SimParTurS – work report 2009–01–12

Volker John and Carina Suciu

Saarland University, Saarbrücken

Contents

- 1. Precipitation process modeled by population balance systems
- 2. Further Studies of Bulk Precipitations in 2d/3d
- 3. First Simulations in 3d/4d
- 4. Shear Slip Mesh Update Method (SSMUM) in 2d

1. Precipitation process modeled by population balance systems

• chemical reaction in a flow

$$A + B \to C \downarrow + D$$

- precipitation starts if local concentration of *C* exceeds saturation concentration
- chemical mechanisms:
 - nucleation
 - growth of particles
- flows with particles
- particles size distribution (PSD) is of interest, not the behavior of the individual particles

1. Precipitation process modeled by population balance sys-

tems

- Population balance system
 - coupled system

Navier–Stokes equations	fluid velocity	convection-diffusion-reaction equation for A and B	
fluid velocity \downarrow	fluid 📐 velocity	\downarrow chemical reaction	
balance equation for	concentration, PSD	convection-diffusion-reaction	
particle size distribution		equation for C	

- chemical reaction: $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow +2NaCl$
- domain in 2D

Discretisation and Simulation

- Navier-Stokes equations
 - Crank-Nicolson scheme
 - Galerkin finite element method (Q_2/P_1^{disc})
- convection-diffusion-reaction equations
 - Crank-Nicolson scheme
 - exchange term with disperse phase is treated explicitly
 - (linear) finite element-method flux corrected transport (FEM-FCT)
 - Kuzmin, Möller, Turek (2004), Kuzmin, Möller (2005), Kuzmin (2008)
- population balance of the disperse phase
 - (linear) FEM-FCT scheme with Q_1 Galerkin finite element method
 - forward Euler/upwind finite difference method
 - backward Euler/upwind finite difference method

Studies with Re=1000 (structured flow field)

- simulation of precipitation process
- simulation of particle size distribution
- different methods for PSD for $\Delta t = 0.00125$, median of the volume fraction

For small changes in time all methods were qualitatively the same.

Studies with Re=10.000 (highly time-dependent flow field)

- simulation of precipitation process
- different methods for PSD, median of the volume fraction

 $\Delta t = 0.0025$, number of layers w.r.t. internal coordinate L = 32

Studies with Re=10.000

•

- both Euler methods are very similar
- the results of the Crank-Nicolson FEM-FCT scheme are qualitatively different to the first order results

• Crank-Nicolson FEM-FCT scheme known to be accurate for highly convection-dominated problems; John, Schmeyer (2008)

Crank-Nicolson FEM-FCT scheme should be used for highly time-dependent processes

• Crank-Nicolson FEM-FCT scheme known to be accurate for highly convection-dominated problems; John, Schmeyer (2008)

Crank-Nicolson FEM-FCT scheme should be used for highly time-dependent processes

• typical computing times per time step, in seconds ($\Delta t = 0.000625$)

	L = 32	L = 48	L = 64
FWE–UPW–FDM	2.08	2.12	2.20
BWE-UPW-FDM	2.79	3.10	3.37
FEM-FCT	4.35	5.37	6.39

- FEM–FCT by far the most time-consuming method
- costs increase with refinement in property space
- most important bottle neck: matrix assembling
- more details: John, Roland (2008), Preprint

• domain in 3d

- Re=10.000 \implies turbulent flow
 - turbulence model: projection–based Variational Multiscale Methods (VMS) with P₀, John, Kaya (2005)

• simulation with FWE–UPW–FDM for population balance equation

• $\Delta t = 0.001, L = 16$

- simulation of precipitation process (Re = 10.000)
- median of the volume fraction

• simulation with FWE–UPW–FDM for population balance equation

• $\Delta t = 0.001, L = 16$

- simulation of precipitation process (Re = 10.000)
- median of the volume fraction

- simulation with FEM–FCT for population balance equation
 - started, simulation time will be of the order of months

Further studies require parallelization of the code !!!

- next goals for precipitation simulations:
 - implementation of an improved linear FEM-FCT method, Kuzmin (2009)
 - implementation of an approximation in the matrix assembling which reduces the costs, Kuzmin, Möller (2005)
 - interface to software for integral terms, MPI Leipzig

4. Shear Slip Mesh Update Method (SSMUM) in 2d

• principle: switching of edges in the shear slip layer

- difficulty: interpolation of velocity after change of grid
- pressure with linear interpolation (version from October)
 - spurious oscillations clearly visible
- pressure with enforced discretely divergence free interpolation
 - no spurious oscillations
- next (long term) goal: implementation of SSMUM for simplified 3D example (present 2D example with extension in third direction)