Converting TetGen mesh into format of MooNMD

Volker John and Carina Suciu
Faculty of Mathematics
Saarland University

$$
26.11 .07
$$

Contents

1. Introduction
2. Example 1: Channel with a wall-mounted cube
3. Example 2: Cylinder with a torispherical head
4. File formats for TetGen and MooNMD
5. TetGen and TetView
6. Converting the TetGen mesh into the format of MooNMD

Introduction

- TetGen generates tetrahedral meshes in three-dimensional domains
- The goal is to create suitable tetrahedral meshes for numerical simulation using finite element and finite volume methods and to convert these meshes into the format of MooNMD

Example 1: Channel with a wall-mounted cube Channel with a wall-mounted

 cube- given a rectangular channel with:

$$
\begin{aligned}
L & =15 h \text { length } \\
H & =2 h \text { height } \\
W & =7 h \text { width }
\end{aligned}
$$

- given a cube of edge length
h mounted on the floor
centered at (3.5h, 3.5h, 5h)
in case $\mathrm{h}=0.1$

Example 1: Channel with a wall-mounted cube

Set the boundary faces

Rectangular channel
Face 11234 (bottom)
Face 29101112 (top)
Face 314129 (left)
Face 4231110 (right)
Face 512109 (front)
Face 6341211 (back)
The cube
Face 713141516 (top)

Face 8581613 (left)
Face 9671514 (right)
Face 10561413 (front)
Face 11871516 (back)

Example 2: Cylinder with a torispherical head

Cylinder with a torispherical head :

- given a flat flange cylindrical vessel of diameter D_{1} with a torisperical head (defined as per DIN 28011)
- dimension of the cylinder with the torispherical head

$$
\begin{aligned}
D_{1} & =100 \mathrm{~mm} \\
D_{2} & =5 \mathrm{~mm} \\
L & =140 \mathrm{~mm}
\end{aligned}
$$

Example 2: Cylinder with a torispherical head

$$
\begin{aligned}
f_{D} & =D_{1}=100 \mathrm{~mm} \\
k_{D} & =0.1 D_{1}=10 \mathrm{~mm} \\
R & =\frac{D_{1}}{2}=50 \mathrm{~mm}
\end{aligned}
$$

Example 2: Cylinder with a torispherical head

Calculate the others parameters

- apply Pythagorean theorem

$$
\begin{aligned}
\left(D_{1}-h\right)^{2} & =\left(f_{D}-0.1 D_{1}\right)^{2} \\
& -\left(R-0.1 D_{1}\right)^{2} \\
\Rightarrow & \\
h & =19.377 \mathrm{~mm}
\end{aligned}
$$

Example 2: Cylinder with a torispherical head

- use triangles similarity

$$
\begin{aligned}
\frac{R-0.1 D_{1}}{x} & =\frac{f_{D}-0.1 D_{1}}{f_{D}}=\frac{D_{1}-h}{D_{1}-h_{1}} \\
\Rightarrow & =44.444 \mathrm{~mm} \\
x & =10.42 \mathrm{~mm} \\
h_{1} & =h-h_{1}=8.957 \mathrm{~mm}
\end{aligned}
$$

Example 2: Cylinder with a torispherical head

- use elementary trigonometric identities

$$
\begin{aligned}
\tan \alpha & =\frac{R-0.1 D_{1}}{D_{1}-h} \\
\Rightarrow & =26.388^{\circ} \\
\alpha & =90-\alpha=63.612^{\circ}
\end{aligned}
$$

Example 2: Cylinder with a torispherical head

Analytical description

- representation of cylindrical surface with cylindrical coordinates:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=h_{0}
\end{aligned}
$$

where
$r=50 \mathrm{~mm}, \theta \in\{0,2 \pi\}$, $h_{0} \in\{h, 140 \mathrm{~mm}\}$

Example 2: Cylinder with a torispherical head

- parametrically representation of torus

$$
\begin{aligned}
& x=[R+r \cos p] \cos t \\
& y=[R+r \cos p] \sin t \\
& z=r \sin p
\end{aligned}
$$

where
$p \in[\pi+2 \alpha+\beta, 2 \pi], t \in[0,2 \pi]$
$R=40 \mathrm{~mm}$ (the distance from the center of the tube to the center of the torus)
$r=10 \mathrm{~mm}$ (the radius of the tube)

Example 2: Cylinder with a torispherical head

- representation of spherical surface with spherical coordinates :

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi
\end{aligned}
$$

where
$\rho=100 \mathrm{~mm}, \theta \in\{0,2 \pi\}$,
$\phi \in\{\pi-\alpha, \pi\}$

File formats for TetGen and MooNMD

- the TetGen input file $*$. poly is a simple three-dimensional piecewise linear complex (PLC)
- TetGen requires that the mesh region represented by a PLC should be completely face-bounded
- the .poly file format consists of 4 parts

