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Summary. The paper studies finite element methods for the simulation of time–
dependent convection–diffusion–reaction equations with small diffusion: the SUPG
method, a SOLD method and two types of FEM–FCT methods. The methods are
assessed, in particular with respect to the size of the spurious oscillations in the
computed solutions, at a 3D example with nonhomogeneous Dirichlet boundary
conditions and homogeneous Neumann boundary conditions.

1 Introduction

The simulation of various applications requires the numerical solution of time–
dependent convection–diffusion–reaction equations. Processes which involve a
chemical reaction in a flow field are a typical example [5]. Such a reaction can
be modeled with a coupled system of time–dependent nonlinear convection–
diffusion–reaction equations for the concentrations of the reactants and the
products.

Typically, the solution of these equations possesses layers. A numerical
method for the simulation of these equations, whose results can be considered
to be useful, should meet the following requirements:

• the layers should be correctly localized,
• sharp layers (with respect to the used mesh size) should be computed,
• spurious oscillations in the solution must not occur.

The third requirement means in particular that the computed solution should
not have negative values if, for instance, the behavior of concentrations is sim-
ulated. A number of finite element methods has been developed for the sim-
ulation of convection–diffusion–reaction equations with small diffusion. One
of the most popular ones is the Streamline Upwind Petrov–Galerkin (SUPG)
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method from [2, 1]. This method leads to solutions with correctly located and
sharp layers, however also with sometimes considerable spurious oscillations.
To reduce these oscillations, a number of so–called Spurious Oscillations at
Layers Diminishing (SOLD) schemes has been proposed, see the reviews [3, 4].
SOLD schemes add additional, in general nonlinear, stabilization terms to the
SUPG method. A completely different finite element approach for treating
equations with small diffusion are Finite Element Method Flux–Corrected–
Transport (FEM–FCT) schemes [10, 8]. These methods do not modify the
bilinear form but manipulate the matrix and the right hand side of a Galerkin
finite element method.

A first comparison of finite element methods for time–dependent convection–
diffusion–reaction equations was presented in [6]. The numerical examples of
[6] studied problems in 2D with homogeneous Dirichlet boundary conditions.
The present paper extends the studies of [6] to 3D problems with inhomoge-
neous Dirichlet and homogeneous Neumann boundary conditions. This is a
realistic situation in applications.

2 Finite element methods for time–dependent

convection–diffusion–reaction equations

We consider a linear time–dependent convection–diffusion–reaction equation

ut − ε∆u + b · ∇u + cu = f in (0, T ] × Ω, (1)

where ε > 0 is the diffusion coefficient, b ∈ L∞(0, T ; (W 1,∞(Ω))3) is the
convection field, c ∈ L∞(0, T ; L∞(Ω)) is the non–negative reaction coefficient,
f ∈ L2(0, T ; L2(Ω)) describes sources, T > 0 is the final time and Ω ⊂ R

3 is a
bounded domain. This equation has to be equipped with an initial condition
u0 = u(0,x) and with appropriate boundary conditions. Since the isothermal
reaction considered in [5] leads to equations with non–negative reaction rates,
we are particularly interested in the case c(t,x) ≥ 0 in [0, T ]× Ω.

In the numerical studies, (1) is discretized in time with the Crank–Nicolson
scheme using equidistant time steps ∆t. This leads at the discrete time tk to
the equation

uk + 0.5∆t (−ε∆uk + bk · ∇uk + ckuk)

= uk−1 − 0.5∆t (−ε∆uk−1 + bk−1 · ∇uk−1 + ck−1uk−1) (2)

+0.5∆tfk−1 + 0.5∆tfk.

Equation (2) can be considered as a steady–state convection–diffusion–reaction
equation, with the diffusion, convection and reaction, respectively, given by

D = 0.5∆tε, Ck = 0.5∆tbk, Rk = 1 + 0.5∆tck.

The Galerkin finite element for (2) method reads as follows: Find uh
k ∈ V h

ans

such that
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(uh
k , vh) + 0.5∆t

(

(ε∇uh
k ,∇vh) + (bk · ∇uh

k + ckuh
k , vh)

)

= (uh
k−1

, vh) − 0.5∆t
(

(ε∇uh
k−1

,∇vh) + (bk−1 · ∇uh
k−1

+ ck−1u
h
k−1

, vh)
)

+0.5∆t(fk−1, v
h) + 0.5∆t(fk, vh) (3)

for all vh ∈ V h
test, where V h

ans and V h
test are appropriate finite element spaces.

