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Abstract

Ladle stirring is an important step of the steelmaking process to homogenize the temperature and the

chemical composition of the liquid steel and to remove inclusions before casting. Gas is injected from the

bottom of the bath to induce a turbulent flow of the liquid steel. Multiphase modeling of ladle stirring

can become computationally expensive, especially when used within optimal flow control problems. This

note focuses therefore on single-phase flow models. It aims at improving the existing models from the

literature. Simulations in a 2d axial-symmetrical configuration, as well as in a real 3d laboratory-scale

ladle, are performed. The results obtained with the present model are in a relative good agreement with

experimental data and suggest that it can be used as an efficient model in optimal flow control problems.
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1. Introduction

Gas stirring in ladles is a standard practice in the steelmaking industry to refine and homogenize the

liquid steel bath before casting. In this process, a noble gas is injected from the bottom of the ladle through

generally one or two nozzles fitted with porous plugs. The gas rises by buoyancy through the liquid steel,

forms a gas plume, and causes stirring, i.e., a mixing of the bath (Figure 1).

The final aim of our research consists in developing an optimal flow control model to improve the

homogenization of the liquid steel by controlling several parameters, e.g., the position of the nozzles and the

flow rate of the injected gas. Such a problem requires the repeated solution of the considered process with

slightly changing coefficients. Since gradient-free schemes converge generally very slowly, gradient-based

optimization algorithms shall be used. In this regard, one has to compute the derivative of the objective

functional with respect to the solution of the partial differential equation (PDE). This step can be performed

efficiently by solving an adjoint equation. In the case of a time-dependent nonlinear problem, such as ladle

stirring, the adjoint equation is backward in time and its coefficients depend on the primal solution.
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Figure 1: Ladle stirring. Left: Schematic sketch. Right: Axi-symmetric fluid domain.

To keep the cost of the optimal control problem reasonable, reduced order modeling (ROM) is often

applied. An example of a modern ROM consists in computing bases for the discrete problems that already

possess information about the solution. For time-dependent problems, one performs one simulation with

the full model with certain coefficients, stores the so-called snapshots, and computes a basis via a proper

orthogonal decomposition (POD), see [1, 2, 3]. This approach is much faster, but its results are somewhat

less accurate than with the full model. Furthermore, it becomes complicated for complex mathematical

models and their adjoint equations. In addition, it is generally only available in some academic research

software. If commercial software is utilized, like in the present note, one has usually only the option to

consider from the beginning a mathematical model that is sufficiently efficient. For this reason, single-phase

models, which are based on the standard mono-phase incompressible Navier–Stokes equations only ([4]),

will be studied here, instead of two-phase gas-liquid flow models. The goal of this note consists in defining

an appropriate model which can be used in the simulation of optimal flow control problems.

In the literature, the so-called ‘quasi-single phase models’ are based on the main assumption that the

gas fraction α in the fluid domain is known. Debroy et al. [5], Grévet et al. [6], and Sahai and Guthrie [7]

were among the first to perform such numerical simulations on gas-stirred cylindrical ladles with one central

nozzle. They applied a conical plume geometry and three slightly different formulas for α. In [7], the model

additionally uses a non-homogeneous Dirichlet boundary condition on the central vertical axis. Later, Balaji

and Mazumdar [8] adapted the existing formulas to propose a fourth variant of α, and obtained a better

agreement of the numerical results with experimental data. These findings were summarized by Mazumdar

and Evans in [9]. In parallel to these works, Woo et al. [10] developed empirical formulas for α based on

experimental measurements and obtained better numerical results than in [5] and [6]. Single-phase modeling

for bubbles columns was also applied for chemical applications by Bernard et al. [11]. The authors applied a

formula similar to [7], except that they included a height correction factor to take into account the volumetric
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Table 1: Summary of the studies based on ‘quasi-single phase’ models.

Ref. Year Model based on Object of the study

[4] 1995 [5, 6, 7, 8, 10]* Review of existing ‘quasi-single phase’ models

[5] 1978 [5] Definition for α and application in axi-symmetric ladles

[6] 1982 [6] New definition for α

[7] 1982 [7]
New definition for α in combination with vertical bound-

ary velocity

[8] 1991 [8, 6, 7] New definition and comparison of α

[9] 2010 [8] -

[10] 1990 [10, 5, 7] New definition and comparison of α

[12] 1992 [8]* Application on mass transfer rates

[13] 2004 [7]* Study of thermal stratification

[14] 2001 [10]* Application on temperature and heat transfer

[15] 1996 [10] Effect of geometry and nozzle position on mixing time

[16] 2001 [8]
Effect of geometry and nozzle position on the circulation

rate

[17] 1994 [8]* Comparison with Euler-Euler and Euler-Lagrange

[18] 1995 [8]* Comparison with Euler-Euler models

* With minor changes in comparison to original reference.

expansion of the rising gas bubbles. Table 1 summarizes the literature dealing with ‘single phase’ models.

