Converting TetGen mesh into format of MooNMD

Volker John and Carina Suciu

Faculty of Mathematics Saarland University

26.11.07

Contents

- 1. Introduction
- 2. Example 1: Channel with a wall-mounted cube
- 3. Example 2: Cylinder with a torispherical head
- 4. File formats for TetGen and MooNMD
- 5. TetGen and TetView
- 6. Converting the TetGen mesh into the format of MooNMD

Introduction

- TetGen generates tetrahedral meshes in three-dimensional domains
- ➤ The goal is to create suitable tetrahedral meshes for numerical simulation using finite element and finite volume methods and to convert these meshes into the format of MooNMD

Example 1: Channel with a wall-mounted cube

Channel with a wall-mounted cube

given a rectangular channel with:

$$L = 15h$$
 length
 $H = 2h$ height
 $W = 7h$ width

▶ given a cube of edge length h mounted on the floor centered at (3.5h, 3.5h, 5h) in case h = 0.1

Example 1: Channel with a wall-mounted cube

Set the boundary faces

Rectangular channel

Face 1 1 2 3 4 (bottom)

Face 2 9 10 11 12 (top)

Face 3 1 4 12 9 (left)

Face 4 2 3 11 10 (right)

Face 5 1 2 10 9 (front)

Face 6 3 4 12 11 (back)

The cube

Face 7 13 14 15 16 (top)

Face 8 5 8 16 13 (left)

Face 9 6 7 15 14 (right)

Face 10 5 6 14 13 (front)

Face 11 8 7 15 16 (back)

Cylinder with a torispherical head:

- ▶ given a flat flange cylindrical vessel of diameter D₁ with a torisperical head (defined as per DIN 28011)
- dimension of the cylinder with the torispherical head

$$D_1 = 100$$
 mm

$$D_2 = 5mm$$

$$L = 140mm$$

$$f_D = D_1 = 100 mm$$

 $k_D = 0.1 D_1 = 10 mm$
 $R = \frac{D_1}{2} = 50 mm$

Calculate the others parameters

apply Pythagorean theorem

$$(D_1 - h)^2 = (f_D - 0.1D_1)^2$$

- $(R - 0.1D_1)^2$
 \Rightarrow
 $h = 19.377 mm$

use triangles similarity

$$\frac{R - 0.1D_{1}}{x} = \frac{f_{D} - 0.1D_{1}}{f_{D}} = \frac{D_{1} - h}{D_{1} - h_{1}}$$

$$\Rightarrow x = 44.444mm$$

$$h_{1} = 10.42mm$$

$$h_{2} = h - h_{1} = 8.957mm$$

use elementary trigonometric identities

$$tan\alpha = \frac{R - 0.1D_1}{D_1 - h}$$

$$\Rightarrow \qquad \alpha = 26.388^{\circ}$$

$$\beta = 90 - \alpha = 63.612^{\circ}$$

Analytical description

representation of cylindrical surface with cylindrical coordinates :

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = h_0$$

where

$$r = 50mm, \ \theta \in \{0, 2\pi\}, \ h_0 \in \{h, 140mm\}$$

parametrically representation of torus

$$x = [R + r \cos p] \cos t$$

$$y = [R + r \cos p] \sin t$$

$$z = r \sin p$$

where

$$p \in [\pi + 2\alpha + \beta, 2\pi], \ t \in [0, 2\pi]$$

 $R = 40mm$ (the distance from the center of the tube to the center of the torus)
 $r = 10mm$ (the radius of the tube)

representation of spherical surface with spherical coordinates :

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

$$ho=100$$
 mm, $\theta\in\{0,2\pi\}$, $\phi\in\{\pi-lpha,\pi\}$

- the TetGen input file *.poly is a simple three-dimensional piecewise linear complex (PLC)
- ▶ TetGen requires that the mesh region represented by a PLC should be completely face-bounded
- the .poly file format consists of 4 parts

Construct the TetGen file format for the first example: wall.poly

Part 1 -node list

First line:

<number of points> <dimension(3)> < number of attributes>
<boundary markers(0 or 1)>