Here, (·, ·) denotes the inner product in L2(Ω).
The SUPG method adds a consistent diffusion term in streamline direction

∑

K∈T h

τK

(

Rh(uh
k),Ck · ∇vh

)

K

to the left hand side of (3), where T h is the given triangulation of Ω, {τK} is
a set of parameters depending on the mesh cells {K} and (·, ·)K is the inner
product in L2(K). The residual Rh(uh

k) is defined by the difference of the left
hand side and the right hand side of (2). Different proposals for the choice of
the parameters {τK} can be found in the literature. In the numerical studies
of [6], the choice from [7]

τK = min

{

hK

∆t‖bk‖2

,
1

1 + 0.5∆tck

,
2h2

K

∆tε

}

(4)

has been proven to be the best one. In (4), ‖ · ‖2 denotes the Euclidean norm
of a vector and hK is an appropriate measure of the size of the mesh cell K.
For time–dependent problems which are discretized with small time steps, the
second term in (4) dominates and the actual choice hK is of minor importance.
In the computations presented below, the diameter of the mesh cell K was
chosen. It is well known that numerical solutions which are computed with
the SUPG method often possess non–negligible spurious oscillations at the
layers.

SOLD methods are trying to reduce the spurious oscillations of the SUPG
method by adding another stabilization term to this method. This stabiliza-
tion term is in general nonlinear. There are several classes of SOLD meth-
ods, see [3, 4]. It was found in the numerical studies of [6] that the best
results among the SOLD methods were obtained with a method that adds an
anisotropic diffusion term

(ε̃Cos,k∇uh
k ,∇vh) with Cos,k =







I −
Ck ⊗ Ck

‖Ck‖2

2

if Ck 6= 0,

0 else,

and the parameter

ε̃|K = max

{

0, C
diam(K)|Rh(uh

k)|

2‖∇uh
k‖2

− D

}

, (5)

where diam(K) is the diameter of a mesh cell K. This type of parameter was
proposed in [7] and modified to the form (5) in [3]. The SOLD parameter (5)
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contains a free parameter C which has to be chosen by the user. In analogy
to [6], this SOLD method will be called KLR02.

The last approaches which will be studied in our numerical tests are FEM–
FCT schemes. They start with the algebraic equation which corresponds to
the Galerkin finite element method (3)

(MC + 0.5∆tAk)uk = (MC − 0.5∆tAk−1)uk−1
+ 0.5∆tf

k−1
+ 0.5∆tf

k
, (6)

where (MC)ij = (mij) = (ϕj , ϕi), {ϕi} being the basis of the finite element
space, is the consistent mass matrix. The matrix representation of the second
term of the left hand side of (3) is denoted by (Ak)ij = (aij). Vectors are
indicated by an underline. The first goal of FEM–FCT schemes consists in
manipulating (6) such that a stable but low order scheme is represented. To
this end, define Lk = Ak + Dk with

Dk = (dij), dij = −max{0, aij, aji} for i 6= j, dii = −

N
∑

j=1,j 6=i

dij ,

and ML = diag(mi) with mi =
∑N

j=1
mij , where N is the number of degrees

of freedom. ML is called lumped mass matrix. The low order scheme reads

(ML + 0.5∆tLk)uk = (ML − 0.5∆tLk−1)uk−1
+ 0.5∆tf

k−1
+ 0.5∆tf

k
. (7)

The second goal of FEM–FCT schemes consists in the modification of the
right hand side of (7) in such a way that diffusion is removed where it is not
needed but spurious oscillations are still suppressed

(ML + 0.5∆tLk)uk = (ML − 0.5∆tLk−1)uk−1
+ 0.5∆tf

k−1
+ 0.5∆tf

k

+f∗(uk, uk−1
). (8)

The computation of the anti–diffusive flux vector f∗(uk, uk−1
) is somewhat

involved and we refer to [8, 9, 10, 6] for details. Its computation relies on a
predictor step which uses an explicit and stable low order scheme. Thus, a
stability issue arises in FEM–FCT schemes which leads to the CFL–like con-
dition ∆t < 2 mini mi/lii. This condition was fulfilled in the numerical tests
presented in Section 3. We will consider a nonlinear approach for computing
f∗(uk, uk−1

) [10, 9] and a linear approach [8].

3 Numerical studies

We consider a situation which has some typical features of a chemical reaction
in application. First, the domain is three dimensional, Ω = (0, 1)3. There is
an inlet at {0} × (5/8, 6/8) × (5/8, 6/8) and an outlet at {1} × (3/8, 4/8) ×
(4/8, 5/8). The convection is given by b = (1,−1/4,−1/8)T , which corre-
sponds to the vector pointing from the center of the inlet to the center of the
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outlet. Thus, the convection will not be aligned to the mesh. The diffusion is
given by ε = 10−6 and the reaction by

c(x) =

{

1 if ‖x− g‖2 ≤ 0.1,
0 else,

where g is the line through the center of the inlet and the center of the outlet.
That means, a reaction takes place only where the solution (concentration) is
expected to be transported. The inlet boundary condition is

uin(t) =







sin(πt/2) if t ∈ [0, 1],
1 if t ∈ (1, 2],
sin(π(t − 1)/2) if t ∈ (2, 3].