File formats for TetGen and MooNMD

Construct the TetGen file format for the first example: wall.poly

Part 1 -node list

First line:
<number of points> <dimension(3)> < number of attributes> <boundary markers(0 or 1)>
Remaining lines list number of points:
<point number n> <xn> <yn> <zn>

File formats for TetGen and MooNMD

16301
10.0000000 .0000000 .0000005
21.5000000 .0000000 .0000005
31.5000000 .7000000 .0000001
40.0000000 .7000000 .0000001
50.3000000 .3000000 .00000010
60.4000000 .3000000 .00000010

140.4000000 .3000000 .1000007
150.4000000 .4000000 .10000011
160.3000000 .4000000 .10000011

File formats for TetGen and MooNMD

It is important to set the boundary markers for converting the results of TetGen into the format of MooNMD.

File formats for TetGen and MooNMD

Part 2 -facet list

One line:

<number of polygons> <boundary marker(0 or 1)>
Following lines list number of polygons:
< polygon number > <number of holes> <boundary markers>
<number of corners> <corner $1>\ldots<$ corner n>

File formats for TetGen and MooNMD
141
101
41265
101
42376
101
43487

102
49101112
107
413141516

File formats for TetGen and MooNMD

Part 3 -(volume)hole list

One line:0

<number of holes>
Following lines list number of holes:
<hole $\mathrm{n}><\mathrm{xn}><\mathrm{yn}><\mathrm{zn}>$

0

File formats for TetGen and MooNMD

Part 4 -region attributes list

One line:
<number of region>
Following lines list number of region attributes:
<region $\mathrm{n}><\mathrm{x}><\mathrm{y}><\mathrm{z}><$ region number $><$ region attributes>

0

File formats for TetGen and MooNMD

```
Construct the .prm file format
NBCT
1 (number of boundary part: always 1 for our example)
IBCT
1 (block for boundary part 1)
NCOMP
11 ( number of boundary components, number of planes)
ITYP NSPLINE NPAR
1003
... (11 time)
PARAMETERS (33 triples)
0.000000 0.000000 0.000000 (point in the plane)
1.000000 0.000000 0.000000 (direction vector)
0.000000 0.000000-1.000000 (outer normal unit vector)
```


File formats for TetGen and MooNMD

Construct the TetGen and MooNMD file formats for the

 second example: torispherical.poly- the second example can't be manually operated
- generate the file formats with the help of Matlab programming

File formats for TetGen and MooNMD

Describe the MATLAB code

- consider the example in 2D
- calculate for the edge 0, respectively edge 1 the first and the last point
- approximatae edge 2 with three points and edge 3 with four points
- rotate the curve to generate the body

File formats for TetGen and MooNMD

- after one rotation will be generated 7 planes
- store for each plane the vertices into format of TetGen
- calculate for each plane 2 direction vectors and then the normals with the help of the cross product(necessary for .prm file)
- after the all rotation were done, store the dates in two file: .poly and .prm

TetGen and TetView

The command line syntax to run TetGen is:
tetgen [-command line option] file.poly

The most used command line option in our example

- -p option tetrahedralizes a piecewise linear complex (.poly file)
- -q generates a quality mesh
- $-r$ reconstructs and refine a previously generated mesh
- -i inserts a list of additional points (stored as *.a.node)

TetGen and TetView

Channel with a wall-mounted cube

- type tetgen -pq wall
- TetGen will read this PLC stored in wall.poly
- TetGen will write its constrained Delaunay tetrahedralisation (CDT) to files wall.1.node, wall.1.face, wall.1.ele.
- visualize with TetView
tetview wall. 1

11 boundary markers

TetGen and TetView

tetgen -pq wall
11 boundary markers

tetgen -pqr wall. 1
11 boundary markers

TetGen and TetView

Cylinder with a torispherical head tetgen -ipq torispherical

Converting the TetGen mesh into the format of MooNMD

Generate the .geo file with the help of C programming as follows:

- parametrisation

NEL NVT NVpF NVpEL NBF
(number of elements, number of vertices, maximal number of vertices per face, maximal number of vertices per element, number of boundary faces)

- DCONVG (triple)
number of boundary components, parameter 1, parameter 2 (for inside vertices)
x, y, z (for boundary vertices)
- KVERT(tuple) for each tetrahedra the 4 vertices

Converting the TetGen mesh into the format of MooNMD

- KNPR is:

0 : inside vertices
1 : boundary vertices

- boundfaces (triple) for each face the 3 vertices
- FaceParam
for each side surface:
element, local number, boundary part, boundary face

Using the output in MooNMD

- after one refinements
- still to be done: automatic adaption to the curved boundary no name

Cells