Remaining lines list number of points:

<point number n> <xn> <yn> <zn>

```
16 3 0 1
1 0.000000 0.000000 0.000000 5
2 1.500000 0.000000 0.000000 5
3 1.500000 0.700000 0.000000 1
4 0.000000 0.700000 0.000000 1
5 0.300000 0.300000 0.000000 10
6 0.400000 0.300000 0.000000 10
14 0.400000 0.300000 0.100000 7
15 0.400000 0.400000 0.100000 11
```

16 0.300000 0.400000 0.100000 11

It is important to set the boundary markers for converting the results of TetGen into the format of MooNMD.

Part 2 -facet list

One line:

<number of polygons> <boundary marker(0 or 1)>

Following lines list number of polygons:

< polygon number > <number of holes> <boundary markers>

<number of corners> <corner 1>...<corner n>

```
14 1
1 0 1
4 1 2 6 5
1 0 1
4 2 3 7 6
1 0 1
4 3 4 8 7
...
```

1 0 2 4 9 10 11 12 1 0 7 4 13 14 15 16

Part 3 - (volume) hole list

One line:0

<number of holes>

Following lines list number of holes:

$$<$$
hole n $>$ $<$ xn $>$ $<$ yn $>$ $<$ zn $>$

0

Part 4 -region attributes list

One line:

<number of region>

Following lines list number of region attributes:

<region n> <x> <y> <z> <region number> <region attributes>

0

```
Construct the .prm file format
NBCT
1 (number of boundary part: always 1 for our example)
IBCT
1 (block for boundary part 1)
NCOMP
11 (number of boundary components, number of planes)
ITYP NSPLINE NPAR
10 0 3
... (11 time)
PARAMETERS (33 triples)
0.000000 0.000000 0.000000 (point in the plane)
1.000000 0.000000 0.000000 (direction vector)
0.000000 0.000000 -1.000000 (outer normal unit vector)
```

...

Construct the TetGen and MooNMD file formats for the second example: torispherical.poly

- ▶ the second example can't be manually operated
- generate the file formats with the help of Matlab programming

Describe the MATLAB code

- consider the example in 2D
- calculate for the edge 0, respectively edge 1 the first and the last point
- approximatae edge 2 with three points and edge 3 with four points
- rotate the curve to generate the body

- after one rotation will be generated 7 planes
- store for each plane the vertices into format of TetGen
- calculate for each plane 2 direction vectors and then the normals with the help of the cross product(necessary for .prm file)
- ► after the all rotation were done, store the dates in two file: .poly and .prm

The command line syntax to run TetGen is:

tetgen [-command line option] file.poly

The most used command line option in our example

- -p option tetrahedralizes a piecewise linear complex (.poly file)
- -q generates a quality mesh
- -r reconstructs and refine a previously generated mesh
- -i inserts a list of additional points (stored as *.a.node)

Channel with a wall-mounted cube

- ▶ type tetgen -pq wall
- TetGen will read this PLC stored in wall.poly
- ➤ TetGen will write its constrained Delaunay tetrahedralisation (CDT) to files wall.1.node, wall.1.face, wall.1.ele.
- ► visualize with TetView

 tetview wall.1

Cylinder with a torispherical head tetgen -ipq torispherical

Converting the TetGen mesh into the format of MooNMD

Generate the .geo file with the help of C programming as follows:

- parametrisation
 NEL NVT NVpF NVpEL NBF
 (number of elements, number of vertices, maximal number of vertices per face, maximal number of vertices per element, number of boundary faces)
- ▶ DCONVG (triple) number of boundary components, parameter 1, parameter 2 (for inside vertices) x, y, z (for boundary vertices)
- KVERT(tuple)for each tetrahedra the 4 vertices

Converting the TetGen mesh into the format of MooNMD

KNPR is:

0: inside vertices

1 : boundary vertices

- boundfaces (triple) for each face the 3 vertices
- FaceParam for each side surface: element, local number, boundary part, boundary face

Using the output in MooNMD

- after one refinements
- still to be done: automatic adaption to the curved boundary

no name