At the outlet, homogeneous Neumann boundary conditions are prescribed.
Apart from inlet and outlet, the solution should obey homogeneous Dirichlet
conditions on the boundary. The right hand side was set to be f = 0 in Ω
for all times and the final time in our numerical studies was T = 3. The
initial condition was set to be u0 = 0. The orders of magnitude for diffusion,
convection, reaction and concentration correspond to the situation of [5].

Results will be presented for the P1 finite element on a tetrahedral mesh
and the Q1 finite element on a hexahedral mesh. The number of degrees of
freedom on both meshes is 35 937, including Dirichlet nodes. The diameter of
the mesh cells is about 0.054 for the hexahedral mesh and between 0.054 and
0.076 for the tetrahedral mesh. The Crank–Nicolson scheme was applied with
∆t = 0.001.

From the construction of the problem, it is expected that the solution is
transported from the inlet to the outlet with a little smearing due to the diffu-
sion. It should take values in [0, 1]. The size of the spurious oscillations in the
numerical schemes will be illustrated with the size of the undershoots uh

min
(t),

see Fig. 1. The undershoots are particularly dangerous in applications since
they represent non–physical situations, like negative concentrations. Fig. 2
shows the distribution of the undershoots with uh

min
(t) 6 0.01 for the SUPG

method at t = 2. Cut planes of the solutions at t = 2 are given in Figs. 3 – 7.
These cut planes contain the centers of the inlet and the outlet and they are
parallel to the z–axis. Note, some wiggles which can be seen in the contour
lines might be due to the rather coarse meshes. For illustrating the spurious
oscillations, a color bar is given for each cut plane.

The numerical results show the large amount of spurious oscillations in
the solutions computed with the SUPG method. Fig. 2 demonstrates that
the solutions are globally polluted with spurious oscillations. The oscillations
were considerably reduced and localized (not shown here) with the SOLD
method KLR02. Increasing the constant in (5) leads to a decrease of the
spurious oscillations, Fig 1. From the numerical studies of [3, 4] it is known
that an increase of the constant in (5) results to somewhat more smearing
of the solutions. However, this is rather tolerable in applications compared
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Fig. 1. Minimal value of finite element solutions uh

min(t), left Q1, right P1.

Fig. 2. Distribution of negative oscillations uh

min(t) 6 0.01 for the SUPG method
at t = 2, left Q1, right P1.

to spurious oscillations. The solutions obtained with the FEM–FCT methods
are almost free of spurious oscillations. The smoother solutions of the linear

Fig. 3. Cut of the solution, SUPG method at t = 2, left Q1, right P1.
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Fig. 4. Cut of the solution, SOLD method (5), C = 0.2 at t = 2, left Q1, right P1.

Fig. 5. Cut of the solution, SOLD method (5), C = 0.4 at t = 2, left Q1, right P1.

Fig. 6. Cut of the solution linear FEM–FCT method at t = 2, left Q1, right P1.

FEM–FCT scheme, compared to the nonlinear FEM–FCT scheme, reflect that
the linear scheme introduces more diffusion. This leads generally to a stronger
smearing of the layers, see [6]. Altogether, the FEM–FCT schemes gave the
best results in the numerical studies.



8 Volker John and Ellen Schmeyer

Fig. 7. Cut of the solution, nonlinear FEM–FCT method at t = 2, left Q1, right P1.

Computing times for the methods are given in the Table 1. For solving
the algebraic systems corresponding to the nonlinear schemes, the same fixed
point iteration as described in [4, 6] was used. The iterations were stopped
if the Euclidean norm of the residual was less than 10−8. The computations
were performed on a computer with Intel Xeon CPU with 2.66 GHz. It can
be observed that the nonlinear schemes are considerably more expensive than
the linear methods. For KLR02, the computing times increase with increasing
size of the user–chosen parameter. All observations correspond to the results
obtained in [6] for 2D problems.

method Q1 P1

SUPG 5989 9473
SOLD (5), C = 0.2 24832 25050
SOLD (5), C = 0.4 33688 30932
FEM FCT linear 5920 6509
FEM FCT nonlinear 9768 10398

Table 1. Computing times in seconds.

4 Summary and conclusions

The paper studied several finite element methods for solving time–dependent
convection–diffusion–reaction equations in a 3D domain with inhomogeneous
Dirichlet and homogeneous Neumann boundary conditions. The SUPG method
led to solutions globally polluted with large spurious oscillations. These os-
cillations were reduced considerably with a SOLD method, however at the
expense of much larger computing times. FEM–FCT methods led to almost
oscillation–free solutions. From the aspects of solution quality and computing
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time, the linear FEM–FCT scheme seems to be, among the studied methods,
the most appropriate method to be used in applications.
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