All single-phase models found several applications, such as the numerical study of mass and heat transfer

phenomena ([12, 13, 14]), the improvement of stirring by changing ladle geometry and nozzle positions

([15, 16]), or the comparison with two-phase flow models ([17, 18]). It should be noted that this simplified

approach presents some major and known limitations in comparison to state-of-the-art multiphase models,

in terms of physical relevance. For example, the prescription of an empirical gas fraction does not include

bubbles’ wandering effects ([19]). However, as explained earlier, our main reason for using such simplified

models is to investigate optimal flow control problems without being limited by computational resources.
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Table 2: List of main notations.

Symbol Description Formula Value Unit

H Ladle height - 0.6 m

R Ladle radius - 0.3 m

θ Apex of the conical plume - 10 deg

a Origin of the conical plume - 0.08 m

Q Gas flow rate - 2.167 10−4 (=13) m3
/s (l/min)

UP Plume velocity [21] 4.4Q
1/3H1/4

R1/4 - m/s

US Slip velocity - 0.4 m/s

rc(z) Plume radius at height z tan(θ) (z + a) - m

rav Average plume radius 1
2 (tan(θ) (2a+H)) 0.067 m

α′1 Gas fraction [7] Q
πr2avUP

- 1

α′2(z) Gas fraction [8]
Q−πr2c(z)α

′
2(1−α

′
2)US

πr2c(z)UP
- 1

ρl Liquid density - 1000 kg/m3

ρg Gas density - 1 kg/m3

µ Liquid dynamic viscosity - 10−3 kg/m.s

Ω Fluid domain - - -

Γtop Top boundary - - -

Γaxis Left boundary - - -

u Velocity field - - m/s

p Pressure field - - Pa

S Stress tensor 2µD(u) + pI - N/m2

D Velocity deformation tensor D = ∇u+(∇u)T

2 - 1/s

Tend End time - - s

This note re-visits the single-phase model for ladle stirring with the following contributions:

• clarify the differences between the main formulas for α using a 2d axial-symmetrical configuration,

• and validate a simplified model in 3d on a recent laboratory-scale water ladle experiment [20].

2. Theoretical and numerical considerations

2.1. Gas fraction α
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Table 3: Constants of Equation (3) for α3 and α4, computed with a nozzle diameter of 0.0127 m ([22, 23]).

c1 c2 c3 z0 β γ δ

α3 29.8785 0.0934 1.2114 0.016 −0.218 −0.993 0.48

α4 52.9798 0.0781 1.4405 0.0141 −0.094 −0.94 0.51

The literature contains various derivations of the gas voidage distribution. However, to the best of the

authors’ knowledge, a comparison of the main formulas ([7, 8, 10, 14]) is not available.

Sahai and Guthrie [7] defined the gas fraction as a constant α′1 (see Table 2), equal to the average gas

fraction in the whole plume, while in [8], α′2 is a function of the vertical coordinate z through rc (Table 2).

The additional term in the top part of the fraction is derived from the so-called drift-flux model, [6]. It is

possible to define α′2 analytically, as a solution of a 2nd-order polynomial, leading to a closed-form formula

for z ≥ zC , where zC = 1
tan(θ)

(√
4Q

πUS(
UP
US

+1)2

)
− a. One can however extend the definition to the small

heights. Furthermore, it is possible to redefine α′1 and α′2 such that they depend naturally on the plume

radius. Indeed, the distinction between the gas-liquid mixture and the liquid is moved from the definition

of the density ρ to the gas fraction. This simplifies the fluid density (see next section). All in all, we define:

α1(r, z) =

 α′1 if r ≤ rc(z),

0 if r > rc(z),
(1)

and:

α2(r, z) =



1
2

(
UP
US

+ 1
)

if z ≤ zC and r ≤ rc(z),

1
2

((
UP
US

+ 1
)
−
√(

UP
US

+ 1
)2
− 4Q

πr2c(z)US

)
if z ≥ zC and r ≤ rc(z),

0 if r > rc(z).

(2)

To the best of our knowledge, the analytical solution (2) and the lack of definition of α′2 in small heights

were not addressed in the literature so far. Finally, the formulas applied in [10, 14] originally come from

the experimental work of Castillejos and Brimacombe [22, 23]. By assuming that the gas fraction follows a

Gaussian distribution and using experimental data, the latter derived α3 and α4 in the form:

αi(r, z) =


c1z

β exp

[
−0.7

(
r

c2zδ

)2.4]
if z < z0,

c3z
γ exp

[
−0.7

(
r

c2zδ

)2.4]
if z > z0,

(3)

where i = 3, 4, and the constants depend on the gas flow rate, the nozzle diameter, and the densities of gas

and liquid. Here, the gas fraction depends naturally on both r and z, and is discontinuous in the height.

