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Projects in the last months

1. incorporating grids from grid generators into MooNMD

2. stabilized finite element methods for time–dependent
convection–diffusion–reaction equations

3. GUI for MooNMD
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Incorporating grids from grid generators into MooNMD

I former problems:
I parametrization of boundary was necessary
I parametrization hard to code for complicated domains

I done in the last weeks: MooNMD modified such that only an initial grid is
necessary

I coordinates of the vertices
I vertices for each mesh cell
I information which vertices are on the boundary
I vertices for faces on the boundary
I which local faces are on the boundary

These information are provided by every mesh generator !
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Incorporating grids from grid generators into MooNMD

I example: mesh generated by Gambit
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First computations
I Re = 10000
I body force in region where the stirrer will be

f =

0@ 0
2πx
−2πy

1A
I Pbubble

2 /Pdisc
1 (new implementation), Crank–Nicolson scheme

I Smagorinsky LES model
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Stabilized finite element methods for time–dependent
convection–diffusion–reaction equations

I needed in the project for
I equation for particle size distribution
I methods of moments

I done in the last weeks: several methods implement into MooNMD (with
E. Schmeyer)

I Streamline–Upwind Petrov–Galerkin method (SUPG, different parameter choices)
I Spurious Oscillations at Layers Diminishing methods (SOLD)
I Finite–Element–Method Flux–Corrected–Transport methods (FEM–FCT)

I final goal: find non–oscillatory and non–smearing scheme
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Basic discretizations

I scalar convection–diffusion–reaction equation with Ω ⊂ R2

ut − ε∆u + b · ∇u + cu = f in (0,T ]× Ω,

I fractional–step θ-schemes as temporal discretization

uk + θ1∆tk (−ε∆uk + b · ∇uk + cuk )

= uk−1 − θ2∆tk (−ε∆uk−1 + b · ∇uk−1 + cuk−1)

+θ3∆tk fk−1 + θ4∆tk fk

∆tk = tk − tk−1, parameters θ1, . . . , θ4

I =⇒
D = θ1∆tkε diffusion
C = θ1∆tkb convection
R = 1 + θ1∆tkc reaction
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Streamline–Upwind Petrov–Galerkin method

I standard Galerkin FEM + stabilization termX
K∈T h

τK

“
residual of strong form of equation,C · ∇vh

”
K

(diffusion in streamline direction)
I crucial: choice of the parameter, reaction might be dominant and has to be taken

into account
I Codina (2000)
I Franca, Valentin (2000)
I Lube, Rapin (2006)
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Streamline–Upwind Petrov–Galerkin method

I parameters for ε = 10−6, ‖b‖2 = 1, c = 1, θ1 = 0.5, hK = 1/64
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Spurious Oscillations at Layers Diminishing methods (SOLD)

I adding additional, in general nonlinear, diffusion term to SUPG
I isotropic diffusion

(ε̃∇uh
,∇vh)

I anisotropic diffusion

(ε̃D∇uh
,∇vh),

where

D =

8<: I −
b⊗ b

‖b‖2
2

if b 6= 0,

0 else,

I edge stabilization

I reviews : John, Knobloch (2007, 2008)
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Finite–Element–Method Flux–Corrected–Transport methods (FEM–FCT)

I work on the algebraic level

I matrix–vector representation of Galerkin–FEM (⇒ oscillations!!!)

(MC + θ1∆tkA)uk = (MC − θ2∆tkA)uk−1 + θ3∆tk fk−1 + θ4∆tk fk ,

(MC )ij = (ϕj , ϕi ) – consistent mass matrix

I stable low order scheme (⇒ too diffusive!!!)

(ML + θ1∆tkL)uk = (ML − θ2∆tkL)uk−1 + θ3∆tk fk−1 + θ4∆tk fk

ML = diag(mi ) – lumped mass matrix
L = A + D – M–matrix
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Finite–Element–Method Flux–Corrected–Transport methods (FEM–FCT)

I idea: modify right hand side of low order scheme such that the equation becomes
less diffusive but spurious oscillations will still be suppressed

(ML + θ1∆tkL)uk = (ML − θ2∆tkL)uk−1 + θ3∆tk fk−1 + θ4∆tk fk

+f ∗(uk , uk−1)

I ansatz

f ∗(uk , uk−1) =
NX

j=1

αij rij , i = 1, . . . ,N,

rij – antidiffusive fluxes, can be computed
αij – coefficients to be determined

I proposals for αij
I nonlinear: Kuzmin, Möller (2005)
I linear: Kuzmin (2008)
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First numerical test – solid body rotation

I one rotation

I ε = 10−20
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First numerical test – solid body rotation
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SUPG, standard parameter without reaction
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First numerical test – solid body rotation
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SUPG, parameter Lube, Rapin (2006)
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First numerical test – solid body rotation
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(linear) SOLD, parameter Johnson, Schatz, Wahlbin (1987)
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First numerical test – solid body rotation
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linear FEM FCT, running time 2800 sec.
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First numerical test – solid body rotation
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nonlinear FEM FCT, running time 47000 sec.
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GUI for MooNMD

I based on software Qt
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Next goals

I time–dependent convection–diffusion–reaction equations
I implement edge stabilization SOLD schemes
I implement local projection schemes
I numerical studies on more examples
I extend all implementations to 3D

I explore possibilities to model rotating stirrer

I revise implementation of Neumann boundary conditions in 3D

I continue to work at GUI
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