and σ are constants with
respect to time, and (43), it follows that

β0

∫ T

0

‖πk−1(ph,τ − ihp̃)‖20 dt

≤
∫ T

0

(ph,τ − ihp̃, πk−1(∇ ·wh,τ )) dt

=

∫ T

0

(πk−1(p− ihp̃), πk−1(∇ ·wh,τ )) dt+

∫ T

0

(∂tξh,τ , πk−1wh,τ ) dt

+

∫ T

0

ν(πk−1(∇ξh,τ ), πk−1(∇wh,τ )) dt+

∫ T

0

((b · ∇)πk−1ξh,τ , πk−1wh,τ ) dt

+

∫ T

0

σ(πk−1ξh,τ , πk−1wh,τ ) dt+

∫ T

0

Sh(πk−1ξh,τ , πk−1wh,τ ) dt

+

∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt+

∫ T

0

ν(πk−1∇(s̃h − u), πk−1(∇wh,τ )) dt

+

∫ T

0

(πk−1(b · ∇)(s̃h − u)h,τ , πk−1wh,τ ) dt

+

∫ T

0

σ(πk−1(s̃h − u), πk−1wh,τ ) dt+

∫ T

0

Sh(πk−1s̃h, πk−1wh,τ ) dt. (73)

The seventh term on the right-hand side of (73) is decomposed in the form∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt =

∫ T

0

(∂t(s̃h − ũ), πk−1wh,τ ) dt

+

∫ T

0

(∂t(ũ− u), πk−1wh,τ ) dt.

For the second term on the right-hand side, integrating by parts with respect to time and
using (45) yield∫ T

0

(∂t(ũ− u), πk−1wh,τ ) dt

= −
N∑
n=1

(∫
In

(ũ− u, ∂t(πk−1wh,τ )) dt+ (u− ũ, πk−1wh,τ )
∣∣∣tn
tn−1

)
= 0.
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It follows that∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt ≤
∫ T

0

‖∂t(s̃h − ũ)‖0‖πk−1wh,τ‖0 dt

≤ C

∫ T

0

‖∂t(s̃h − ũ)‖0‖∇πk−1wh,τ‖0 dt,

where Poincaré’s inequality was applied in the last line.
Using (69), (43), and (71) gives∫ T

0

‖∇πk−1wh,τ‖20 dt =

N∑
n=1

τn
2

k∑
i=1

ω̂i‖πk−1∇wh(t̃n,i)‖20

≤ C

N∑
n=1

τn
2

k∑
i=1

ω̂i‖∇wh(t̃n,i)‖20

= C

N∑
n=1

τn
2

k∑
i=1

ω̂i‖πk−1

(
ph,τ (t̃n,i)− ihp̃(t̃n,i)

)
‖20

= C

∫ T

0

‖πk−1 (ph,τ − ihp̃) ‖20 dt, (74)

where t̃n,i, i = 1, . . . , k, denote the node of Gaussian quadrature on In and ω̂i, i = 1, . . . , k, are
the corresponding weights on [−1, 1].

Applying (74) yields∫ T

0

(∂t(s̃h − u), πk−1wh,τ ) dt

≤ C

∫ T

0

‖∂t(s̃h − ũ)‖20 dt+
β0

12

∫ T

0

‖πk−1 (ph,τ − ihp̃) ‖20 dt.

Arguing in the same way for the rest of the terms on the right-hand side of (73) leads to∫ T

0

‖πk−1(ph,τ − ihp̃)‖20 dt

≤ C

[ ∫ T

0

‖πk−1(p− ihp̃)‖20 dt+

∫ T

0

‖∂tξh,τ‖2−1 dt+

∫ T

0

|||πk−1ξh,τ |||2 dt

+

∫ T

0

‖∂t(s̃h − ũ)‖20 dt+

∫ T

0

ν‖πk−1∇(s̃h − u)‖20 dt

+

∫ T

0

(‖b‖∞ + σ)‖πk−1(s̃h − u)‖20 dt+

∫ T

0

∑
K∈Th

µK‖κKπk−1∇s̃h‖20,K dt

]
. (75)

Now, the terms on the right-hand side of (75) need to be bounded. The estimates for the third
term follows from Theorem 5. In the following, the L2 stability of the projection πk−1 and the
interpolation operator with respect to time, i.e., ‖πk−1v‖0 ≤ C‖v‖0 and ‖ṽ‖0 ≤ C‖v‖0 will be
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often used. For the first term on the right-hand side of (75), applying (46) and (13) gives∫ T