The parameters for the numerical application are listed in Table 2 and the corresponding values for α3

and α4 are given in Table 3. Figure 2 illustrates the isolines of the gas fraction field according to each
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Figure 2: Isolines of the four different formulas for α. The colors indicate the gas volume fraction in percentage.

definition. One can first notice that the cone rc(z) in α1 and α2 gives a sharp shape to the plume and

creates a discontinuity which may be not representative of the physical reality. Thus, the plume shape is

more realistic using the exponential, as in α3 and α4. It is interesting to note that the difference between

the strict conical plume and the one obtained with α3 and α4 is relatively small. In most of the plume

region, α is less than 10% with all formulas. While α1 is constant in the plume (∼ 4.8%) and α2 is stratified

in the height, the formulas α3 and α4 vary smoothly in both directions r and z, which corresponds better

to reality. Although α4 yields slightly higher values and a narrower plume than α3, the difference between

them is negligible. Close to the nozzle, the gas fraction increases rapidly to more than 10% in the three

cases α2, α3, and α4. While α2 is fixed to a constant in this region (Eq. (2)), α3 and α4 blow up at (0, 0),

which is locally not representative of the physical reality. This preliminary discussion shows that the order

of magnitude and the shape of the different gas fraction fields are not fundamentally different and that both

formulas [22, 23] are very similar. In the rest of this study, only α1, α2, and α3 are considered.

2.2. Definition of the model with modified assumptions

Cylindrical ladles with one or two nozzles in the bottom are considered (see Figure 1 and Table 2). In this

note, several modifications are proposed to the existing models. First, instead of using an inhomogeneous and

spatially variable density ρ as in the literature (e.g., ρ = ρgα+ρl(1−α) if r ≤ rc(z), and ρ = ρl if r ≥ rc(z)),

it is possible to simplify it to ρ = ρl in the whole domain. Indeed, the distinction between the plume region
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Figure 3: Axial-symmetrical configuration: Velocity field, Euclidian norm and streamlines. Left to right: α1, α2, and α3.

and the rest of the liquid has been introduced in the definition in the gas fractions (1) and (2). This

simplification allows to use the standard incompressible Navier–Stokes equations and their numerical solver:

ρl
∂u

∂t
+ ρl(u · ∇)u− 2∇ · (µD(u)) +∇p = (−ρlg + ρlgαi)ez, ∇ · u = 0, (4)

with i = 1, 2, or 3. Usual boundary conditions are used, e.g., free slip with no penetration condition on the

top and the left (where it is naturally imposed by the axial symmetry condition): u · n = 0 and nTS t = 0

on Γtop∪Γaxis, where n and t are the unit normal and tangential vectors at the boundary, and homogeneous

Dirichlet on the rest of the boundary: u = 0 on ∂Ω \ {Γaxis ∪ Γtop}. At t = 0, the fluid is assumed to be at

rest in Ω: u(0,x) = 0 in Ω. The k-ε model ([10]) is applied to resolve the turbulence of ladle stirring ([4]).

3. The axial-symmetrical configuration

The models were numerically solved with the Finite Element Method (FEM), using the Taylor–Hood pair

Q2/Q1 of finite elements. In other words, the velocity is approximated with continuous piecewise biquadratic

functions and the pressure with continuous piecewise bilinear functions. This pair of inf-sup stable spaces

is one of the most popular ones, [24]. Three meshes of the rectangular ladle (Figure 1) were applied to

check the convergence of the numerical solutions. The grid sizes were 25 × 50, 50 × 100, and 100 × 200,

corresponding to mesh sizes h = 0.012, 0.006, and 0.003 m, respectively. Finally, the time discretization

scheme was an adaptive BDF2 with a maximum time step of 2 s, and Tend = 60 s. All simulations were

performed with the commercial software Comsol Multiphysics c© (version 5.3a).
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Figure 4: Axial-symmetrical configuration: Comparison of the Euclidean norm of the velocity at two different heights of the

bath.

Table 4: Laboratory-scale ladle in 3d: Parameters of the ladle stirring model.

