SimParTurS – work report 2009–07–27

Volker John and Carina Suciu

Saarland University, Saarbrücken

The population balance system

- coupled system of
 - Navier–Stokes equations (flow field)
 - energy balance (temperature)
 - mass balance (concentration)
 - population (particle size distribution)

Domain and grid

- domain Ω
 - \circ length 2.10 m
 - \circ width 0.01 m
 - \circ height 0.01 m

- anisotropic grid in streamwise direction
- inlet:

$$I = 0 \times \left[\frac{1}{3}, \frac{2}{3}\right] \times \left[\frac{1}{3}, \frac{2}{3}\right]$$

Flow field

- Navier–Stokes equations
- flow is steady state
- Reynolds number

$$Re = \frac{l_{\infty}u_{\infty}}{\nu} \approx 73.475386$$

• Galerkin FEM with about 573 000 degrees of freedom ($Q_2/P_1^{
m disc}$)

Energy balance (temperature)

- convection–dominated convection–diffusion equation
- temperature only necessary for computing the growth rate of the particles
- Crank–Nicolson linear Finite–Element–Method Flux–Corrected–Transport (FEM–FCT) scheme to reach steady state
- about 22 500 d.o.f. (Q₁)
- temperature distribution

• discontinuous Dirichlet boundary condition

Mass balance for solute (concentration)

- convection-dominated convection-diffusion equation
- Crank–Nicolson linear FEM–FCT scheme
- about 22 500 d.o.f. (Q₁)
- not steady state
- concentration distribution

Population (particle size distribution)

- transport equation in 4D
- implemented schemes (test phase)
 - forward Euler upwind finite difference scheme
 - backward Euler upwind finite difference scheme
 - Crank–Nicolson linear FEM–FCT scheme
- discretization of internal coordinate: 17 nodes
- about 382 000 d.o.f.
- interface to computation of aggregation and breakage developed

A variational multiscale (VMS) method for turbulent flow simulations on tetrahedral meshes

- V.J., A. Kindl, C.S., J. Comp. Appl. Math., in press
- motivation
 - complicated geometry used in chemical engineering
 - no access to hexahedral grid generator
 - reactor with a torispherical head

• grid with Tetgen

- properties of the VMS method
 - based on variational form of Navier–Stokes equations
 - separation of scale groups through projections into appropriate spaces
 - three scale separations
 - resolved large scales
 - resolved small scales
 - unresolved small scales only influence on the resolved small scales modeled with a turbulence modell

dral meshes

- properties of the VMS method
 - based on variational form of Navier–Stokes equations
 - separation of scale groups through projections into appropriate spaces
 - three scale separations
 - resolved large scales
 - resolved small scales
 - unresolved small scales only influence on the resolved small scales modeled with a turbulence modell
- realization of the VMS method
 - standard pair of conforming finite element spaces for all resolved scales $V^h \times Q^h$ fulfilling inf-sup stability condition
 - choose an additional space for the large scales L^H -finite dimensional space of symmetric tensor-valued functions in $L^2(\Omega)$
 - define the large scales as a projection into this space

• find $\mathbf{u}^h: [0, T] \to V^h$, $p^h: (0, T] \to Q^h$, and $\mathbb{G}^H: [0, T] \to L^H$ such that

$$\begin{aligned} (\mathbf{u}_t^h, \mathbf{v}^h) + (2\nu \mathbb{D}(\mathbf{u}^h), \mathbb{D}(\mathbf{v}^h)) + ((\mathbf{u}^h \cdot \nabla)\mathbf{u}^h, \mathbf{v}^h) \\ -(p^h, \nabla \cdot \mathbf{v}^h) + (\nu_T(\mathbb{D}(\mathbf{u}^h) - \mathbb{G}^H), \mathbb{D}(\mathbf{v}^h)) &= (\mathbf{f}, \mathbf{v}^h), \, \forall \mathbf{v}^h \in V^h, \\ (q^h, \nabla \cdot \mathbf{u}^h) &= 0, \qquad \forall q^h \in Q^h, \\ (\mathbb{D}(\mathbf{u}^h) - \mathbb{G}^H, \mathbb{L}^H) &= 0, \qquad \forall \mathbb{L}^H \in L^H. \end{aligned}$$

- $\nu_T((\mathbf{u}^h, p^h), h) \ge 0$ turbulent viscosity
- \mathbb{G}^H represents the large scales
- $\nu_T(\mathbb{D}(\mathbf{u}^h) \mathbb{G}^H)$, $\mathbb{D}(\mathbf{v}^h)$): viscous term acting directly only on the resolved small scales
- $\circ \quad \mathbb{D}(\mathbf{v}) = (\nabla v + \nabla v^T)/2$
- parameters: ν_T, L^H

- adaptive choice of the large scale space L^H
 - following V.J., Adela Kindl (2008, preprint)
 - different polynomial degrees on different mesh cells
 - a posteriori choice
- goal: method should determine local coarse space $L^H(K)$ a posteriori such that
 - $L^H(K)$ is a small space where flow is strongly turbulent
 - \iff turbulence model has large influence
 - $L^H(K)$ is a large space where flow is less turbulent
 - \iff turbulence model has little influence

- assumption: local turbulence intensity reflected by size of local resolved small scales
 - $\circ~$ size of resolved small scales large \Longrightarrow many unresolved scales can be expected
 - $\circ~$ size of resolved small scales small \Longrightarrow little unresolved scales can be expected

- assumption: local turbulence intensity reflected by size of local resolved small scales
 - $\circ~$ size of resolved small scales large \Longrightarrow many unresolved scales can be expected
 - $\circ~$ size of resolved small scales small \Longrightarrow little unresolved scales can be expected
- define indicator of the size of the resolved small scales in mesh cell K

$$\eta_K = \frac{\|\mathbb{G}^H - \mathbb{D}(\mathbf{u}^h)\|_{L^2(K)}}{\|1\|_{L^2(K)}} = \frac{\|\mathbb{G}^H - \mathbb{D}(\mathbf{u}^h)\|_{L^2(K)}}{|K|^{1/2}}, \quad K \in \mathcal{T}^h$$

- o size of the resolved small scales does not depend on size of mesh cell
- o size of the mesh cell scales out
- compare η_K to some reference value
 - similar to a posteriori error estimation and mesh refinement

- numerical study
- Smagorinsky model

$$\nu_T = C_S \delta^2 \left\| \mathbb{D} \left(\mathbf{u}^h \right) \right\|_F$$

- indicator for local turbulence intensity
- cut along with inlets (left) and without inlets (right)

• most turbulence at inlets and outlet

Future goals and connection to other groups

- test methods for PSD equations
- further investigations of VMS method
- include aggregation and breakage of particles (AG Hackbusch)
- parallelization of the code (AG Tobiska)
- improved methods for convection–dominated problems, improved boundary conditions (AG Tobiska)
- compare with experimental results (AG Sundmacher)
- correct and extend the model and its parameters (AG Sundmacher)
- use results (flow fields) for POD and control problems (AG Kienle)