0

‖πk−1(p− ihp̃)‖20 dt ≤ C

(∫ T

0

‖p− p̃‖20 dt+

∫ T

0

‖p̃− ihp̃‖20 dt

)

≤ Cτ2k+2

∫ T

0

‖p(k+1)‖20 dt+ Ch2r

∫ T

0

‖p̃‖2r dt

≤ C
(
τ2k+2‖p‖2Hk+1(L2) + h2r‖p‖2L2(Hr)

)
.

For bounding the second term on the right-hand side of (75), one first observes that
∫ T

0
‖∂tξh,τ‖−1 dt ≤∫ T

0
‖∂tξh,τ‖0 dt. Now, since it is assumed that b and σ are independent of t, the error bounds

for ‖ξh,τ‖0 can also be applied to its time derivative so that applying (66) to ∂tξh,τ leads to∫ T

0

‖∂tξh,τ‖20 dt ≤ C(1 + T )h2r
[
‖∂tu‖2L2(Hr+1) + ‖∂tu‖2H1(Hr) + ‖∂tp‖2L2(Hr)

]
+C(1 + T )τ2k‖∂tu‖2Hk+1(H1).

For the truncation errors involving s̃h − u (the last four terms), one argues as in Theorem 5 to
get ∫ T

0

‖∂t(s̃h − ũ)‖20 dt ≤ Ch2r‖u‖2H1(Hr),∫ T

0

ν‖πk−1∇(s̃h − u)‖20 dt ≤ Cν
(
h2r‖u‖2L2(Hr+1) + τ2k+2‖u‖2Hk+1(H1)

)
,∫ T

0

(‖b‖∞ + σ)‖s̃h − u‖20 dt ≤ C
(
h2r‖u‖2L2(Hr) + τ2k+2‖u‖2Hk+1(H1)

)
.

The bound for the last term (similarly as in the estimates (58)–(61)) uses the error splitting
with respect to space and time, the L2 stability of the fluctuation operator κK , µK ∼ 1, and the
approximation properties of κK . One obtains∫ T

0

∑
K∈Th

µK‖κKπk−1∇s̃h‖20,K dt

≤ 3

∫ T

0

∑
K∈Th

‖κK∇(s̃h − ũ)‖20,K dt+ 3

∫ T

0

∑
K∈Th

‖κK∇(ũ− u)‖20,K dt

+3

∫ T

0

∑
K∈Th

‖κK∇u‖20,K dt

≤ C
(
h2r‖u‖2L2(Hr+1) + τ2k+2‖u‖2Hk+1(Hr+1)

)
.

The statement of the theorem follows by collecting the bounds for all terms on the right-
hand side of (75), and by applying the triangle inequality and the bounds (13) and (46) for the
interpolation errors in space and time.

Remark 8. Instead of using
∫ T

0
‖∂tξh,τ‖2−1 dt ≤

∫ T
0
‖∂tξh,τ‖20 dt, one could use∫ T

0

‖∂tξh,τ‖2−1 dt ≤ C
∫ T

0

‖A−1/2
h ∂tξh,τ‖20 dt
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and then argue as in the proof of Theorem 3. However, since it is assumed that b is time-
independent, the proof presented above is shorter although it requires a higher regularity of the
solution.

5 Numerical studies

Two examples will be presented that support the theoretical results obtained in the previous
sections. In the first example, an analytical solution is considered and very small time steps
are applied to support the error analysis of Section 3. In the second example the solution is
polynomial in the space such that the approximation will be exact in the spatial part and the
discretization error in time dominates. This example will support the analytical results from
Section 4. A third example presents a brief comparison of the method studied in this paper with
a different stabilized method for the evolutionary Oseen equations.

All simulations were performed on uniform quadrilateral grids where the coarsest grid (level 1)
is obtained by dividing the unit square into four squares. Mapped finite element spaces [17] were
used, where the enriched spaces on the reference cell K̂ = [−1, 1]2 are given by

Qbubble
r (K̂) := Qr(K̂) + span

{
(1− x̂2

1)(1− x̂2
2)x̂r−1

i , i = 1, 2
}
.