H Rtop Rbot Q xn1 yn1 xn2 yn2

0.65 m 0.29 m 0.27 m 2.83 10−4 m3/s -0.105 m -0.105 m -0.105 m 0.105 m

The computed velocity fields on the finest mesh are displayed in Figure 3. The velocity field reveals

the effect of the gas through the volume force in (4). A strong upward flow is generated close to the left

boundary. Its intensity close to the nozzle is higher with α2 and α3 than with α1, which can clearly be

assigned to the higher gas fraction in this zone (Figure 2). On the other hand, on the top left side of the

domain, the velocity is slightly higher with α1 than with α2 and α3. In a similar way, this is due to the

higher gas fraction for α1 (∼ 4.8%) in comparison with the two others (< 2%). Far from the left boundary,

the velocity fields obtained with the three gas fractions are relatively similar, in the sense that they all

produce one vortex located in the upper right region.

A comparison of the velocity magnitude with experimental measurements from [10] at two different

heights is given in Figure 4. Similar velocity profiles are observed for all proposals of the gas fraction, but

with slight differences in the amplitude. The gas fractions α2 and α3 match better with the experimental

measurements than α1, especially in the upper region of the domain (z/H = 0.68).

4. Application to a real laboratory-scale ladle in 3d

In this application, the geometry corresponds to a real laboratory-scale water ladle with two eccentric

nozzles, [20], and is described in a Cartesian space frame. Table 4 lists the parameters for this application.
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Figure 5: Velocity field magnitude ‖u‖ of the 3d ladle at t = 2, 25, and 200 s. The steady-state is reached at around 150 s.

Given the previous results, any of the gas fractions α2 and α3 can be used. However, preliminary tests

have shown some convergence difficulty due, on the one hand, to the discontinuous plume shape in Eq. (2),

and, on the other hand, to the blow-up of Eq. (3) at the origin. It is possible define a smoother version of

α2 for 3d applications, which is also more realistic from the physical point of view:

αni(x, y, z) =


1
2

(
UP
US

+ 1
)

exp

(
−b
(

(x−xni)2+(y−yni)2
rc(z)2

)2)
, if z ≤ zC ,

1
2

((
UP
US

+ 1
)
−
√(

UP
US

+ 1
)2
− 4Q

πr2c(z)US

)
exp

(
−b
(

(x−xni)2+(y−yni)2
rc(z)2

)2)
, if z ≥ zC ,

where (xni, yni) is the center of nozzle i = 1, 2. The volume force in this case is defined as the sum of the

buoyancy of both gas plumes, i.e., (−ρg + (αn1 + αn2)ρg) ez. The smoothness of the transition between

the gas plume and the liquid can be set with the parameter b, e.g., b = 2.

The velocity field at t = 2, 25, and 200 s is illustrated in Figure 5. As expected, the volume force

produces the desired gas plume effect: an upward flow is generated from the position of the nozzles at the

bottom to the top surface. Its intensity decreases from the bottom, close to the nozzle, to the top, while its

radius expands with z. This flow pattern is qualitatively similar to the ones reported in [4].

Figure 6 compares the computed velocity magnitude at the central line of one of the gas plumes from

bottom to top with experimental measurements conducted in [20]. The velocity profile is similar to the

observations from [4]: starting at a high value close to the nozzle (jet zone dominated by the kinetic energy

of the gas), it slowly decreases a few decimeters above the nozzle and remains constant in most of the

bath height (plume zone dominated by the buoyancy energy). The decrease close to the surface is due to

the boundary condition. All in all, the velocity computed at the center of the gas plume is in reasonable

agreement with experimental measurements.
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Figure 6: Laboratory-scale ladle in 3d: Euclidean norm of the velocity in the centerline of the gas plume generated by nozzle 1

(i.e., along the vertical line going from (xn1, yn1, 0) to (xn1, yn1, 0.65)) compared with experimental measurements in [20].

5. Conclusions

In this note, a modified single-phase model for ladle stirring was derived from existing ‘quasi-single

phase’ models. Some changes in the modeling assumptions were introduced to allow a more straightforward

implementation in standard incompressible flow solvers. The shapes of the gas fraction were clarified.

Although the clarification showed that their order of magnitude and their shape are quite similar, some

differences are still observable: the formula α1 ([7]) produces higher gas fractions in the top region of the

ladle than α2 and α3 ([8, 22]). This is reflected in the numerical results: in the first case, the computed

velocity magnitude is higher than the experimental data, while the two other formulas give reasonable

agreement. They can thus be equivalently used. Subsequently, the gas fraction α2 was applied for a real

laboratory-scale 3d ladle with two eccentric nozzles. The simulation results showed that the velocity profile

in the bath corresponds with results from the literature and the velocity at the centerline of the plume is in

a relative good agreement with experimental data. In summary, we conclude that the accuracy of the results

computed with the present single-phase model using α2 (Eq. (2)) or α3 (Eq. (3)) is sufficient for employing

it as an efficient model in simulations of optimal flow control problems.
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