The combination Qbubble
r (K̂) with D(K) = Pr−1(K) provides for r ≥ 2 suitable spaces for LPS

methods, see [36]. The simulations were performed with the code MooNMD [26].

Example 9. An example with negligible temporal error. Consider the Oseen problem (1) with
Ω = (0, 1)2, ν = 10−10, b = u, σ = 1, and T = 1. The right-hand side f and the initial condition
u0 were chosen such that

u(t, x, y) = sin(t)

(
sin(πx) sin(πy)
cos(πx) cos(πy)

)
,

p(t, x, y) = sin(t)

(
sin(πx) + cos(πy)− 2

π

)
is the solution of (1) equipped with non-homogeneous Dirichlet boundary conditions.

This example studies the convergence order with respect to space. To this end, the time
discretization scheme cGP(2) with the small time step length τ = 1/1280 was used. Numerical
studies concerning the choice of stabilization parameters for convection-dominated problems sug-
gest that a good choice is µK ∈ (0, 1), e.g., see [6]. Based on these studies and our own experience,
the stabilization parameters were set to be µK = 0.1. The convergence plots for simulations with
the finite element spaces Vh/Qh = Qbubble

3 /Pdisc
2 and the projection space D(K) = P2(K) are

presented in Figure 1 and Table 1. One can see fourth order convergence for the L2(L2) norm
and the L2 norm at the final time. For all other norms on the left-hand side of (24) and the
L2(L2) norm of pressure, third order of convergence can be observed. It can be seen in Figure 1
and Table 1 that ‖κK∇(u − uh)‖L2(L2) is the dominant term among the velocity errors on the
left-hand side of (24). Altogether, the order of convergence is exactly as predicted in (24) and
(30).

Example 10. An example with dominant temporal error. Let Ω = (0, 1)2, ν = 10−10, b = u,
σ = 1, T = 1 and consider the Oseen equations (1) with the prescribed solution

u =

(
sin(40t)y
cos(t)x

)
, p(t, x, y) = cos(40t)(x− 0.5) + sin(40t)(2y − 1).
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Figure 1: Example 9: Convergence of various errors with respect to the spatial mesh width.

Table 1: Example 9: Various errors with respect to the spatial mesh width, e = u − uh, the
order is computed from the results of the finest levels.

level ‖eh(1)‖0 ν1/2‖∇e‖L2(L2) ‖e‖L2(L2) ‖κK∇e‖L2(L2) ‖p− ph‖L2(L2)

2 8.261071e-04 1.599153e-07 4.936612e-04 3.846468e-03 8.430718e-04
3 4.890464e-05 2.035870e-08 3.063295e-05 5.139051e-04 1.026164e-04
4 3.104466e-06 2.625447e-09 1.969092e-06 6.548987e-05 1.263452e-05
5 2.010103e-07 3.471540e-10 1.308868e-07 8.241557e-06 1.567482e-06
6 1.344915e-08 4.718591e-11 9.000207e-09 1.032959e-06 1.952184e-07

order 3.90 2.88 3.86 3.00 3.01

In this example, the spaces Vh/Qh = Qbubble
2 /Pdisc

1 and the projection space D(K) = P1(K) were
considered. The mesh consisted of 16× 16 squares. Note that for any time t the solution can be
represented exactly by functions from the finite element spaces Vh and Qh. Hence, all occurring
errors will result from the temporal discretization.

Figure 2 and Table 2 report the order of convergence for the methods cGP(k), k ∈ {2, 3, 4},
in combination with the LPS method. One can observe the predicted convergence order k + 1
for the errors estimated in (47) and (64). Also for the pressure, order k+ 1 can be seen although
estimate (67) predicts only order k.

Example 11. Comparison with a grad-div stabilized method. This example provides a brief
comparison of a LPS/cGP method with another stabilized scheme for the evolutionary Oseen
problem that was studied in the literature.

The method for comparison is the grad-div stabilization which is analyzed for the evolutionary
Oseen equations in [19]. The same example as in [19] was used with the analytical solution

u = cos(t)

(
sin(πx− 0.7) sin(πy + 0.2)
cos(πx− 0.7) cos(πy + 0.2)

)
,

p = cos(t)(sin(x) cos(y) + (cos(1)− 1) sin(1)).

Numerical results for ν = 10−6, b = u, σ = 1, Ω = (0, 1)2, and T = 5 are presented.
Both schemes were applied with respective standard configurations that are comparable.

For the LPS/cGP method, cGP(2) was used as temporal discretization. Since this is a third
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Figure 2: Example 10: Convergence of various errors with respect to the time step, where the
time step is given by τ = 0.1 · 2−m+1.

Table 2: Example 10: ‖u− uh‖cGP, the order is computed from the results of the finest levels.

time level cGP(2) cGP(3) cGP(4)
1 2.123580e-01 4.621311e-02 8.992460e-03
2 2.754030e-02 3.103225e-03 2.953547e-04
3 3.364046e-03 1.938513e-04 9.254991e-06
4 4.162566e-04 1.202551e-05 2.887537e-07
5 5.191342e-05 7.495265e-07 9.017116e-09
6 6.485677e-06 4.681011e-08 2.817272e-10
7 8.106020e-07 2.925068e-09 8.803837e-12
8 1.013219e-07 1.828079e-10 2.773163e-13

order 3.00 4.00 4.99

order method, it is natural to use also a third order spatial discretization. Our choice was
Vh/Qh = Qbubble

3 /Pdisc
2 , like in Example 9. Also, the same stabilization parameter µK = 0.1 was

utilized. Since spatial and temporal discretization are of the same order, convergence studies
require the time step to be halved if the grid is refined once. The grad-div stabilization is used
in practice with standard pairs of finite element spaces and simple temporal discretizations.
This method does not require such special spaces as LPS methods. We used also a third order
method in space, namely the Taylor–Hood pair Q3/Q2. The spatial discretizations of both
stabilized methods possess a similar number of degrees of freedom on the same meshes. With
respect to the temporal discretization, the Crank–Nicolson scheme was used. This scheme is only
of second order. To account for this order difference, the time step was refined by the factor of√

8 whenever the grid was refined once (factor 2 of the mesh width). The time step on level 0
(one mesh cell) was set to be 0.4 for both methods. The stabilization parameter for the grad-div
stabilization was chosen to be the same as in the numerical studies in [19].

Results with respect to some standard errors are presented in Tables 3 and 4. It can be
observed that both methods possess a similar accuracy and the pressure errors as well as the
dominant velocity errors are of at least third order. In particular, the LPS/cGP method is
competitive.

A comprehensive numerical assessment of stabilized methods for convection-dominated in-
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Table 3: Example 11: Various errors for the LPS method with cGP(2), e = u−uh, the order is
computed from the results of the finest levels.

level ‖eh(5)‖0 ν1/2‖∇e‖L2(L2) ‖e‖L2(L2) ‖p− ph‖L2(L2)

2 2.441646e-04 4.592660e-05 1.532429e-03 7.070311e-04
3 1.817895e-05 5.706725e-06 9.696640e-05 6.520649e-05
4 1.348730e-06 7.203769e-07 6.006353e-06 6.120355e-06
5 1.001092e-07 9.481435e-08 3.900740e-07 6.056901e-07
6 7.185082e-09 1.287943e-08 2.633239e-08 6.435478e-08

order 3.80 2.88 3.89 3.23

Table 4: Example 11: Various errors for the grad-div stabilization with Crank–Nicolson scheme
from [19], e = u− uh, the order is computed from the results of the finest levels.

level ‖eh(5)‖0 ν1/2‖∇e‖L2(L2) ‖e‖L2(L2) ‖p− ph‖L2(L2)

2 9.066868e-05 1.433633e-05 4.850142e-04 1.893259e-04
3 6.413237e-06 1.388954e-06 2.120568e-05 1.978418e-05
4 7.558467e-07 2.084255e-07 1.752358e-06 2.464377e-06
5 9.698209e-08 5.209587e-08 2.396720e-07 3.076402e-07
6 1.138595e-08 8.287498e-09 2.151598e-08 3.860506e-08

order 3.09 2.65 3.48 2.99

compressible flow problems is beyond the scope of the present paper and a future topic of research.

6 Summary

This paper analyzed a combination of higher order continuous Galerkin–Petrov schemes in time
with the one-level variant of the LPS method in space applied to the transient Oseen equations.
The continuous-in-time case and the fully discrete situation were considered. Optimal error
bounds for velocity and pressure were obtained with constants that do not depend on the viscosity
parameter ν. The theoretical results were confirmed by numerical simulations.
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